
fastp: an ultra-fast all-in-one FASTQ preprocessor

Shifu Chen1,2,*, Yanqing Zhou1, Yaru Chen1, Jia Gu2
1HaploX Biotechnology.
2Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences.
*To whom correspondence should be addressed.

Abstract:

Motivation: Quality control and preprocessing of FASTQ files are essential to
providing clean data for downstream analysis. Traditionally, a different tool is used
for each operation, such as quality control, adapter trimming, and quality filtering.
These tools are often insufficiently fast as most are developed using high-level
programming languages (e.g., Python and Java) and provide limited multi-threading
support. Reading and loading data multiple times also renders preprocessing slow and
I/O inefficient.
Results: We developed fastp as an ultra-fast FASTQ preprocessor with useful quality
control and data-filtering features. It can perform quality control, adapter trimming,
quality filtering, per-read quality cutting, and many other operations with a single
scan of the FASTQ data. It also supports unique molecular identifier preprocessing,
poly tail trimming, output splitting, and base correction for paired-end data. It can
automatically detect adapters for single-end and paired-end FASTQ data. This tool is
developed in C++ and has multi-threading support. Based on our evaluation, fastp is
2–5 times faster than other FASTQ preprocessing tools such as Trimmomatic or
Cutadapt despite performing far more operations than similar tools.
Availability and Implementation: The open-source code and corresponding
instructions are available at https://github.com/OpenGene/fastp
Contact: chen@haplox.com

1. Introduction

Quality control and preprocessing of sequencing data are critical to obtaining
high-quality and high-confidence variants in downstream data analysis. Data can
suffer from adapter contamination, base content biases, and overrepresented
sequences. Even worse, library preparation and sequencing steps always involve
errors and can cause inaccurate representations of original nucleic acid sequences.
Sequencing technologies, especially next-generation sequencing (NGS), have been
broadly used in clinical applications in recent years, particularly for noninvasive
prenatal testing (Bianchi et al., 2015) and cancer diagnosis. For example, liquid
biopsy technology (Esposito, Criscitiello, Trapani, & Curigliano, 2017), which seeks
out cancer-related biomarkers in the circulatory system, can be used to facilitate
cancer diagnosis and personalized treatment regimens. As a major technology in

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/274100doi: bioRxiv preprint

https://doi.org/10.1101/274100
http://creativecommons.org/licenses/by-nc-nd/4.0/

liquid biopsy, cell-free tumor DNA (ctDNA) sequencing is used to detect
tumor-derived DNA fragments from plasma, urine, and other circulating liquids.
ctDNA sequencing data are usually highly noisy, and detected mutations often exhibit
ultra-low mutation allele frequencies (MAF); quality control and data preprocessing
are especially important for detecting low-MAF mutations to eliminate false positives
and false negatives.

Quality control and preprocessing of FASTQ data could be considered resolved
given the availability of several relevant tools. For instance, FASTQC (Andrews) is a
Java-based quality control tool providing per-base and per-read quality profiling
features. Cutadapt (Martin, 2011) is a commonly used adapter trimmer, which also
provides some read-filtering features. Trimmomatic (Bolger, Lohse, & Usadel, 2014),
another popular trimming adapter tool, can perform quality pruning using algorithms
such as sliding window cutting. SOAPnuke (Y. Chen et al., 2018) is a recently
published tool for adapter trimming and read filtering with the implementation of
MapReduce on Hadoop systems.

In the past, multiple tools were employed for FASTQ data quality control and
preprocessing. A typical combination was the use of FASTQC for quality control,
Cutadapt for adapter trimming, and Trimmomatic for read pruning and filtering. The
requirement to read and load data multiple times made preprocessing slow and I/O
inefficient. Yet the tools must be used in combination because no single tool currently
exists that can effectively address all these problems. The authors developed AfterQC
(S. Chen et al., 2017) to integrate quality control, adapter trimming, data filtering, and
other useful functions into one tool. AfterQC is a convenient tool that can perform all
necessary operations and output HTML-based reports with a single scan of FASTQ
files. It also provides a novel algorithm to correct bases by searching for overlapping
paired-end reads. However, because AfterQC was developed in Python, it is relatively
slow and overly time-consuming when processing large FASTQ files.

