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Abstract
Clustering techniques are widely used in the analysis of large data sets to group together samples

with similar properties. For example, clustering is often used in the field of single-cell RNA-sequencing
in order to identify different cell types present in a tissue sample. There are many algorithms for
performing clustering and the results can vary substantially. In particular, the number of groups
present in a data set is often unknown and the number of clusters identified by an algorithm can
change based on the parameters used. To explore and examine the impact of varying clustering
resolution we present clustering trees. This visualisation shows the relationships between clusters at
multiple resolutions allowing researchers to see how samples move as the number of clusters increases.
In addition, meta-information can be overlaid on the tree to inform the choice of resolution and guide
in identification of clusters. We illustrate the uses of clustering trees using two examples, the classical
iris dataset and a complex single-cell RNA-sequencing dataset.
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Introduction

Clustering analysis is commonly used to group similar samples across a diverse range of applications.
Typically, the goal of clustering is to form groups of samples that are more similar to each other than to
samples in other groups. While fuzzy or soft clustering assigns each sample to every cluster with some
probability, and hierarchical clustering forms a tree of samples, most methods form hard clusters where
each sample is assigned to a single group. This goal can be achieved in a variety of ways, such as by
considering the distances between sample (e.g. k-means1–3, PAM4), areas of density across the dataset
(e.g. DBSCAN5) or relationships to statistical distributions6.

In many cases the number of groups that should be present in a dataset is not known in advance and
deciding the correct number of clusters to use is a significant challenge. For some algorithms, such as
k-means clustering, the number of clusters must be explicitly provided. Other methods have parameters
that, directly or indirectly, control the clustering resolution and therefore the number of clusters produced.
While there are methods and statistics (such as the elbow method7 or silhouette plots8) designed to
help analysts decide which clustering resolution to use, they typically produce a single score which only
considers a single set of samples or clusters at a time.

An alternative approach would be to consider clusterings at multiple resolutions and examine how samples
change groupings as the number of clusters increases. This is the approach taken by the clustering tree
visualisation we present here: (i) a dataset is clustered at multiple resolutions producing sets of cluster
nodes, (ii) the overlap between clusters at adjacent resolutions is used to build edges, (iii) the resulting
graph is presented as a tree. This tree can be used to examine how clusters are related to each other,
which clusters are distinct and which are unstable. In the following sections we describe how we construct
such a tree and present examples of trees built from a classical clustering dataset and a complex single-cell
RNA-sequencing (scRNA-seq) dataset. The figures shown here can be produced in R using our publicly
available clustree package.

Building a clustering tree

To build a clustering tree, we start with a set of clusterings allocating samples to groups at several
different resolutions. These could be produced using any hard-clustering algorithm that allows control of
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the number of clusters in some way. For example, this could be a set of samples clustered using k-means
with k = 1, 2, 3 as shown in Figure 1. We sort these clusterings so that they are ordered by increasing
resolution (k), then consider pairs of adjacent clusterings. Each cluster ck,i (where i = 1, ..., n and n is
the number of clusters at resolution k) is compared with each cluster ck+1,j (where j = 1, ..., m and m is
the number of clusters at resolution k + 1). The overlap between the two clusters is computed as the
number of samples that are assigned to both ck,i and ck+1,j . We next build a graph where each node is a
cluster and each edge is an overlap between two clusters.

Many of the edges will be empty, for example in Figure 1 no samples in Cluster A at k = 2 end up in
Cluster B at k = 3. In some datasets there may also be edges that contain few samples. These edges are
not informative and result in a cluttered tree. An obvious solution for removing uninformative, low-count
edges is to filter them using a threshold on the number of samples they represent. However, in this case
the count of samples is not the correct statistic to use because it favours edges at lower resolutions and
those connecting larger clusters. Instead we define the in-proportion metric as the ratio between the
number of samples on the edge and the number of samples in the cluster it goes towards. This metric
shows the importance of the edge to the higher resolution cluster independently of the cluster size. We
apply a threshold to the in-proportion in order to remove less informative edges.

The final graph is visualised using a tree layout. This places the cluster nodes in a series of layers where
each layer is a different clustering resolution and edges show the transition of samples through those
resolutions. Edges are coloured according to the number of samples they represent and the in-proportion
metric is used to control the edge transparency, highlighting more important edges. By default, the size
of nodes is adjusted according to the number of samples in the cluster and their colour indicates the
resolution. The clustree package also includes options for controlling the aesthetics of nodes based on the
attributes of samples in the clusters they represent.

A simple example

To further illustrate how a clustering tree is built, we will work through an example using the classical
iris dataset9. This dataset contains measurements of the sepal length, sepal width, petal length and petal
width from 150 iris flowers, 50 from each of three species: Iris setosa, Iris versicolor and Iris virginica.
The iris dataset is commonly used as example for both clustering and classification problems with the
Iris setosa samples being significantly different to, and linearly separable from, the other samples. We
have clustered this dataset using k-means clustering with k = 1, ..., 5 and produced the clustering tree
shown in Figure 2A.

