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Abstract

Allele frequency data from human reference populations is of increasing value for filtering and assignment of
pathogenicity to genetic variants. Aged and healthy populations are more likely to be selectively depleted of
pathogenic alleles, and therefore particularly suitable as a reference populations for the major diseases of
clinical and public health importance. However, reference studies of the healthy elderly have remained
under-represented in human genetics. We have developed the Medical Genome Reference Bank (MGRB), a
large-scale comprehensive whole-genome dataset of confirmed healthy elderly individuals, to provide a
publicly accessible resource for health-related research, and for clinical genetics. It also represents a useful
resource for studying the genetics of healthy aging. The MGRB comprises 4,000 healthy, older individuals
with no reported history of cancer, cardiovascular disease or dementia, recruited from two Australian
community-based cohorts. DNA derived from blood samples will be subject to whole genome sequencing.
The MGRB will measure genome-wide genetic variation in 4,000 individuals, mostly of European decent,
aged 60-95 years (mean age =75 years). The MGRB has committed to a policy of data sharing, employing a
hierarchical data management system to maintain participant privacy and confidentiality, whilst maximizing
research and clinical usage of the database. The MGRB will represent a dataset of international significance,

broadly accessible to the clinical and genetic research community.
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Introduction:

Each individual differs from another at millions of sites in the genome. One of the key challenges in the
interpretation of whole genome sequencing (WGS) data for the diagnosis of inherited disease is
discriminating rare candidate disease-causing variants from the large numbers of benign variants unique to
each individual. Reference populations are powerful filters to distinguish pathogenic from population-based

genetic variation; both clinically for Mendelian disorders [1,2], and in research for studies of genetic disease

13].

The availability of population-based allele frequency data has been instrumental in enabling variant filtering,
assignment of pathogenicity, and frequency-based estimates of penetrance in recent years [4-6]. Variant
frequency data has facilitated the diagnosis and discovery of an unprecedented number of disease-driving
pathogenic mutations, and allele frequency-based filtering has become a mainstay of clinical genetics. This
initially was made possible by public access to the International HapMap [6] and 1000 Genomes [5] datasets,
and then more recently by the Exome Aggregation Consortium (EXAC) [4]. All of these reference projects
have been pivotal in influence on human genetics, primarily due to the common aspect of data sharing. An
increasing number of reference population sequencing projects are now underway worldwide, reflecting the
need to understand the underlying genetic variation in different backgrounds, especially those non-European

[7-11].

Despite the value provided by these genetic reference datasets, each has been limited in some way. Perhaps
the most common and significant limitation has been the lack of detailed phenotypic or clinical information,
at least made available to the public. Such information is of particular importance for confirming or excluding
genetic disease phenotypes. Access to longitudinal clinical outcome data to interpret genetic variation
considered to be pathogenic has also been lacking. For example, a cancer-free individual sampled at age 45
may go on to develop cancer at a later age. Such individuals in reference datasets may carry pathogenic
variants, but still be used as negative controls in many subsequent data analyses. When combined with the
stochastic and environmentally dependent nature of disease phenotypes, identification of genetically risk-

deplete controls is critical to understanding the genetic basis of common diseases.

Only one whole-genome sequenced population comprised of individuals confirmed to be deplete of genetic
disease phenotypes has been generated to date [12]. Depletion of disease phenotypes should decrease the

burden of penetrant pathogenic mutations. Such populations, such as the one we describe here, have
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increased power to act as negative controls for variant filtering and assignment of pathogenicity in studies

focused on inherited disease.

Another challenge of reference data sets is the size of the cohort. The larger a reference population is, the
more likely the population will be to contain rare variants. Therefore, larger sample sizes provide more
accurate and reliable population allele frequencies, especially at the rare end of the spectrum. This is of
critical importance given that most pathogenic alleles are rare with a minor allele frequency (MAF) <0.01,
particularly those of high penetrance (often MAF<0.001), and also because the majority of all single-
nucleotide variants (SNVs) are rare, as shown by recent population-based whole-exome and -genome
sequencing efforts, whereby singletons were by far the most abundant SNV frequency class detected

[4,11,13].