In this paper, we present fastp, an ultra-fast tool to perform quality control, read
filtering, and base correction for FASTQ data. It includes most features of FASTQC +
Cutadapt + Trimmomatic + AfterQC while running 2–5 times faster than any of them
alone. In addition to the functions available in these tools, fastp offers supplementary
features such as unique molecular identifier (UMI) preprocessing, per-read polyG tail
trimming, and output splitting. fastp also provides quality control reports for pre- and
post-filtered data within a single HTML page, which allows for direct comparison of
quality statistics altered by preprocessing. fastp can automatically detect adapter
sequences for single-end and paired-end Illumina data. In contrast with the
aforementioned tools developed in Java or Python, fastp is developed in C/C++ with
solid multi-threading implementation, making it much faster than its peers.
Furthermore, based on the functions for correcting or eliminating sequencing errors,
fastp can obtain even better clean data compared to conventional tools.

2. Methods

As an all-in-one FASTQ preprocessor, fastp provides functions including quality
profiling, adapter trimming, read filtering, and base correction. It supports both

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/274100doi: bioRxiv preprint

https://doi.org/10.1101/274100
http://creativecommons.org/licenses/by-nc-nd/4.0/

single-end and paired-end short read data and also provides basic support for
long-read data, which are typically generated by PacBio and Nanopore sequencers. In
this section, we will first present the overall design of this tool and then explain how
the major modules work.

2.1 Overall design

fastp is designed for multi-threading parallel processing. Reads loaded from FASTQ
files will be packed with a size of N (N = 1000). Each pack will be consumed by one
thread in the pool, and each read of the pack will be processed. Each thread has an
individual context to store statistical values of the reads it processes, such as per-cycle
quality profiles, per-cycle base contents, adapter trimming results, and k-mer counts.
These values will be merged after all reads are processed, and a reporter will generate
reports in HTML and JSON formats. fastp reports statistical values for pre-filtering
and post-filtering data to facilitate comparisons of changes in data quality after
filtering is complete.

fastp supports single-end (SE) and paired-end (PE) data. While most steps of SE
and PE data processing are similar, PE data processing requires some additional steps
such as overlapping analysis. For the sake of simplicity, we only demonstrate the
main workflow of paired-end data preprocessing, shown in Fig. 1.

Fig. 1 Workflow of fastp. (a) Main workflow of paired-end data processing, and (b) paired-end
preprocessor of one read pair. In the main workflow, a pair of FASTQ files is loaded and packed, after
which each read pair is processed individually in the paired-end preprocessor, described in (b).

2.2 Adapter trimming

fastp supports automatic adapter trimming for both single-end and paired-end
Illumina data and uses different algorithms for each of these tasks. For single-end data,
adapter sequences are detected by assembling the high-frequency read tails; for
paired-end data, adapter sequences are detected by finding the overlap of each pair.

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/274100doi: bioRxiv preprint

https://doi.org/10.1101/274100
http://creativecommons.org/licenses/by-nc-nd/4.0/

 The adapter-sequence detection algorithm is based on two assumptions: the first
is that only one adapter exists in the data; the second is that adapter sequences exist
only in the read tails. These two assumptions are valid for major next-generation
sequencers like Illumina HiSeq series, NextSeq series, and NovaSeq series. We
compute the k-mer (k = 10) of first N reads (N = 1M). From this k-mer, the sequences
with high occurrence frequencies (> 0.0001) are considered as adapter seeds.
Low-complexity sequences are removed because they are usually caused by
sequencing artifacts. The adapter seeds are sorted by its occurrence frequencies. A
tree-based algorithm is applied to extend the adapter seeds to find the real complete
adapter, which is described by the pseudo code in Algorithm 1.

