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Abstract 

We present a method for high-throughput screening of protein variants where the signal is enhanced by micro-

encapsulation of single cells into 20-30 𝜇m agarose beads. Cells inside beads are propagated using standard 

agitation in liquid media and grow clonally into micro-colonies harboring several hundred bacteria. We have, as 

a proof-of-concept, analyzed random amino acid substitutions in the five C-terminal β-strands of the Green 

Fluorescent Protein (GFP). Starting from libraries of variants, each bead represents a clonal line of cells that can 

be separated by Fluorescence Activated Cell Sorting (FACS). Pools representing collections of individual 

variants with desired properties are subsequently analyzed by deep sequencing. Notably, the encapsulation 

approach described holds the potential for high-throughput analysis of systems where the fluorescence signal 

from a single cell is insufficient for detection. Fusion to GFP, or use of fluorogenic substrates, allows coupling 

protein levels or activity to sequence for a wide range of proteins. Here we analyzed more than 10,000 individual 

variants to gauge the effect of mutations on GFP-fluorescence. In the mutated region, we observed virtually all 

amino acid substitutions that are accessible by single nucleotide exchange. Lastly, we assessed the performance 

of biophysical protein stability predictors, FoldX and Rosetta, in predicting the outcome of the experiment. Both 

tools display good performance on average, suggesting that loss of thermodynamic stability is a key mechanism 

for the observed variation of the mutants. This, in turn, suggests that deep mutational scanning datasets may be 

used to more efficiently fine-tune such predictors, especially for mutations poorly covered by current biophysical 

data. 
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Introduction 

A detailed mechanistic and predictive understanding of the relationship between amino acid sequence and 

protein structure, stability and function impacts a vast number of practical and theoretical facets of biology and 

biotechnology. The design and engineering of proteins is commonly performed via targeted mutagenesis 

followed by a screening effort, resulting in the enrichment of desirable protein properties (1). Conventional 

screening approaches can address the (positive or negative) effects of a small number of mutations with high 

fidelity, yet are often drastically limited in the number of mutants that can be investigated effectively. Single-cell 

analysis by Fluorescence Activated Cell Sorting (FACS) is an attractive alternative that offers a high throughput 

as well as low (per sample) cost; however, it requires a fluorescence readout at the single-cell level. Likewise, 

microfluidic approaches tend to be labor intensive and require specialized and sometimes custom-designed 

equipment (2).  

The combination of an efficient screening or selection system with next-generation-sequencing technologies 

allows the rapid accumulation of vast numbers of DNA sequences, and results in large amounts of data linking 

nucleic acid sequence to protein function (3). An interesting aspect of this is that both desirable and undesirable 

mutations can be sequenced, which allows for assessment of the accessible protein fitness landscape. Such deep 

mutational scanning (DMS) (4) has been implemented in a number of cases (5-8) and opened the possibility for 

detailed analysis of epistatic effects in protein sequences (9).  

DMS is often combined with a system for genetic selection to allow for sorting variants with respect to the 

desired phenotype (e.g. catalytic function or binding). Such assays have, however, only been established for a 

limited set of systems (10). Likewise, biochemical assays that, due to lack of sensitivity require a microtiter 

format, are not accessible to DMS in the absence of costly robotic platforms.  

Here we addressed the gap in sensitivity between single-cell screenings and standard microtiter formats by 

combining three well-established technologies into a novel high-throughput platform for the phenotypic 

screening of protein function (Fig. 1A). The approach comprises: (i) Microencapsulation, which allows for 

confinement of individual (fluorescent) bacterial cells into agarose microbeads. This encapsulation results in 

clonal amplification via cell growth within each microbead and hence a significant increase in fluorescence 

compared to single cells.  (ii) Sorting of populations with specific phenotypes by FACS which is used as input 

material in (iii) parallel sequencing, which allows for the accumulation of DNA sequences at very high 

throughput. This procedure enables the genotypic probing of population subsets that exhibited specific 

fluorescence phenotypes. As a proof-of-concept, we applied this stepwise methodology on encapsulated micro- 
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colonies of E. coli producing a library of GFP variants. Fusion to GFP would allow variant screening using our 

method for a wide range of proteins, and has successfully been used in similar applications (11). 

