Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The ecology of the Drosophila-yeast mutualism in wineries

View ORCID ProfileAllison S. Quan, View ORCID ProfileMichael B. Eisen
doi: https://doi.org/10.1101/273839
Allison S. Quan
1Department of Molecular and Cell Biology, University of California, Berkeley, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Allison S. Quan
Michael B. Eisen
1Department of Molecular and Cell Biology, University of California, Berkeley, CA
2Department of Integrative Biology, University of California, Berkeley, CA
3Howard Hughes Medical Institute, University of California, Berkeley, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michael B. Eisen
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted February 28, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The ecology of the Drosophila-yeast mutualism in wineries
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The ecology of the Drosophila-yeast mutualism in wineries
Allison S. Quan, Michael B. Eisen
bioRxiv 273839; doi: https://doi.org/10.1101/273839
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
The ecology of the Drosophila-yeast mutualism in wineries
Allison S. Quan, Michael B. Eisen
bioRxiv 273839; doi: https://doi.org/10.1101/273839

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Ecology
Subject Areas
All Articles
  • Animal Behavior and Cognition (2416)
  • Biochemistry (4774)
  • Bioengineering (3319)
  • Bioinformatics (14626)
  • Biophysics (6617)
  • Cancer Biology (5156)
  • Cell Biology (7402)
  • Clinical Trials (138)
  • Developmental Biology (4340)
  • Ecology (6858)
  • Epidemiology (2057)
  • Evolutionary Biology (9876)
  • Genetics (7328)
  • Genomics (9496)
  • Immunology (4534)
  • Microbiology (12631)
  • Molecular Biology (4919)
  • Neuroscience (28206)
  • Paleontology (198)
  • Pathology (802)
  • Pharmacology and Toxicology (1380)
  • Physiology (2012)
  • Plant Biology (4473)
  • Scientific Communication and Education (974)
  • Synthetic Biology (1295)
  • Systems Biology (3903)
  • Zoology (722)