Another limitation is that many human genetic reference populations have comprised of varying ethnicities,
ages and genetic backgrounds, often taken from various cohorts or case-control studies. This aggregation
approach helps reach higher sample numbers, but does not ensure consistency of phenotype, or confidence
in the absence of disease. Achieving the unique combination of all features required for the optimal
reference data set is challenging, but should include: large size by sample number, whole-genome coverage,
ability to detect complex and structural variation, confirmation of health and age phenotypes, public data
access to both genomic and phenotypic data, measurement of genetic sequence variation using a consistent

and compatible sequencing technology (see Table 1).
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Table 1. Features of human genetic reference populations (as publicly stated February 2018)

Feature MGRB ExXAC GnomAD lsj:\(lﬁg HLI - Wellderly | SweGen HGVD
[4] [4] (4] | JVI[3] | STSI (121 | 1 7
Approx. cohort size |, ) 60,000 | 140,000 | 500,000 | 10,000 600 1,000 3,200

(Feb 2018)

Purpose-built
cohort (versus data v X X v v v v v

aggregation)

Whole genome
sequencing

v v X

Ability to detect
complex & SV

Phenotype data to
confirm absence of
disease

v
X v X v X v X
v

Confirmed healthy
elderly population

Public data access
policy

D N N N NI A N N
>
>
>
>
<
>
>

Large by size
(2n4000) v v v v X X X

Consistent &
compatible seq. v v v v v ~ v v

technology

MGRB - Medical Genome Reference Bank, EXAC -Exome Aggregation Consortium, GnomAD - Genome Aggregation Databas, UKBB SNPs — U.K.
Biobank SNP data set, HLI-JCVI - Human Longevity Inc - J. Craig Venter Institute, STSI Wellderly - Scripps Translational Science Institute Wellderly
study, SweGen - Swedish Genome reference population project, HGVD - Human Genetic Variation Database (Japan)

Here we present the rationale and design of the first human reference population comprised of thousands of
whole genomes from confirmed healthy elderly individuals, depleted of common and rare genetic disease
phenotypes. Samples for this project have been provided from two leading Australian community-based
cohort studies, with access to phenotypic and clinical information. This information has been used to confirm

the absence of cardiovascular disease, dementia and cancer in all participants.

The Medical Genome Reference Bank (MGRB) will involve whole genome sequencing of 4,000 healthy older
adults. These individuals are participants of the ASPirin in Reducing Events in the Elderly (ASPREE) study, an
international clinical trial for daily low-dose aspirin use in older people coordinated by the Department of
Epidemiology & Preventive Medicine at Monash University Monash University [15], and The 45 and Up study,

the largest ongoing study of healthy aging in the Southern Hemisphere, coordinated by the Sax Institute [16].
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Each MGRB sample will be sequenced using Illumina technology at a minimum 30x coverage. Data will be
processed using WGS best practice pipelines (GATK-BWA) and resulting population allele frequency data will
be made openly-accessible and downloadable via public website. Individual-level variant-call files (VCFs),
core phenotypes, and access to alignment files (BAMs) will be open to application via the MGRB Data Access
Committee. Access to additional clinical information and phenotype data will be available via application to
contributing cohorts, via existing data access and governance arrangements. For MGRB project overview, see

Figure 1.

Figure 1: The Medical Genome Reference Bank: Project overview
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Methods/Design

Inclusion/Exclusion criteria:

MGRB participants are consented through the biobank programs of two contributing studies, following
protocols previously described [15-17]. Each sample will be from an individual aged 60 years or older with a
mean age 75 years across 4,000 participants. Each MGRB participant will have no reported history, or current

diagnosis of cardiovascular disease, dementia, or cancer at time of enrolment.

Beyond MGRB inclusion criteria, each sample from the ASPREE study was from a participant aged 75 years or
older at time of enrolment, with no reported history of any cancer type. Each sample from the ASPREE study
also met the following criteria at time of study enrolment; no clinical diagnosis of atrial fibrillation; no serious
illness likely to cause death within the next 5 years (as assessed by general practitioner); no current or
recurrent condition with a high risk of major bleeding; no anaemia (haemoglobin > 12 g/dl males, > 11 g/d|I
females); no current continuous use of other antiplatelet drug or anticoagulant; no systolic blood pressure
>180 mm Hg and/or a diastolic blood pressure =105 mm Hg; no history of dementia or a Modified Mini-
Mental State Examination (3MS) score <77 [18]; no severe difficulty or an inability to perform any one of the

6 Katz activities of daily living (ADLS)[19].

Beyond MGRB inclusion criteria, each sample from the 45 and Up study also met the following criteria; no
record of cancer diagnosis in the NSW Central Cancer Registry; no record of cancer diagnosis in the NSW

Admitted Patient Data Collection.

