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Prostate cancer to bone metastases are almost always lethal. This results from the ability of
metastatic prostate cancer cells to co-opt bone remodeling leading to what is known as the vi-
cious cycle. Understanding how tumor cells can disrupt bone homeostasis through their interactions
with the stroma and how metastatic tumors respond to treatment is key to the development of new
treatments for what remains an incurable disease. Here we describe an evolutionary game theoreti-
cal model of both the homeostatic bone remodeling and its co-option by prostate cancer metastases.
This model extends past the evolutionary aspects typically considered in game theoretical models
by also including ecological factors such as the physical microenvironment of the bone. Our model
recapitulates the current paradigm of the ”vicious cycle” driving tumor growth and sheds light on
the interactions of heterogeneous tumor cells with the bone microenvironment and treatment re-
sponse. Our results show that resistant populations naturally become dominant in the metastases
under conventional cytotoxic treatment and that novel schedules could be used to better control the
tumor and the associated bone disease compared to the current standard of care. Specifically, we
introduce fractionated follow up therapy – chemotherapy where dosage is administered initially in
one solid block followed by alternating smaller doeses and holidays – and argue that it is better than
either a continuous application or a periodic one. Furthermore, we also show that different regimens
of chemotherapy can lead to different amounts of pathological bone that are known to correlate with
poor quality of life for bone metastatic prostate cancer patients.
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Introduction

Prostate cancer (PCa) is the second most common type of
cancer in men, with over 160,000 men diagnosed during 2017
in the US alone, of which over 26,000 succumbed[1]. The
majority of patients that die of the disease does so because
of distant metastases, 90% of which are to the bone. For this
reason, a better understanding of tumor-bone interactions is
key if we are to improve how bone metastatic prostate cancer
patients are treated.

Improvements in our understanding of the molecular mech-
anisms involved in this disease have led to the discovery of
new therapeutic targets, but it remains lethal and resistance
emerges in virtually every patient. Thus understanding the
impact of treatments in a complex heterogeneous tumor re-
quires approaches that can incorporate several scales of bio-
logical insights. A successful approach needs to recapitulate
the emergent process of metastatic prostate cancer establish-
ment and the emergence of resistance to treatment. In the
past we demonstrated how a sophisticated agent-based com-
putational model could help us understand the role of PCa-
host interactions, as well as the impact of existing and novel
treatments [2, 3]. While agent-based models can accurately

and quantitatively recapitulate cell dynamics in a specific area
of a tumor, capturing the relevant intra-tumor heterogeneity
and sensitivity to treatments can be a challenging and time-
consuming process [4]. Alternatively, non-spatial population
models that capture intra-tumor heterogeneity can be used to
represent the entire metastatic burden of the disease and thus
could be used as proxies for the patient in optimization al-
gorithms [5]. Further, non-spatial models lend themselves to
easier measurement and operationalization [6], and avoid the
confusion of population-level intuitions for reductive ground
truth [7].

Simple qualitative models can be useful in providing an
understanding of how certain interactions can shape evolu-
tion and resistance in cancer. Previously, Ryser et al. used
a simple ordinary differential equations (ODEs) model to un-
derstand bone remodeling [8, 9], and to illustrate how tumor
cell interactions with bone remodeling cells can shape can-
cer progression [10]. Evolutionary game theory (EGT) is a
particularly powerful, yet simple and qualitative, approch to
focusing on the role of interactions in cancer. It originated
in looking at the effects of heterogeneity [11, 12] and we have
used the it to look at a wide number of dynamics in cancer
like go-vs-grow [13, 14], Warburg effect [15], tumour-stroma
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interaction [16], and interaction of multiple public goods [17].
In the process, we have built EGT models of many cancers, in-
cluding prostate cancer [15, 16] – as have several other groups.
Dingli et al. [18] focused on a type of bone cancer, multiple
myeloma, using an EGT approach that incorporated both tu-
mor cells as well as bone stroma cells. More recently, West et
al. [19] studied the impact of novel treatments like adaptive
therapies in the context of bone metastatic prostate cancer
but without including the cellular species that characterize
the bone ecosystem.