 

Figure 1. Micro-encapsulation and fluorescence 

activated cell sorting of GFP-expressing cells. (A) 

Experimental workflow. E. coli cells transformed 

with a mutant library are mixed at an appropriate 

dilution with low-melting agarose. Emulsification of 

this solution (including magnetic micro-particles) 

occurs by mixing agarose with mineral oil. Upon 

cooling, beads are solidified and contain <2 cells 

(shown as small green spheres) per bead. Cells are 

then grown inside beads using a conventional shaker 

flask with LB medium, to obtain micro-colonies. 

Beads are separated from free (planktonic) cells in a 

magnetic field and are subsequently sorted, using 

FACS, according to their fluorescence phenotype. 

The sorted populations are subjected to Illumina 

sequencing. (B) Structure of eGFP showing the five 

mutagenized β-strands in grey. The central 

chromophore is shown as sticks. (C) Agarose 

microbeads stained with a co-embedded red 

fluorescent dye for better visualization of the agarose 

gel. The upper left bead contains an E. coli micro-

colony producing wild-type eGFP. The bead in the 

lower right does not contain bacterial cells. (D) FACS 

gating strategy employed to sort microbeads with 

fluorescent bacterial cells. Forward scatter (x-axis) 

was used as a proxy for colony sizes within 

microbeads and GFP intensity (y-axis) as a measure 

of fluorescence emission upon laser excitation. Dark 

blue and green represent the dim and bright 

fluorescent subpopulations, respectively. 
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Results and Discussion 

Our goal was to develop a bead-encapsulation method for signal amplification, and test its suitability for high-

throughput screening of micro-colonies containing eGFP-protein variants. The key steps are outlined in Fig. 1. 

Mutant library  

We chose GFP as a model system, as it allows for convenient distinction between folded (functional) and 

misfolded (dysfunctional) variants by means of measuring fluorescence. The exception are variants that affect 

chromophore formation. We thus aimed to assess the relationship between sequence and function on a large 

scale for a region of the GFP sequence that did not include the chromophore, and which spans adjacent b-strands 

in the three-dimensional structure. To obtain maximal sequence accuracy, we ensured that the mutated region 

was covered by Illumina sequencing (typically 300 base pairs in a single read), so that 5’ and 3’ reads would 

overlap significantly. However, it should be noted that this is not a requirement for the method. We chose to 

mutagenize the last third of the GFP open reading frame from amino acid residue 148 to residue 230 (Fig. 1B), 

which encodes five adjacent C-terminal beta-strands of the eGFP variant (12).  

The mutagenized library was custom-synthesized by a commercial provider (BaseClear, Leiden, NL) and 

inserted into an expression vector under control of the lac promoter. Following library generation, optimal 

plasmid concentrations (~one plasmid per successful transformant) were determined by titration (data not 

shown). The library of transformed E. coli cells was plated on selective media and grown over night, after which 

~50,000 transformed clones were washed off and appropriately diluted before proceeding to subsequent 

encapsulation. 

Encapsulation	

We encapsulated cells in spherical agarose beads of FACS compatible sizes (20-30 µm diameter) using an 

emulsion-based approach (13). Encapsulated cells were grown over night at 37°C in LB growth medium 

containing antibiotics and expression was induced with IPTG; under conditions similar to the normal bacterial 

propagation. For visualization purposes, a red fluorescent color was added to the agarose during emulsification. 