We see that there is one branch of the tree that is clearly distinct (presumably representing Iris setosa),
remaining unchanged regardless of the number of clusters. On the other side we see the cluster at k = 2
cleanly split into two clusters (presumably Iris versicolor and Iris virginica) at k = 3 but as we move to
k = 4 and k = 5 we see clusters being formed from multiple branches with more low proportion edges.
This kind of pattern indicates that the data has become over-clustered and we have begun to introduce
artificial groupings. In this case we know that k = 3 is the correct choice but this is also the value that is
suggested by this tree.

We can check our assumption that the distinct branch represents the Iris setosa samples and the other
two clusters at k = 3 are Iris versicolor and Iris virginica by overlaying some known information about
the samples. In Figure 2B we have coloured the nodes by the mean petal length of the samples they
contain. We can now see that clusters in the distinct branch have the shortest petals, with Cluster 1 at
k = 3 having an intermediate length and Cluster 3 the longest petals. This feature is known to separate
the samples into the expected species with Iris setosa having the shortest petals on average, Iris versicolor
an intermediate length and Iris virginica the longest.

Although this is a very simple example it still highlights some of the benefits of viewing a clustering tree.
We get some indication of the correct clustering resolution by examining the edges and we can overlay
known information to assess the quality of the clustering. For example, if we observed that all clusters
had the same mean petal length it would suggest that the clustering has not been successful as we know
this is an important feature that separates the species. We could potentially learn more by looking at
which samples follow low proportion edges or overlaying a series of features to try and understand what
causes particular clusters to split.
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Figure 1: Illustration of the steps required to build a clustering tree. First a dataset must be clustered at
different resolutions. The overlap in samples between clusters at adjacent resolutions is computed and
used to calculate the in-proportion for each edge. Finally the edges are filtered and the graph visualised
as a tree.
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Figure 2: Clustering trees based on k-means clustering of the iris dataset. In A, nodes are coloured
according to the value of k and sized according to the number of samples they represent. Edges are
coloured according to the number of samples (from blue representing few to yellow representing many)
and the transparency adjusted according to the in-proportion, with stronger lines showing edges that are
more important to the higher resolution cluster. Cluster labels are randomly assigned by the k-means
algorithm. B shows the same tree with the node colouring changed to show the mean petal length of the
samples in each cluster.

Clustering trees for single-cell RNA-seq data

One field that has begun to make heavy use of clustering techniques is the analysis of single-cell RNA-
sequencing (scRNA-seq) data. Single-cell RNA-sequencing is a recently developed technology that can
measure how genes are expressed in thousands to millions of individual cells11. This technology has
been rapidly adopted in fields like developmental biology and immunology where it is valuable to have
information from single cells rather than measurements that are averaged across the many different
cells in a sample using older RNA sequencing technologies. One of the key uses for scRNA-seq is to
discover and interrogate the different cell types present in a sample of a complex tissue. In this situation,
clustering is typically used to group similar cells based on their gene expression profiles. Differences in
gene expression between groups can then be used to infer the identity or function of those cells12. The
number of cell types in an scRNA-seq dataset can vary depending on factors such as the tissue being
studied, its developmental or environmental state and the number of cells captured. Often the number of
cells types is not known before the data is generated and some samples can contain dozens of clusters.
Therefore, deciding which clustering resolution to use is an important consideration in this application.

As an example of how clustering trees can be used in the scRNA-seq context we consider a commonly
used Peripheral Blood Mononuclear Cell (PBMC) dataset. This dataset was originally produced by 10x
Genomics and contains 2700 peripheral blood monocuclear cells, representing a range of well-studied
immune cell types13. We have analysed this dataset using the Seurat package14, a commonly used toolkit
for scRNA-seq analysis, following the instructions in their tutorial with the exception of varying the
clustering resolution parameter from zero to five (see methods). Seurat uses a graph-based clustering
algorithm and the resolution parameter controls the partitioning of this graph, with higher values resulting
in more clusters. The clustering trees produced from this analysis are shown in Figure 3.

The clustering tree covering resolutions zero to one in steps of 0.1 (Figure 3A) shows that four main
branches form at a resolution of just 0.1. One of these branches, starting with Cluster 3 at resolution 0.1,
remains unchanged while the branch starting with Cluster 2 splits only once at a resolution of 0.4. Most
of the branching occurs in the branch starting with Cluster 1 which consistently has sub-branches split
off to form new clusters as the resolution increases. There are two regions of stability in this tree; at
resolution 0.5-0.6 and resolution 0.7-1.0 where the branch starting at Cluster 0 splits in two.
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Figure 3: Two clustering trees of a dataset of 2700 Peripheral Blood Mononuclear Cells (PBMCs). A)
results from clustering using Seurat with resolution parameters from zero to one. At a resolution of 0.1
we see the formation of four main branches, one of which continues to split up to a resolution of 0.5, after
which there are only minor changes. B) resolutions from zero to five. At the highest resolutions we begin
to see many low in-proportion edges indicating cluster instability. Seurat labels clusters according to
their size with Cluster 0 being the largest.