In this work, we aim to model not only cancerous growth in
the bone but capture key aspects of normal bone homeostasis
and its co-option. We built an EGT model where PCa cells
can co-opt cells from the Bone Modeling Unit (BMU). In
brief, the BMU is an area of trabecular bone that is being re-
modeled via osteoclasts (OCs) and osteoblasts (OBs), which
resorb and deposit bone tissue respectively, and the inter-
play between these and other BMU cell types via molecules
such as receptor activator of nuclear-factor kappa-B ligand
(RANK-L), which is generated by osteoblasts and promotes
osteoclast differentiation and survival, and TGF-β, which is
released when bone tissue is removed by Osteoclasts. These
cellular species make the bone a very dynamic organ [20].
Furthermore, studies have shown that metastatic cancer cells
can co-opt this process for their own benefit [21].

Capturing this aspect of regulation and dis-regulation of
bone homeostasis allows us to better understand the selection
that drives metastatic cancer evolutionary dynamics and the
impact of treatments on the bone microenvironment – a topic
of clinical significance. Furthermore, we also incorporate eco-
logical aspects by modeling the role of the bone in regulating
the fitness of the different cell types [22]. Our results suggest
that we can optimize the combination of treatment on and
off periods to limit tumor growth and control bone growth.

Model

The interactions between osteoclasts (OC) and osteoblasts
(OB) orchestrate bone remodeling and homeostasis. As such,
bone volume is determined by the balance between the den-
sity of OBs (ρOB) and density of OCs (ρOC) on the existing
bone, where OBs increase the bone volume and OCs decrease
the bone volume according to the following discrete time dy-
namics:

∆B =
1

K
(

Bounded Effect of OB︷ ︸︸ ︷
ρOB(2−B)− ρOCB︸ ︷︷ ︸
Bounded Effect of OC

) (1)

where OBs and OCs are in the range B(t) ∈ [0, 2] and K is a
constant for determining time-scales.

Note that the above dynamics are physical and not evo-
lutionary. The dynamics of densities for OB, OC, and the
sensitive and resistant tumours (ρT , ρTR) however are eco-
logical and given by logistic growth:

∆ρi = ρi((1− ρ)σWi − α) (2)

where i ∈ {OB,OC, T, TR} and ρ =
∑

i ρi is the total density
(thus 1− ρ is the amount of remaining space in the niche), σ

is the selection strength, α is the death rate, and Wi are the
fitness functions.

• The fitness function for OB is given by:

WOB = (
ρOC

ρOC + ρOB
(1−B) + (ρT + ρTR)δ)(1− 2s) (3)

where the first summand of WOB corresponds to the ben-
efit conferred to OCs by OBs that can be attributed to
the secretion of RANKL by OBs that results in the re-
cruitment of OCs to the remodeling site. This is pro-
portional to the proportion of OCs among healthy cells
(pOC = ρOC

ρOC+ρOB
) and lack of bone 1 − B. In the sec-

ond summand, δ is the benefit that an OB receives from
interacting with any PCa cell as the PCa cells secrete
modest amounts of TGF-β.

• The fitness function for OC is given by:

WOC =
ρOC

ρOC + ρOB
(B − 1)(1− 2s) (4)

which captures the benefit conferred to OB by OC that
can be attributed to the secretion of TGF-β as a result
of bone resoption. This is proportional to the proportion
of OBs among healthy cells (pOB = ρOB

ρOC+ρOB
= 1 −

pOC) and overabundance of bone B−1. Since both WOB

and WOC are functions of proportions of OC and OB,
we could rewrite their coupling as a replicator dynamic.
See Kaznatcheev [23] for an example of this in a similar
model.