Appropriate dilution of cells was visually confirmed using fluorescence microscopy and ensured the occurrence 

of microbeads with predominantly 0 or 1 cell within each bead. The observed fluorescent brightness in each 

microbead is expected to be proportional to the amount of (clonal) cells. As seen in Fig. 1C, a large number of 

cells can accumulate in a microbead. Although we have not experimentally assayed the number of cells per bead, 

we can make an estimate: If we assume that a collection of cells (as the one shown in Fig. 1) is spherical with 

about half the diameter of a 20 µm bead, the volume will be 4/3*𝜋*r3 = 4/3*3.14*53 µm3=4187 µm3. We assume 
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a volume of 4 micron3 (14) for an E. coli cell grown on rich media. An irregular packing of spheres has a density 

of about 60% (15). To a first approximation, this is probably a reasonable estimate for E. coli cells as well.  This 

gives us a number of cells per bead of 0.6*4200/4 ≈ 600 cells per bead. 

During growth of cells inside microbeads, some cells may, however, escape encapsulation and are observed as 

single (planktonic) cells in the growth media. To avoid spill-over of cells into subsequent sorting steps we 

incorporated magnetic micro-particles into the agarose beads which allowed for repeated (magnet-assisted) 

washing steps, effectively removing most single cells from the bulk agarose beads.  

FACS-sorting of agarose encapsulated micro-colonies 

Encapsulated clonal cell populations were sorted based on their relative fluorescence-emission intensity using 

FACS. Different sizes of cell clusters were microscopically observed in microbeads, and fluorescence intensity 

is thus expected to not only depend on the input plasmid but also on the size of the colony within the microbead. 

We addressed this issue by using forward-scatter (FSC) to normalize for size differences between cell-clusters, 

permitting us to assume that the fluorescence emission of similar sized cell-clusters is then predominantly 

protein-variant dependent. A total of 47,000 microbeads were sorted, with 18,600 originating from the gate with 

brightly fluorescing microbeads and 28,400 from the gate with dim fluorescing microbeads (Fig. 1D, Fig. 2). 

Correct sorting was visually verified on a small sample using fluorescence microscopy. Pools of sorted 

microbeads were used as input material for subsequent sequencing. 

Sequencing 

In order to link mutations to fluorescence phenotypes, we determined the underlying changes in nucleic acid 

sequences. This was done by preparing DNA from sorted beads as input material for PCR amplifications. 

Primers were designed to bind to within non-mutagenized regions of the sequence and, in combination, 

generated amplification products of correct sizes (405 bp). Primer designs contained additional overhangs to 

facilitate subsequent Illumina sequencing. A total of 1.2 x 106 sequences were generated, of which the bright and 

dim pools of fluorescent libraries contributed 5.0 x 105 and 6.8 x105 sequences, respectively. 

Assembly of DNA sequences and analysis of mutations 

Compared to conventional next-generation-sequencing, where mostly unique DNA sequences are mapped 

against a corresponding reference genome, the extraction of a large number of nearly identical sequences poses 

different challenges, as mutations must be distinguished from sequencing error with high fidelity (16). The 

number of beads sorted by the FACS provided us with a maximum possible number of 18,600 brightly and 

28,400 dimly fluorescent variants (Fig. 1D, Fig. 2). The number of unique raw DNA sequences, however, 
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outnumbered these limits by more than an order of magnitude, indicating a need for rigorous quality control to 

remove erroneous sequences. 

To this end, paired-end sequence files corresponding to FACS-sorted populations were mapped against the DNA 

sequence of the original eGFP gene in a multiple sequence alignment. Next, for the portion of the eGFP gene 

sequence where the read pairs overlapped, differences between pairs were assumed to result from sequencing 

errors, while agreement with each other was assumed to comprise a mutation. In addition, we required that the 

variant DNA sequence appeared in at least 2 independent pairs of overlapping reads. The number of unique 

sequences recovered in this manner was ~30,000 from each sorted population (Table 1), and still considerably 

greater than the number of originally sorted beads in the bright pool. Thus, even with identical sequences in the 

overlap region and at least two reads showing the same sequence, sequencing error was a major problem, which, 

given typical NGS reliability, is not entirely unexpected (16). This was also indicated from calculation of the 

Table 1:  Read-depth and mutation frequency within bright and dim subpopulations. The number of 

reads indicate how many times a given DNA sequence occurred. “No. of sequences” indicates number of 

unique sequences with the specified number of reads. The mutation frequency indicates the number of base 

substitutions relative to wild type. It is likely that the higher “mutation rate” seen with very few reads (2 or 3) 

reflects coincidental sequencing errors. 