Phenotypic information

The following data fields will be made available for all MGRB samples through open-access; year of birth,
gender, height, weight. For samples from the ASPREE study, waist circumference, blood pressure, fasting
blood glucose and status of age-related macular degeneration (AMD) will also be made available through

open-access.

Data Generation

Library preparation, DNA sequencing, alignment and processing

Whole genome sequencing of MGRB samples will be performed using lllumina HiSeq X sequencers at the
Kinghorn Centre for Clinical Genomics (KCCG) under clinically accredited conditions (ISO 15189). Paired-end
Illumina TruSeq DNA Nano libraries will be sequenced to one lane per sample. DNA sequences will be

mapped to Build 37 of the human reference genome and processed following the Genome Analysis Toolkit
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(GATK) best practices [20]. Indel realignment and base quality score recalibration of mapped reads will be
performed using GATK and best practices parameters; unmapped reads to be left unmodified. GATK
HaplotypeCaller will be used to generate g.vcfs from all single-lane realigned and recalibrated BAMs using
recommended parameters. All of the raw data will be processed through the Genome One Discovery
pipeline [21]. Data will be then analysed using the Hail open-source framework for scalable genetic analysis

[22].

Phased Data Release Plan
MGRB data will be released in three phases (see Table 2). Summary variant frequency data for the MGRB

cohort will be made available at the MGRB web portal: https://sgc.garvan.org.au. Complete genotype,

phenotype, and raw data are available to potential collaborators upon application. Completion of each phase
of sequencing will be followed by a public release of allele frequency data, including an update to the MGRB

database, website, portal and beacon.

Table 2: MGRB 3-phase whole-genome sequencing and data release plan

MGRB WGS sample Dataset size
number VCF BAM
Phase | 1,440 220GB 200TB
Phase Il 2,572 500 GB (est. 440TB
Phase Il 4,000 770 GB (est) | 630 TB (est.)

Data Access

The MGRB Data Access Policy (DAP) summarises the governance applied to individual and institutional
access. Curated data will be openly accessible to the international research community through the MGRB
website. Preliminary features will include a Beacon, as defined by the Global Alliance for Genomics and
Health [23], extensive variant annotation, complex queries (including genetic annotations, and genomic
regions), visualisation of variant data (e.g. genome viewer/ gene networks) and ultimately, analysis tools for

assessing the genetic burden of individual variants and variant subsets.

While basic demographic and phenotypic information will be incorporated into the MGRB data portal,
researchers are invited to apply for access to comprehensive genotypic and clinical information to support
high-level integrative analysis. To maintain participant privacy and confidentiality, whilst maximising MGRB
utility, we have deployed a tiered data management system that determines the richness of data that is
made available to researchers (as summarised in the schematic below). This consists of 3 access tiers; Open

access, Controlled access and Restricted access.
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Figure 2. MGRB 3-Tiered Data Access Policy
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The restricted access tier (Tier 3) would involve access to more detailed phenotype and/or clinical
information and would require an application, project approval and ethical approval from the ASPREE
Presentations, Publications and Ancillary Studies Committee (PPA) or 45andUp Data Access Committee.
Notwithstanding internal priorities, and subject to collaborative agreement, both studies commit to fair and
reasonable consideration of applications to provide access to restricted access tier data. Individual de-
identified processed genomic data would be available to download from the MGRB after execution of a Data

Transfer Agreement.

Open-Source Analytical Framework (Vectis):

Vectis (a lever in Latin) is a custom-build software environment and collection of modules for the MGRB to
support diverse users including clinicians, patients, bench scientists as well as bioinformaticians for the
analysis of patient cohorts, of any size, comprising whole genomes, exomes or gene panels. The Vectis

modules are described in Figure 3 and Table 3.
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Figure 3. MGRB database functionality and Vectis platform
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Table 3: Features of the Vectis Open-Source Analytical Framework

Feature Description

Secure login Two-factor authentication

Search Querying of cohorts using chromosomal coordinates and gene annotations
Beacon Integrated with the Global Alliance for Genomics and Health Beacon Network[20]

Highly interactive, low latency exploration of cohorts. Explore currently supports

Explore function . . f . .
P the querying of 84 million variants in real-time

Interactive graphics Including lollipop plots of allelic frequencies as well as gene transcripts
Variant annotations Including links out to the original supporting evidence
Scalable Variant Enables authorised users to subset patients based on clinical attributes and query
Store actual genotypes at the individual patient level
Discussion