• Finally, the fitness functions for the chemotherapy sensi-
tive and resistant tumour are:

WT = (ρOCγ + (ρT + ρTR)ε)(1− 2s) (5)

WTR = ρOCγ + (ρT + ρTR)ε− r (6)

where γ is the benefit a PCa cell receives from interact-
ing with OCs. The OC-led resorption of the bone allows
the neighboring PCa cells to access nutrients and growth
factors previously embedded in the bone; ε is the benefit
that a PCa cell receives from interacting with other PCa
cells derived from the secretion of TGF-β. The cost of
resistance to treatment is r. Resistance to chemother-
apy is common and results from the treatment providing
strong selection for PCa cells that can avoid its cyto-
toxicity. This resistance often comes through the up-
regulation of drug exporter pumps on the surface of PCa
cells. Producing and maintaining these pumps is ener-
getically costly to the PCa cells but allows those that
have a sufficient number of them to deal with cytotoxic
drugs.
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Chemotherapy. For all the fitness functions above,
chemotherapy is implemented by the introduction of a cost s,
which corresponds to the the strength of the chemotherapy
regiment. Chemotherapy is widely used in treating hormone-
sensitive and insensitive metastatic prostate cancer [24]. As
chemotherapy options like docetaxel become more widely
used, so does the importance of understanding how to better
administer them so as to minimize the possibility that resis-
tant phenotypes emerge. As a simple caricature, it can be
described microdynamically as: when a cell tries to undergo
mitosis, it will be killed with probability s. This means that
at s = 0.5, there will be no growth in the affected popula-
tion, since half the time that a cell tries to divide, it succeeds
and becomes two cells and half the time it dies and becomes
zero cells. For 0 < s < 0.5, the growth rate is slowed; and
for 0.5 < s < 1 the growth rate is reversed. This is im-
plemented in all fitness functions (except for chemo-resistant
TR) by multiplying fitness by (1− 2s). Note that chemother-
apy only impacts the bone via interfering with the cells that
control bone perturbation, i.e. OB and OC.

Results

We will illustrate our results with simulations of a particu-
lar parameter settings given by death rate α = 0.005, se-
lection strength σ = 0.05, bone adjustment rate 1

K
= 2.5,

and tumour-environment ecological interactions of δ = 1.5,
γ = 300, ε = 0.03.

With the model described we can recapitulate bone home-
ostasis when there are no PCa cells. Assuming initial den-
sities of the different population as follows: ρOB(0) = 0.001,
ρOC(0) = 0.01, ρT (0) = ρTR(0) = 0.0, B(0) = 1. The plots
shown in figure 1 show how the bone is initially resorbted, and
then deposited as OCs and OBs work to restore the balance
of bone to homeostatic levels after a simulated microfracture.

Tumor Introduction. We now assume that a metastatic
PCa cell has extravasated into an area of the bone that will
undergo remodeling. In this case we assume that the initial
conditions are: ρOB = 0.001, ρOC = 0.01, ρT = 0.0005, ρTR =
0.0001, B(0) = 1. In this case the results can be seen in
figure 2, which shows how the growth of the PCa population
leads to an increase of pathological bone and a dominance of
the PCa cells over the OBs and the OCs.

Standard Chemotherapy. Trying to asses the impact of
chemotherapy we assumed the following initial conditions:
ρOB(0) = 0.001, ρOC(0) = 0.01, ρT (0) = 0.0005, ρTR(0) =
0.0001, B(0) = 1. Additionally, a simple chemotherapy regi-
ment of s = 0.3 is initiated from timesteps 200 to 350. The
results can be seen in figure 3 and show that, while bone con-
tinues to grow even under treatment, the tumor population
takes a sharp decline highlighting the impact of chemother-
apy.

Fractionated Treatment. To understand the effect of
varying treatment regimens, the model was used to simulate a
wide number of combinations of treatment and treatment hol-
idays. Each regiment is characterized by dividing the treat-

Treatment Schedule Bone Size Average Tumor Burden

0000000000000000 1.754 0.773

1111100100010010 1.160 0.352
1111010101000001 1.163 0.358
1111010100100100 1.165 0.358
1111011000010010 1.166 0.356
1110110101000100 1.172 0.366

0001111100000000 1.615 0.512
0100100010010011 1.709 0.666

Table 1: Top 5 treatments as well as an example of continuous
and periodic treatments. In the 1st column each 0 represents
a treatment holiday and each 1 represents the application of
chemotherapy. The bone size and tumor burden are dimen-
sionless and rounded to 3 decimal places.