 Dim Bright 
No. of reads No. of sequences Mutation 

frequency (%) 
No. of sequences Mutation 

frequency (%) 
2 28949 2.16 32025 1.66 
3 4805 1.99 6044 1.49 
4 1680 1.80 2058 1.40 
5 917 1.71 1039 1.34 
6 603 1.63 623 1.30 
7 421 1.60 434 1.30 
8 360 1.60 306 1.30 
9 302 1.46 240 1.27 

10 223 1.63 245 1.21 
11 194 1.45 182 1.22 
12 137 1.64 168 1.23 

>12 2173 1.64 3186 1.19 

At least 5 5330 1.63 6423 1.24 
Total 40764  46550  
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apparent number of mutations for the different number of reads. Accordingly, reads occurring at a low frequency 

(2-3 times) appeared to be substantially more prone to mutation than those with more than 4 reads (Table 1). As 

mutation rates should be independent of the number of reads, we chose to use this metric for estimating the 

number of identical reads needed to validate a sequence as genuine. The overall frequency of mutations for 5 or 

more reads was 1.63% for the dim fraction and 1.24% for the bright fraction. The observation that mutations are 

less frequent in the bright pool is expected. 

Overall the library of sequences resulting from the >4 reads cut-off represents a fairly broad distribution of base 

substitutions (SI Table 1); transitions and transversions were 0.49% and 0.75%, respectively, for the bright 

population and 0.56% and 1.06%, respectively for the dim population.  

Effects of mutations at the protein level  

Full-length DNA sequences containing mutations with a read-coverage >4 were translated into protein 

sequences. Unique DNA sequences in dim and bright populations (Table 1) collapse into 3,564 and 3,630 unique 

protein sequences with an average of 2.9 and 2 amino acid substitutions across the 83 residues of the 

mutagenized region, respectively. Variants leading to premature STOP codons were removed. Given the 

diversity of the resulting sequences, and in absence of systematic data on double-, triple-mutants etc., we 

performed a position-based analysis based on the cumulative mutation counts observed in the dim and bright 

pools. The subsequent analysis focuses on point mutations at the protein level. Specifically, we calculated the 

relative frequency of each individual amino acid substitution in the bright vs. dim population (Fig. 2). Given the 

experimental setup, this means that each individual variant was typically observed in the context of 1-2 

additional (random) mutations on the protein level. In order to increase robustness and minimize the influence of 

errors and noise (e.g. encapsulation of two different clones in the same bead, sorting uncertainties, or integration 

over different sequence contexts), we only performed this calculation for amino acid substitutions that we 

observed in at least five distinct protein contexts (i.e., unique protein sequences) in each pool. Like with the 

acceptance of error rate in DNA sequencing, the number of minimum independent occurrences represents a 

compromise. With this threshold, 503 of the 507 possible single-nucleotide changes leading to amino acid 

substitutions were observed in the bright and dim populations. Ninety single-nucleotide-variants were only 

observed in the dim population, indicating that these are most likely unstable. Four variants were only observed 

in the bright populations and thus likely stable (I161V, K162R, K166R, P211A). Four variants were not 

observed in either population (V150G, I161N, H199R, K209E), which may be due to screening depth, library 

coverage, or post-sequencing quality control as described above. In addition to one double-nucleotide change, 

S202Y (Fig. 2), the remaining 409 single-nucleotide variants were observed in both populations. 
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Figure 2. Overview of the sorting and quality control process from microbeads to interpretation of protein-

level consequences. For details see main text. The purple-gradient (left) and green-gradient (right) matrices 

illustrate missense variants observed in the dim and bright pool, respectively, with darker colors indicating higher 

frequency, and gray indicating variants for which no data is available. The bottom center matrix illustrates the log10 

ratio of the frequencies in the bright and dim pool, requiring at least 5 absolute occurrences in each pool. White 
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Analysis of effects of amino acid substitutions  

We next set out to analyze the effects that variants have on GFP structure and function, and to assess whether 

biophysical calculations could predict them. 