Analysis Aims

The overarching aim of the MGRB is to create a catalogue of genome-wide genetic variation in healthy, older
individuals, and make data publicly accessible for the clinical genetics and research community. Secondary
analytical aims of the MGRB project include, but are not limited to; detection of different variant classes such
as single nucleotide variants (SNVs), insertions-deletions (Indels), structural variants (SVs) and copy number
changes (CNVs) across the population; clustering of the cohort by ethnicity and other phenotypic factors;
examining the frequency and type of clinically significant rare pathogenic variation, in relation to
phenotypes; calculating polygenic risk scores (PRS) for a range of conditions, and comparing these scores
against population-based and disease-based cohorts; measuring non-germline variation such as telomere

length, mtDNA variation and somatic changes in blood in relation to genomic ageing.

Potential limitations and confounding factors

The MGRB study is limited by a number of factors. The size of the cohort is limited to 4,000 individuals,
meaning very rare genetic variants, many of which may be of clinical or biological interest, may not be
detected in the dataset by chance, or represented only as singletons (1/4000 or MAF 0.00025). This limit of
detection may restrict the sensitivity of MGRB for some applications, compared to larger datasets such as
ExAC and Gnomad [4]. However 4,000 samples will still provide a limit of detection of MAF 0.00025, which is

below the threshold often used by many studies to define rare variants (MAF<0.01 to MAF<0.001). A related

11
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issue is that this Australian cohort is dominated by Caucasian European ancestry, which limits its utility as a

variant filter to matched disease populations.

A biological limitation will be the variable penetrance of rare pathogenic variants, even in an elderly
population [24,25]. An important consideration is that although the MGRB cohort is an aged, healthy group,
it is still possible that rare clinically significant pathogenic variation will be identified, some of which will not
be penetrant. Most single gene predispositions, including familial cancers, are not fully penetrant, meaning
that less than 100% of individuals with mutations in such genes ever develop the clinical phenotypes
associated with that gene mutation, even in older age [24]. The MGRB will give a unique opportunity to
overcome the traditional ascertainment bias [26] of human genetics in this regard. However, the detection of
a variant in the MGRB alone does not exclude a pathogenic role, where the variable penetrance could be due
to genetic or environmental context [27]. This is likely to be particularly important for assigning causality in
common diseases, where polygenic effects are likely important. This caveat is something end-users of the

data must keep in mind.

A dataset of whole-genome sequences from 600 individuals aged over 80 years has been published
previously by the ‘Wellderly’ study [12]. Individuals in this study had no reported chronic diseases and were
not taking chronic medications. There are important differences between the Wellderly dataset and the
MGRB. Firstly, the number of samples in the MGRB will be significantly higher at 4,000, adding much-needed
power and sensitivity for detecting, and filtering, rare variants. MGRB will have sensitivity of 1/4000
(MAF=0.00025) compared to 1/600 (MAF=0.016). Secondly, significant resources within the MGRB have been
allocated to delivering open-access data, analytical frameworks and data-sharing mechanisms, for both
whole-genome sequencing and phenotypic data. Thirdly, the capacity to detect and report complex and
structural genetic variation more readily. Fourthly, the Wellderly study sequenced DNA using the Complete
Genomics platform [28], not lllumina which is the technology used by most whole-genome or whole-exome
sequencing of reference populations to date [4,5,7-9,11,13]. There are important technical considerations in
the cross-compatibility of whole-exome and whole-genome sequencing data for generating population allele
frequencies on different sequencing platforms, or data processed using different bioinformatic pipelines [4].
Encouragingly, a recent study showed high concordance between the latest generations of both these

sequencing platforms [29].
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Implications

The MGRB has the potential to add another important data resource to the public domain to aid the clinical
genetic and research community in the filtering, annotating and assignment of pathogenicity to genetic
variants. The unique aspects of the MGRB will include; 1) focus on the healthy elderly, depleted of typical
monogenic disease phenotypes; 2) the age of the cohort, average of 75 years, beyond the age of onset for
most monogenetic conditions; 3) the availability and access to individual-level VCF and BAM data; and 4) the
opportunity to access high quality, comprehensive, longitudinal clinical and phenotypic information. These

factors will ensure the MGRB has a unique place alongside other reference populations.

Conclusion
The MGRB will be the first catalogue of genome-wide genetic variation across thousands of healthy elderly
individuals. This will provide an important dataset, resource and much-needed negative control population

for clinical genetics and research.
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