Figure 3B shows a clustering tree with a greater range of resolutions, from zero to five in steps of 0.5.
By looking across this range we can see what happens when the algorithm is forced to produce more
clusters than are likely to be truly present in this dataset. As over-clustering occurs we begin to see
more low in-proportion edges and new clusters forming from multiple parent clusters. This suggests that
those areas of the tree are unstable and that the new clusters being formed are unlikely to represent true
groups in the dataset.

Known marker genes are commonly used to identify the cell types that specific clusters correspond to.
Overlaying gene expression information onto a clustering tree provides an alternative view that can
help to indicate when clusters containing pure cell populations are formed. Figure 4 shows the PBMC
clustering tree in Figure 3A overlaid with the expression of some known marker genes.

By adding this extra information, we can quickly identify some of the cell types. CD19 (Figure 4A)
is a marker of B cells and is clearly expressed in the most distinct branch of the tree. CD14 (Figure
4B) is a marker of a type of monocyte, which becomes more expressed as we follow one of the central
branches, allowing us to see which resolution identifies a pure population of these cells. CD3D (Figure
4C) is a general marker of T cells and is expressed in two separate branches, one which splits into low and
high expression of CCR7 (Figure 4D), separating memory and naive CD4 T cells. By adding expression
of known genes to a clustering tree, we can see if more populations can be identified as the clustering
resolution is increased and if clusters are consistent with known biology. For most of the Seurat tutorial
a resolution of 0.6 is used, but the authors note that by moving to a resolution of 0.8, a split can be
achieved between memory and naive CD4 T cells. This is a split that could be anticipated by looking at
the clustering tree.

Discussion and conclusion

Clustering similar samples into groups is a useful technique in many fields, but often analysts are faced
with the tricky problem of deciding which clustering resolution to use. Traditional approaches to this
problem typically consider a single cluster or sample at a time and may rely on prior knowledge of sample
labels. Here we present clustering trees, an alternative visualisation that shows the relationships between
clusterings at multiple resolutions.

Clustering trees display how clusters are divided as resolution increases, which clusters are clearly separate
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Figure 4: Clustering trees of the PBMC dataset coloured according to the expression of known markers.
The node colours indicate the average of the log2 gene counts of samples in each cluster. CD19 (A)
identifies B cells, CD14 (B) shows a population of monocytes, CD3D (C) is a marker of T cells and CCR7
(D) shows the split between memory and naive CD4 T cells.

and distinct, which are related to each other and how samples change groups as more clusters are produced.
Although clustering trees can appear similar to the trees produced from hierarchical clustering there
are several important differences. Hierarchical clustering considers the relationships between individual
samples and doesn’t provide an obvious way to form groups. In contrast, clustering trees are independent
of any particular clustering method and show the relationships between distinct groups of samples, any of
which could be used for further analysis.

To illustrate the uses of clustering trees we presented two examples, one using the classical iris dataset
and a second based on a complex scRNA-seq dataset. Both examples demonstrate how a clustering tree
can suggest the correct resolution to use and how overlaying extra information can help to validate those
clusters. This is of particular use to scRNA-seq analysis as these datasets are often large, noisy and
contain an unknown number of cell types.

Even when the number of clusters to choose is not a problem, clustering trees can be a valuable tool.
They provide a compact, information dense, visualisation that can display summarised information across
a range of clusters. By modifying the appearance of cluster nodes based on attributes of the samples they
represent, clusterings can be evaluated and identities of clusters established. Clustering trees potentially
have applications in many fields and in the future could be adapted to be more flexible, such as by
accommodating fuzzy clusterings.

Methods

The clustree software package is built for the R statistical programming language. It relies on the
ggraph package (https://github.com/thomasp85/ggraph), which is itself built on the ggplot215 and
tidygraph packages (https://github.com/thomasp85/tidygraph). Clustering trees are displayed using the
Reingold-Tilford tree layout16 or the Sugiyama layout17, both available as part of the igraph package18.

The iris dataset is available as part of R. We clustered this dataset using the “kmeans” function in the
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stats package with values of k from one to five. Each value of k was clustered with a maximum of 100
iterations and with 10 random starting positions. The clustered iris dataset is available as part of the
clustree package.

The PBMC dataset was downloaded from the Seurat tutorial page (http://satijalab.org/seurat/pbmc3k_
tutorial.html) and this tutorial was followed for most of the analysis. Briefly cells were filtered based on
the number of genes they express and the percentage of counts assigned to mitochondrial genes. The data
was then log-normalised and 1838 variable genes identified. Potential confounding variables (number of
unique molecular identifiers and percentage mitochondrial expression) were regressed from the dataset
before performing principal component analysis on the identified variable genes. The first 10 principal
components were then used to build a graph which was partitioned into clusters using Louvain modularity
optimisation19 with resolution parameters in the range zero to five, in steps of 0.1 between zero and one
and then in steps of 0.5.
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