First, we analyzed silent mutations, which are unlikely to affect function once the protein is made, and may thus 

serve as a baseline for background mutation frequency between the two pools. As expected, the bright pool on 

average contained more synonymous changes than the dim pool, though for individual positions the dim pool 

contained more silent mutations (SI Fig. 2). We took the 90th percentile of the log10 ratio of silent mutations 

(0.29) as a significance threshold for the interpretation of non-synonymous changes (SI Fig. 3). 

For a missense mutation, the a priori expectation would be that amino acid residues pointing into the core of the 

β-barrel should be more restricted than those pointing out, and that positions with native, buried hydrophobic 

residues would be particularly constrained (17). Indeed, the strongest signal we observed in our assay was a 

selection against mutations pointing into the GFP molecule, especially for mutations to hydrophilic residues 

(Fig. 3). In fact, 3 of the 4 single-nucleotide changes not observed in either population point into the GFP core 

and may therefore be detrimental. Among the observed variants, at 14 positions pointing into the β-barrel, 

mutations were significantly depleted. In contrast, this was only the case for 6 positions that point into solvent, 

and 9 positions in loops. Further, only 18 positions revealed significantly enriched variants, and 9 of these were 

found in loops (Fig. 3). This agrees with recent analyses showing more deleterious variants in sheets and helices 

than in loops (17). Nevertheless, the overall mutational robustness in the loops here is still fairly low, in line with 

another recent analysis which found highest robustness in helices (18). Generally, as illustrated in Figures 3 and 

4, enrichment of non-synonymous mutations beyond the significance threshold is rare.  

 

indicates near-neutral variants (distribution in SI Fig. 4), green enrichment in the bright pool, and purple 

enrichment in the dim pool. Axes are the same for all three matrices. 
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Figure 3. Mutations introducing hydrophilic residues facing inward are strongly depleted in the pool. 

(A) Analysis of enrichment and depletion by the orientation of the residue in native GFP (PDB: 1EMA, (19); 

magenta, pointing in; cyan, pointing out; gray, loop) and hydrophobicity of the mutant residue (hydrophobic 

residues, A/C/F/I/L/M/V/Y/W; hydrophilic, D/E/H/K/N/Q/R/S/T). Dashed lines indicate the significance 

threshold, based on synonymous changes observed in the bright and dim pools. (B) Enriched and (C) depleted 

variants, respectively, mapped onto the structure of eGFP using the same color scheme as in panel A. Note the 

large number of magenta (hydrophilic) residues pointing inwards in the depleted variants in panel C. 

 

We then compared the enrichment observed in our data to another recent large-scale GFP mutational study (7). 

There is surprisingly little overlap between the two datasets. This may, however, be explained, as the two studies 

used different starting DNA sequences, and the vast majority of variants observed in both studies were those 

reachable with single-nucleotide changes from the respective starting sequence. We thus focused on the 287 

mutations that were quantified in both deep mutational scans. For comparison purposes, we grouped variants by 
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orientation and amino acid category like in Fig. 3 and calculated the average brightness within each group (Fig. 

4). 

 

Figure 4. Comparison of the enrichments observed in our study versus a previous one based on FACS 

sorting of single cells (7). X-axis as in Fig. 3, y-axis shows average brightness for each position and residue 

group calculated from the published data. Dashed vertical lines indicate the significance threshold, based on 

synonymous substitutions. Horizontal lines indicate wild-type GFP brightness ± one standard deviation. The 

best agreement between the two high-throughput approaches is demonstrated for mutations at positions 

pointing inwards (magenta, correlation coefficient 0.56). Most of the severely detrimental variants (lower left 

corner) also point into the molecule. Overall though, most tested variants are scored as near-neutral by both 

methods.  