 In Algorithm 1, the function build_nucleotide_tree() is used to convert a set of
sequences to a tree, in which each node is a nucleotide and each path of root to leaf is
a sequence. A node’s dominant child is defined as its major child with a dominant

Algorithm 1: adapter sequence detection
for seed in sorted_adapter_seeds:
 seqs_after_seed = get_seqs_after(seed)
 forward_tree = build_nucleotide_tree(seqs_after_seed)
 found = True
 node = forward_tree.root
 after_seed = “”
 while node.is_not_leaf():
 if node.has_dominant_child():
 node = node.dominant_child()
 after_seed = after_seed + node.base
 else:
 found = False
 break
 if found == False:
 continue
 else:
 seqs_before_seed = get_seqs_before(seed)
 backward_tree = build_nucleotide_tree(seqs_before_seed)

node = backward _tree.root
before_seed = “”
while node.is_not_leaf():

 if node.has_dominant_child():
 node = node.dominant_child()
 before_seed = node.base + before_seed
 else:
 break
 adapter = before_seed + seed + after_seed
 break

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/274100doi: bioRxiv preprint

https://doi.org/10.1101/274100
http://creativecommons.org/licenses/by-nc-nd/4.0/

percentage (>90%). This algorithm tries to extend an adapter seed in the forward
direction to check its validity since a valid adapter can always be extended to the read
tails. And if this adapter seed is valid, a backward extension is applied to obtain the
complete adapter sequence. The process of extending an adapter seed in forward and
backward directions is given in Fig. 2.

Fig. 2 A demonstration of extending an adapter seed in both forward and backward directions.
The found adapter is GCAAATCGATCGACT, with the first two bases (GC) as the upstream sequence,
the central ten bases as the adapter seed, and the last three bases (ACT) as the downstream sequence.

For paired-end data, fastp seeks the overlap of each pair and considers the bases
that fall out of the overlapped regions as adapter contents. The overlapping detection
algorithm was derived from our previous work, AfterQC. Compared to
sequence-matching-based adapter-trimming tools like Cutadapt and Trimmomatic, a
clear advantage of the overlap-analysis-based method is that it can trim adapters with
few bases in the read tail. For example, most sequence-matching-based tools require a
hatchment of at least three bases and cannot trim adapters with only one or two bases.
In contrast, fastp can trim adapters with even only one base in the tail.
 Although fastp can detect adapter sequences automatically, it also provides
interfaces to set specific adapter sequences for trimming. For SE data, if an adapter
sequence is given, then automatic adapter-sequence detection will be disabled. For PE
data, the adapter sequence will be used for sequence-matching-based adapter
trimming only when fastp fails to detect a good overlap in the pair.

2.3 Base correction

For paired-end data, if one pair of reads can be detected with a good overlap, then the
bases within the overlapped region can be compared. If the reads are of high quality,
they are usually completely reverse-complemented.
 If any mismatches are found within the overlapped region, fastp will try to correct
them. fastp only corrects a mismatched base pair with an imbalanced quality score,
such as when one has a high-quality score (> Q30) and the other has a low-quality
score (< Q15). To reduce false corrections, fastp only performs a correction if the
total mismatch is below a given threshold T (T = 5).

2.4 Sliding window quality cutting

To improve the read quality, fastp supports a sliding window method to drop the
low-quality bases of each read’s head and tail. The window can slide from either 5’ to

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/274100doi: bioRxiv preprint

https://doi.org/10.1101/274100
http://creativecommons.org/licenses/by-nc-nd/4.0/

3’ or from 3’ to 5’, and the average quality score within the window is evaluated. If
the average quality is lower than a given threshold, then the bases in the window will
be marked as discarded and the window will be moved forward by one base;
otherwise, the algorithm ends.

2.5 polyG and polyX tail trimming

PolyG is a common issue observed in Illumina NextSeq and NovaSeq series, which
are based on two-color chemistry. Such systems use two different lights (i.e., red and
green) to represent four bases: a base with only a detected red-light signal is called C;
a base with only a detected green light signal is called T; a base with both red and
green light detected is called A; and a base with no light detected is called G.
However, as the sequencing by synthesis proceeds to subsequent cycles, the signal
strength of each DNA cluster becomes progressively weaker. This issue causes some
T and C to be wrongly interpreted as G in the read tails, a problem otherwise known
as a polyG tail.
 fastp can detect and trim the polyG in the read tails. It checks the flow cell
identifier to determine whether the data are from Illumina NextSeq or NovaSeq
sequencers, and if so, it automatically enables polyG tail trimming. The polyG tail
issue can result in a serious base content separation problem, meaning that A and T or
C and G have substantially different base content ratios. Fig. 3 shows an example of
data exhibiting a polyG tail issue and how the problem is addressed with fastp
preprocessing.