ment into periods, each period representing the same amount
of time. Each slot can either have value of (1) to signify that
treatment is being applied or (0) when it is not. Thus, as-
suming a treatment with n different treatment periods we can
consider 2n different treatment regimens based on combina-
tions of treatments and breaks.
The full treatment space also contains regimens that pro-
duce favorable results at the cost of eradicating the stromal
population - which would be pressumably cytotoxic to the
patient. Thus, we removed all treatments that reduced the
stromal population below a threshold. This approach allows
us to contrast continuous and a spectrum of fractionated reg-
imens. From the space of 16 windows, where each window is
40 timesteps, Table 1 lists the top 5 treatment schedules that
yielded the best results in terms of average bone size, as well
as the treatment’s average tumor burden. Table 1 also lists
two other treatment regimens: (1) a continuous treatment
regiment and (2) a periodic treatment regiment for compari-
son.

Moreover, figure 4 shows all the potential treatments plot-
ted with respect to average bone size and average tumor bur-
den with three representative treatments shown to the side:
a periodic treatment, a continuous treatment and a fraction-
ated treatment.

Discussion

Intra-tumor heterogeneity is increasingly recognized as the
key driver of evolution in cancer. This heterogeneity also ex-
plains the emergence of resistance to standard of care as well
as targeted treatments. We presented an EGT model that
captures this heterogeneity and the role of dynamic homeosta-
sis of bone remodeling orchestrateding the interactions be-
tween bone-producing cells (osteoblasts) and bone-resorbting
cells (osteoclasts). This homeostasis can be disrupted by tu-
mor cells, whose growth, in turn can be prevented by the
application of cytotoxic drugs such as docetaxel. Our results
recapitulate not only the ”vicious cycle” of the disruption
and co-option of homeostatic mechanisms but also the patho-
logical bone formation that characterizes bone metastatic
prostate cancer [25]. Knowing that certain tumor phenotypes
can be relatively immune to the effects of chemotherapy, our
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(a) Bone Size and Strategy Density (b) Stroma

Figure 1: Homeostatic populations were observed by setting strategies to ρOB(0) = 0.001, ρOC(0) = 0.01, ρT (0) = ρTR(0) =
0.0, B(0) = 1. Furthermore, in subfigure (a) the decrease in stroma after the bone remodeling event. In subfigure (b) we see
the classic bone fluctuation characteristic of bone remodeling units and no distinct strategies leftover, note the log-scale for
the bottom subplot.

(a) Bone Size and Strategy Density (b) Stroma

Figure 2: Tumor Introduction. Strategy phenotypes in the bottom of (b) were observed to be dominated by the tumor
phenotype. Subfigure (a) and the top of (b) showed the characteristic PCa takeover of the bone remodeling complex and the
resultant vicious cycle causing dramatic bone growth.

(a) Bone Size and Strategy Density (b) Stroma

Figure 3: Standard Chemotherapy. Here we see the impact of standard chemotherapy regimens that decrease the PCa
susceptible population and increase the resistant PCa population. Assuming initial densities of the different population as
follows: ρOB(0) = 0.001, ρOC(0) = 0.01, ρT (0) = ρTR(0) = 0.0, B(0) = 1

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 2, 2018. ; https://doi.org/10.1101/274704doi: bioRxiv preprint 

https://doi.org/10.1101/274704
http://creativecommons.org/licenses/by/4.0/


Figure 4: Treatment and treatment holiday combinations. Better treatments are those that reduce tumor burden and
extra pathological bone. A. All potential treatments over 16 40-timestep periods, plotted with respect to average tumor
burden and average bone size. B,C,D. Treatment regiments showing an example of a fractionated treatment (B), continuous
block treatment (C), a fractionated follow-up regiment (D). Assuming initial densities of the different population as follows:
ρOB(0) = 0.001, ρOC(0) = 0.01, ρT (0) = ρTR(0) = 0.0, B(0) = 1.

model also captures the emergence of therapy resistant tu-
mors.