The Spearman correlation coefficient for all pairs is 0.43, however when only considering residues that point 

into the molecule, it is 0.56 (Fig. 4). As discussed above, residues pointing inwards are expected to be the most 

constrained, which is captured by both studies. Overall, both experimental approaches classify most of the 

assessed mutations to be close to neutral, which is in line with other studies on mutational tolerance in proteins 

(17). The distribution of fitness scores for the two methods is rather different, with a narrow peak close to wild-

type fluorescence for the previously published data vs. the broader distribution of log-ratios we calculated 

(Supplementary Fig. S4). This difference is also reflected in the almost binary fluorescence distribution observed  
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Figure 5. Comparison of experimental readout with computational prediction of stability. (A) Receiver 

operating characteristic (ROC) analysis of the performance of Rosetta ΔΔGs in classifying GFP variants as 

tolerated (enriched) or not (depleted) (21). (B) Rosetta ΔΔG predictions for all mutations assessed in our 

screen, separated by enrichment category. “Neutral” is defined based on synonymous changes observed in our 

dataset.  Rosetta predictions were carried out as described previously (see Methods). (C) Analysis of ΔΔG 

predictions split by residue orientation shows that discrimination of enriched vs. neutral changes is only 

significant for residues pointing into the β-barrel. 
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in the previously published study of GFP (7) vs. the continuous and overlapping distributions of our data 

(Supplementary Fig. S5). This may arise from the signal amplification provided by the microbeads used in this 

study. Generally, the agreement between the two studies is comparable to that between other high-throughput 

screens (20).  

Predictive capability of biophysical stability calculations 

Lastly, we performed biophysical stability calculations for the mutations assessed in this study, and compared 

them to our screening-based log ratios described above. Predictions of change in stability (ΔΔG) are widely used 

in biotechnology (22) including protein design (6), but also in the assessment of non-functional or disease-

associated protein variants (23, 24). We used the established tools Rosetta (25) and FoldX (26) to calculate 

ΔΔGs for each of the possible single amino acid changes in our mutagenized section of GFP (SI Figs 6 and 7). 

The average Rosetta ΔΔGs for each enrichment category (neutral, enriched, depleted) agreed well with our 

experimental classification (Fig. 5), and the predicted ΔΔG classified most enriched and depleted variants 

correctly as shown by an area under the curve (AUC) of 0.83 in a receiver operating characteristic (ROC) 

analysis (Fig. 5A). However, we also observed a number of outliers, including predictions of enriched mutations 

as being destabilized and predictions of depleted mutations as having near-wild-type stability (Fig. 5B).  

Averages for enriched vs. neutral variants were only substantially different for mutations pointing into the 

molecule, while many detrimental mutations were correctly recognized regardless of orientation (Fig. 5C). The 

FoldX ΔΔG calculations painted a very similar picture (SI Fig. 8). This is in agreement with previous 

observations that destabilizing mutations are predicted more accurately than stabilizing changes (27). Overall the 

agreement between our experimental readout and the ΔΔG calculations indicates that changes in stability are 

likely major molecular reason underlying the change in phenotype (GFP fluorescence) we observe. Some 

deviation from biophysical calculations might be explained by variation at the nucleotide level which can also 

lead to changes in expression levels, which would similarly affect the experimental readout. However, previous 

analyses of ΔΔG prediction performance have similarly revealed many outliers despite good agreement on 

average (28), indicating considerable room for improvement. We suggest that one underlying issue may be that 

current biophysical predictors are trained on a dataset consisting mainly of hydrophobic truncations; primarily to 

alanine (Fig. 6A) (25, 26, 29, 30). In contrast, the mutations assessed here were dominated by amino acid 

substitutions that are in adjacent codons (Fig. 6B). These include many small-to-large amino acid substitutions, 

which were extremely scarce during training of predictors, and which may require more sophisticated protocols 

that allow for backbone adjustment (25, 31). 
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Concluding remarks 