Fig. 3. The base content ratio curves generated by fastp for one Illumina NextSeq FASTQ file. (a)
before fastp preprocessing, and (b) after fastp preprocessing. As depicted in (a), the G curve is
abnormal, and the G/C curves are separated. In (b), the G/C separation problem is eliminated.

	
 fastp	
 also	
 implements	
 polyX	
 tail	
 trimming,	
 where	
 X	
 means	
 any	
 base	
 of	

A/T/C/G.	
 This	
 function	
 can	
 be	
 used	
 to	
 trim	
 the	
 low-­‐complexity	
 consecutive	

bases	
 in	
 3’	
 end.	
 PolyX	
 tail	
 trimming	
 and	
 polyG	
 tail	
 trimming	
 can	
 be	
 enabled	

together.	
 In	
 this	
 case,	
 polyG	
 tail	
 trimming	
 will	
 be	
 applied	
 first	
 since	
 polyG	
 is	

usually	
 caused	
 by	
 sequencing	
 artifacts	
 and	
 should	
 be	
 trimmed	
 first.	

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/274100doi: bioRxiv preprint

https://doi.org/10.1101/274100
http://creativecommons.org/licenses/by-nc-nd/4.0/

2.6 UMI preprocessing

Recently, UMI technology was proposed to reduce background noise and improve
sensitivity when detecting ultra-low frequency mutations in deep-sequencing
applications (i.e., ctDNA sequencing). The UMI method can be used to remove
duplications and generate high-quality consensus reads. It has been adopted by
various sequencing methods such as Duplex-Seq (Kennedy et al., 2014) and iDES
(Newman et al., 2016). For Illumina sequencing platforms, UMI can be integrated
into the sample index or inserted DNA. UMI should be shifted to the read identifier to
be retained by alignment tools like BWA (Li & Durbin, 2009) or Bowtie (Langmead
& Salzberg, 2012).
 Some tools have already been developed for preprocessing UMI-integrated
FASTQ data, such as UMI-tools (Tom Sean Smith, 2018) and umis (Valentine
Svensson, 2018). However, these tools are not efficient enough and require individual
execution that consumes additional I/O and computational resources. fastp supports
UMI preprocessing with little overhead; that is, it supports UMI in either a sample
index or inserted DNA (or both). Compared to UMI-tools or umis, fastp runs
approximately 3 times faster even when performing other tasks simultaneously (i.e.,
QC and filtering). Performance evaluation results are discussed in the next section.

2.7 Output splitting

Parallel processing of NGS data has become a new trend, especially in a
cloud-computing environment. In a typical parallel NGS data processing pipeline, an
original FASTQ file will be split into multiple pieces, and each piece will be run with
aligners and alignment adjustment tools to obtain the corresponding BAM file. These
BAM files can then be merged into different forms for parallel variant calling.

fastp supports two splitting modes: splitting by file lines and splitting by file
numbers. The latter is more complicated because fastp must evaluate the total lines of
the input files, which is especially difficult for GZIP-compressed data. fastp evaluates
total lines by comparing the stream size of the first 1M reads.

2.8 Overrepresented sequence analysis

Some sequences, or even entire reads, can be overrepresented in FASTQ data.
Analysis of these overrepresented sequences provides an overview of certain
sequencing artifacts such as PCR over-duplication, polyG tails, and adapter
contamination. FASTQC offers an overrepresented sequence analysis module;
however, according to the author’s introduction, FASTQC only tracks the first 1M
reads of the input file to conserve memory. We suggest that inferring the overall
distribution from the first 1M reads is not a reliable solution as the initial reads in
Illumina FASTQ data usually originate from the edges of flowcell lanes, which may
have lower quality and different patterns than the overall distribution.