The conventional clinical application of chemotherapy in
most cancers involves the use of the drug until either the tu-
mor enters remission, resistance renders further application
of the drug ineffective or the patient can no longer tolerate it.
This approach is called Maximum Tolerable Dosage (MTD)
and has been recently contrasted to alternative approaches
where the aim is to transform the disease into one that could
be managed as a chronic condition. In sipport of this, inter-
mittent docetaxel has been proven to be useful in metastatic
prostate cancer [26, 27].

Our results show that the efficacy of the treatment depends
on the heterogeneity of the tumor. MTD works best if the
metastases are homogeneous. Assuming heterogeneity with
regards to chemotherapy resistance, a realistic scenario in
metastatic prostate cancer, our model allows us to explore
how different treatment duration and intervals between drug
application, impact tumor heterogeneity, fitness, and bone
mass (see figure 4). Unsurprisingly the model shows that
alternative treatment strategies are likely to yield better re-
sults if the metastasis contains both susceptible and resistant
phenotypes.

Novel therapies where conventional drugs are used while
taking into account the tumor’s evolutionary dynamics have
been proposed and mathematically explored by Orlando et
al. [28] under the constraint that the microenvironment of
the tumor plays a reduced role and that tumor populations

does not interact with each other. Our results extend be-
yond these constraints and show that neither conventional
nor fractionated strategies are always the best solution. While
our systematic search has not shown optimal treatments re-
sembling the evolutionary-enlightened therapies proposed by
Zhang et al. [22], there is some evidence that they could work
in the context of metastatic prostate cancer. Our main result
supports a variant: the application of fractionated therapies
where full dosage is first applied for a period of time then
followed by the alternation between on and off cycles.

While this finding will not have an immediate impact
on how fractionated treatments are delivered, it shows that
the model captures the basic biological principles of bone
metastatic prostate cancer which allowed us to explore treat-
ment strategies in a meaningful way. Models like the one
we have presented here can be used to better understand
evolutionary-enlightened treatments. EGT is a well known
mathematical tool in which to frame evolutionary questions,
and our EGT model allows us to include the microenviron-
mental selection as well as cell-cell interactions in the game
dynamics. We are aware that, by its own nature, mathe-
matical models constitute a simplification of the reality being
modeled. For example, our model does not take into consid-
eration the spatial interplay which is known to effect EGT
dynamics of cancer [14, 29] and has been recently shown to
play a key role in the efficacy of some innovative applications
of conventional treatments in cancer [30]. We expect that our
results could be quantitatively different as we assume differ-
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ent costs of resistance, treatment impact, or spatial structure.
But the principle that a period of continuous application fol-
lowed by periods where on and off cycles is expected to hold
when the parameters change to reflect different tumors and
treatment efficacies.

We measured the impact of these different treatment
schemes by looking at their effect on the two tumor popula-
tions but, in bone metastatic prostate cancer, there are other
metrics that need to be considered: total dosage and microen-
vironmental impact. As shown in figure 2, tumor growth
leads to an increase in bone, growth that can, in some cases,
be curtailed by chemotherapy (see figure 3). Figure 4 shows
that the scheduling of chemotherapy can have a substantial
impact on the amount of pathological bone formed, a con-
sideration that is clinically important yet rarely included in
mathematical models of bone metastases. The examples of-
fer the interesting possibility that a sustained application of
chemotherapy followed by treatment holidays and subsequent
application of fractionated therapy could lead to control not
only on tumor growth but also bone growth (figure 4F; al-
though, see Kaznatcheev [31] for a perspective on the limits
of tumour burden control in models like ours). While the to-
tal dosage is slightly different, the purely continuous and the
(approximately) fractionated treatments shown in figures 4B
and 4A demonstrate bone increases over time. Our EGT
model, by combining tumor, stroma and bone microenviron-
ment, constitutes a platform in which to investigate various
treatment strategies – include, but are not limited, to bis-
phosphonates, anti-RANKL and hormonal therapies – to the
standard of care for metastatic prostate cancer patients that
can minimize dosage and bone disease.
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