We have established a method that uses microbead encapsulation to perform DMS for protein variant 

phenotypes. As mentioned above, it is relevant to compare this approach to microtiter formats and microfluidic 

techniques used in cases where an enzymatic assay is required. Due to the clonal signal-amplification, this 

method is well suited for screening efforts that target low-fluorescing variants or require cell propagation, and 

may also provide an increased dynamic range. Beyond the generation of sequence-function maps for the specific 

protein mutagenized in the assay, cumulative data from DMS studies may provide valuable data and insights for 

protein sequence-stability or –function maps in general (17). Such data may in turn be used to benchmark 

computational methods for assessing the impact of mutations on proteins (32), or indeed to train new prediction 

methods (33). With the development of generic assays that effectively capture also the effects of protein stability 

(11, 34), we envision that deep mutational scanning data may serve to improve existing but – as illustrated above 

– far from perfect biophysical calculation programs. Indeed, a first DMS-based predictor of missense mutation 

consequences (33) shows good overall performance, and integration with mechanistic biophysical approaches is 

likely to increase both predictive power and accuracy.  The increased dynamic range of the presented microbead 

 

Figure 6. Maps of amino acid substitutions used for training computational methods vs those observed 

in the present study. (A) Single residue mutations for which biophysical measurements are available in 

ProTherm, aggregated from hundreds of individual studies (29). (B) Single residue mutations observed in this 

study. Red tiles indicate the most common changes, orange and yellow are less common, white tiles indicate 

missing residue pairs. 
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approach could thus allow for the separation of subtle differences in stability and for the prospective fine-tuning 

of such predictors. Additional future applications include the use of encapsulated cells that could be  

exposed to (or co-embedded with) fluorogenic substrate prior to FACS; aiding in the elucidation of phenotype-

functional relationships of natural enzymes and for high-throughput screening in enzyme design. 

Materials and Methods 

Construction of pFH2102::S65TGFP mutagenesis libraries 

Random mutagenesis was performed on a 250 bp subset on the 3’ end of the S65T-GFP gene (NCBI accession 

number 20473140). Mutations were introduced by a commercial provider (BaseClear, Leiden, The Netherlands) 

in a de-novo synthesis approach. Using fixed primers at non-mutagenized sites, the mutagenized GFP gene was 

amplified and then cloned into pFH2102 using XhoI and EcoRI restriction sites.  

Plasmid titration and cloning 

The pFH2102::S65TGFP mutagenesis library was diluted to concentrations ranging from 5 x 10-8 g - 5 x 10-13 g 

in 10x dilution steps. Electrocompetent GeneHog cells (Invitrogen, Carlsbad, CA, USA) were transformed with 

1 µl of the diluted plasmid pool and electroporated using a Bio-Rad Micropulser according to the manufacturer’s 

instructions. After electroporation cells were immediately resuspended in pre-warmed SOC media and left to 

grow at 37°C for 1h at 300 rpm. Transformed cells were then plated onto pre-warmed LB plates with   100 µg 

ml-1 Ampicillin and left to grow overnight at 37°C.  Three technical replicates were plated for each of these 

reactions and colony forming units (CFU) at given plasmid concentrations were enumerated after 18h of growth. 

Subsequent transformations were calibrated to ensure that the majority of transformants had only one plasmid 

per cell. The plasmid titration resulted in an optimal plasmid concentration of 2.5 pg per transformation and was 

determined based on the midpoint of the linearly increasing part of the CFU vs. plasmid concentration curve.  

Using this optimal pFH2102::S65TGFP mutagenesis library concentration GeneHog cells were transformed 

using the above protocol. Approximately 50.000 individual colonies were washed off the selective plates using a 

Drigalski-spatula and pre-warmed LB medium containing 100 µg ml-1 Ampicillin. These cells were used, after 

appropriate dilution, for encapsulation in agarose. 