Unlike FASTQC, fastp samples all reads evenly to evaluate overrepresented
sequences and eliminate partial distribution bias. To achieve efficient implementation

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/274100doi: bioRxiv preprint

https://doi.org/10.1101/274100
http://creativecommons.org/licenses/by-nc-nd/4.0/

of this feature, we designed a two-step method. In the first step, fastp completely
analyzes the first 1.5M base pairs of the input FASTQ to obtain a list of sequences
with relatively high occurrence frequency in different sizes. In the second step, fastp
samples the entire file and counts the occurrence of each sequence. Finally, the
sequences with high occurrence frequency are reported.
 Besides the occurrence frequency, fastp also records the positions of
overrepresented sequences. This information is quite useful for diagnosing sequence
quality issues. Some sequences tend to appear in the read head whereas others appear
more often in the read tail. The distribution of overrepresented sequences is visualized
in the HTML report. Fig. 4 shows a demonstration of overrepresented sequence
analysis results.

Fig. 4. Overrepresented sequence analysis results. The right column shows the histogram of
occurrence among all sequencing cycles.

2.9 Quality control and reporting

fastp supports filtering reads using a low-quality base percentage, N base number, and
read length. These filters are trivial and thus not described here. fastp also supports
filtering low-complexity reads by evaluating the percentage of consecutive bases.
fastp records the number of reads that were filtered out according to different filtering
criteria.

fastp also provides comprehensive information on quality-profiling results. In
contrast to FASTQC, fastp offers results for both pre-filtering and post-filtering data,
which allows for evaluation of the filtering effect by comparing the figures directly.
fastp also reports results in JSON and HTML format, the former of which contains all
data visualized in the HTML report. The format of the JSON report is manually
optimized to be easily readable by humans. The HTML report is a single standalone
web page, with all figures created dynamically using JavaScript and web canvas.
Additionally, fastp provides a full k-mer occurrence table for all 6-bp sequences. An
online demonstration of the HTML report can be found at
http://opengene.org/fastp/fastp.html.

3. Results

We conducted several experiments to evaluate the performance of fastp in terms of
speed and quality. We chose FASTQC, Cutadapt, Trimmomatic, SOAPnuke, and
AfterQC for performance comparison, and the results revealed that fastp is much

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/274100doi: bioRxiv preprint

https://doi.org/10.1101/274100
http://creativecommons.org/licenses/by-nc-nd/4.0/

faster than these tools while providing similar or even better quality.

3.1 Speed evaluation

We compared the speed of all six tools by preprocessing the B17NCB1 dataset,
obtained from the National Center for Clinical Laboratories in China. This dataset is
paired-end, containing 9,316 M bases. We evaluated the used time for PE and SE
mode, respectively. All tools were run with a single thread to ensure fair comparison.
Results are listed in Table 1.
Table 1. Speed comparison of fastp and other software.

Tools PE / SE Time (min) Throughput (read/s)
fastp SE 6 129397.9

PE 13.3 116750.0

FASTQC SE 13 59722.1
PE 25.8 60185.1

Cutadapt SE 18 43132.6
PE 24.6 63120.9

SOAPnuke SE 30.7 25289.5
PE 32.5 47777.7

AfterQC SE 25.2 30809.0
PE 57.2 27146.4

Trimmomatic SE 31.9 24338.2
PE 60.9 25497.1

As indicated, fastp is much faster than other tools. The second-fastest tool is FASTQC,
which takes about twice the time of fastp. However, FASTQC only performs quality
control, whereas fastp performs quality control (for pre-filtering data and
post-filtering data), data filtering, and other operations. The other tools take 3–5 times
longer than fastp. Because fastp was natively designed for multi-thread processing, it
may demonstrate even higher performance when executed in real applications in
multi-thread mode. As some of the selected tools do not support multi-threading, a
multi-threading performance comparison is not provided here.

3.2 Quality evaluation

To evaluate the adapter trimming and quality pruning of fastp compared to other tools
(i.e., AfterQC, SOAPnuke, Trimmomatic, and Cutadapt), we used an Illumina
NextSeq PE150 dataset (NS_PE150). Among these tools, fastp and AfterQC can trim
adapters via overlap analysis, whereas the other tools require adapter sequence input.
We evaluated the amount of suspected adapters by searching the 33bp-long adapter
sequences from post-filtering data with tolerance of several mismatches; results are
shown in Fig. 5.

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/274100doi: bioRxiv preprint

https://doi.org/10.1101/274100
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 5. Result of adapter trimming performance evaluation. The X-axis is the number of allowed
mismatches when searching for suspected adapter sequences, and the Y-axis is the count of suspected
adapter sequences.

From Fig. 5, we can learn that fastp and Trimmomatic give the best performance.
The fastp-filtered data contains no suspected adapters when 4 or fewer mismatches
are allowed. Comparing to fastp-filtered data, Trimmomatic-filtered data contains less
suspected adapters when 5 or more mismatches are allowed, but contains more when
4 mismatches are allowed. The data filtered with Cutadapt, SOAPnuke or AfterQC
contain a large number of suspected adapters when the allowed mismatches are 4 or
more. Since AfterQC was not designed as a professional adapter-trimming tool, the
data filtered by this tool even contains suspected adapters without any mismatch.

To further evaluate filtering effectiveness, we mapped the data filtered by
different tools to the reference genome hg19 using BWA-MEM and evaluated the
mapping results with Samtools (Li et al., 2009). Mismatches, clips, and improper
mappings were recorded for evaluation purposes. From our perspective, uncorrected
sequencing errors contribute greatly to mismatches while residual adapters contribute
to clips and improper mappings. Comparison results are presented in Table 2.
Table 2. Mismatches, clips, and single-read maps of the data filtered with different tools.

NS_PE150
Total map
base (M)

Mismatched
base (M)

Total map read
(M)

Clip read (M) Single-read map

Raw data 3390 19.8 22.4 6.16 46025
fastp 3102 10.6 21.2 0.30 271
AfterQC 3053 12.3 21.2 0.64 34099
SOAPnuke 2981 18.3 19.7 3.46 36888
Trimmomatic 3111 12.8 22.1 0.75 229111
Cutadapt 3287 19.8 22.4 1.05 46195

fastp generated the lowest number of mismatches, clipped reads, and single-read
mapped reads. Trimmomatic and Cutadapt generated much more clipped or
single-read mapped reads. Given that Trimmomatic, Cutadapt, and SOAPnuke are all
based on adapter-sequence matching, they may fail to detect adapters when the

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/274100doi: bioRxiv preprint

https://doi.org/10.1101/274100
http://creativecommons.org/licenses/by-nc-nd/4.0/

adapter sequence only has a few bases. For example, Cutadapt requires at least 3bp
matching of the adapter sequence and the read for a sequence to be recognized as an
adapter. If the adapter sequence has only one or two bases, it will not be detected and
is often erroneously reported as either a mismatch or soft clip by the alignment tools.

3.3 UMI evaluation

UMI technology is widely used in cancer sequencing, especially ctDNA sequencing.
To analyze NGS data with UMI integration, the FASTQ preprocessor should shift the
UMI from the reads to the read identifiers. We ran UMI preprocessing on a FASTQ
of 4Gb Illumina PE150 data using fastp, umis, and UMI-tools, respectively. The
execution times were recorded and are reported in Table 3.
Table 3. UMI preprocessing time comparison of fastp, umis, and UMI-tools.

Tools Time (min) Throughput (read/s)

fastp 4.6 104302.9

umis 12.43 38599.6

UMI-tools 28.38 16906.4

Clearly, fastp is approximately 2.7 times faster than umis and about 6.1 times faster
than UMI-tools. This evaluation was conducted with GZIP input and uncompressed
output because umis does not support GZIP output. Considering that fastp can achieve
high performance for UMI preprocessing, it has recently been adopted by the popular
NGS pipeline framework, bcbio-nextgen (Brad Chapman, 2018).

4. Discussion

In this paper, we introduced fastp, an ultra-fast all-in-one FASTQ preprocessor. fastp
is a versatile tool that can perform quality profiling, read filtering, read pruning,
adapter trimming, polyG/polyX tail trimming, UMI preprocessing, and other
operations with a single scan of FASTQ files. Additionally, it can split output into
multiple files for parallel processing.

We evaluated the performance of speed and quality of fastp against other tools.
The results indicate that fastp is much faster than its counterparts and provides the
highest-quality data filtering of all other tested options. fastp is an open-source
software. Due to its high speed and excellent quality in FASTQ file quality control
and filtering, fastp has gained many community users.

5. Acknowledgement

The authors would like to thank fastp community users for identifying bugs.

6. Funding

This study was financed by the National Science Foundation of China (No. 61472411)

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/274100doi: bioRxiv preprint

https://doi.org/10.1101/274100
http://creativecommons.org/licenses/by-nc-nd/4.0/

and Special Funds for Future Industries of Shenzhen (No. JSGG20160229123927512)

Reference

Andrews, S. A quality control tool for high throughput sequence data.
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/.

Bianchi, D. W., Chudova, D., Sehnert, A. J., Bhatt, S., Murray, K., Prosen, T. L., . . . Halks-Miller, M.
(2015). Noninvasive Prenatal Testing and Incidental Detection of Occult Maternal
Malignancies. JAMA, 314(2), 162-169. doi:10.1001/jama.2015.7120

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170

Brad Chapman, R. K., Lorena Pantano et al. (2018). Validated, scalable, community developed variant
calling, RNA-seq and small RNA analysis. https://github.com/chapmanb/bcbio-­‐nextgen.

Chen, S., Huang, T., Zhou, Y., Han, Y., Xu, M., & Gu, J. (2017). AfterQC: automatic filtering,
trimming, error removing and quality control for fastq data. BMC Bioinformatics, 18(Suppl
3)(80), 91-100. doi:10.1186/s12859-017-1469-3

Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., . . . Chen, Q. (2018). SOAPnuke: a
MapReduce acceleration-supported software for integrated quality control and preprocessing
of high-throughput sequencing data. Gigascience, 7(1), 1-6. doi:10.1093/gigascience/gix120

Esposito, A., Criscitiello, C., Trapani, D., & Curigliano, G. (2017). The Emerging Role of "Liquid
Biopsies," Circulating Tumor Cells, and Circulating Cell-Free Tumor DNA in Lung Cancer
Diagnosis and Identification of Resistance Mutations. Curr Oncol Rep, 19(1), 1.
doi:10.1007/s11912-017-0564-y

Kennedy, S. R., Schmitt, M. W., Fox, E. J., Kohrn, B. F., Salk, J. J., Ahn, E. H., . . . Loeb, L. A. (2014).
Detecting ultralow-frequency mutations by Duplex Sequencing. Nat Protoc, 9(11), 2586-2606.
doi:10.1038/nprot.2014.170

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods, 9(4),
357-359. doi:10.1038/nmeth.1923

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., . . . Genome Project Data
Processing, S. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics,
25(16), 2078-2079. doi:10.1093/bioinformatics/btp352

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads.
EMBnet journal, 17(1), 10-12.

Newman, A. M., Lovejoy, A. F., Klass, D. M., Kurtz, D. M., Chabon, J. J., Scherer, F., . . . Alizadeh, A.
A. (2016). Integrated digital error suppression for improved detection of circulating tumor
DNA. Nat Biotechnol, 34(5), 547-555. doi:10.1038/nbt.3520

Tom Sean Smith, A. H. a. I. S. (2018). UMI-tools: Modelling sequencing errors in Unique Molecular
Identifiers to improve quantification accuracy. Genome Research.

Valentine Svensson, R. K. e. a. (2018). Tools for processing UMI RNA-tag data.
https://github.com/vals/umis.

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/274100doi: bioRxiv preprint

https://doi.org/10.1101/274100
http://creativecommons.org/licenses/by-nc-nd/4.0/