Agarose-encapsulation 

For encapsulation into agarose beads, 200 µl of the appropriately diluted cells were mixed with 1 ml of pre-

heated (45°C) 1.5% SeaPlaque LMP agarose (Lonza, Rockland ME, USA), 20 µl magnetic beadMag particles 

(Chemicell, Germany) and then transferred into 15 ml warm (45°C) paraffin oil. Several of these reactions were 

done in parallel in order to obtain enough material for FACS sorting.  The oil:agarose suspension was emulsified 
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using a custom blender according to the following protocol: 2 min at 3000 rpm at room temperature, 1 min at 

3000 rpm on ice and 6 minutes at 1400 rpm on ice. The resulting agarose beads were separated from the oil 

phase by centrifugation (2000 x g) and washed 3X with sterile PBS (pH 8.0). For a more comprehensive 

description of the encapsulation protocol please refer to (13). 

The resulting beads were placed into a 250ml Erlenmeyer flask containing 100 ml of sterile LB augmented with 

100 µg ml-1 Ampicillin and 1 mM IPTG and left to grow overnight under 37°C at 300 rpm. The next day the 

agarose beads were centrifuged at 2000x g for 5 minutes, washed once with fresh LB, pelleted and the 

supernatant removed. The pellet was resuspended in fresh LB and aliquoted into Eppendorf tubes placed on a 

magnetic Eppendorf rack (DynaMag, Thermo Fisher Scientific). The magnetic agarose beads were separated 

from the supernatant and repeatedly washed using sterile PBS and vortexing, thereby removing both planktonic 

bacteria and bacteria attached to the outside of beads. After completion of the washing procedure the beads were 

pooled and filtered through a custom made 30 µm nylon mesh (Frisenette ApS, Denmark) inserted into a Pop-

top syringe filter (Whatman, UK). 

Mutant screening using Fluorescence-activated cell sorting 

All flow cytometric analysis was performed on a FACSAria III (BD Biosciences, USA) using a 488-nm laser in 

conjunction with a GFP specific emission filter set (denoted FITC, 530/30nm bandpass) and forward scatter 

detection (FSC). The gating scheme to sort highly fluorescing beads from less fluorescing beads utilizes a size 

threshold (FSC=500) as well as GFP minimum fluorescence (FITC=200). This assures that only beads with cells 

expressing fluorescing GFP variants are sorted but implies that beads with non-fluorescing (e.g. stop-codons) 

cells are not. Exclusion gating was chosen empirically to avoid any potentially remaining planktonic cells 

(FITC:<200) and to include only agarose beads (FSC>500; Fig. 1D). The high-fluorescence (FITC: 500-105 

relative fluorescence units (RFUs)) and low-fluorescence gating (FITC: 200-104 RFUs) was set so individual 

slopes were identical and thereby parallel for the size-dependent FSC. 

A total of ~47000 beads were sorted, of which ~18500 contained highly fluorescing GFP variants and ~28000 

contained cells with lower fluorescing GFP variants. During preliminary experiments, we observed that the size 

of cell clusters within beads affects GFP emission intensity of the sorted beads. To compensate for this effect we 

employed FSC as a means to normalize for different cell cluster sizes and only performed sorting of beads within 

the same FSC gate. This approach relies on the assumption that cell growth and GFP expression underlies the 

same distribution in both brightly and dimly fluorescing populations. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 2, 2018. ; https://doi.org/10.1101/274753doi: bioRxiv preprint 

https://doi.org/10.1101/274753
http://creativecommons.org/licenses/by-nd/4.0/


 18 

PCR amplification of inserts and sequencing 

All sorted beads were centrifuged at 12.000 x g for 2 minutes. The supernatant was carefully removed until a 

residual volume of ~40 µl was left and 12.5 µl of Lyse and Go PCR Reagent (Pierce Biotechnology, Rockford, 

IL, USA) was added. The beads were heated for 2 minutes at 95 °C and immediately placed on ice. In addition 

to cells sorted via FACS the original transformation library (GFPorig) was amplified to determine its inherent 

sequence diversity. All 50 µl PCR reactions were composed of either 10 µl of the lysed beads or 5 ng of library 

(GFPorig) as DNA template. The PCR reaction components were 1 µl of the primers GFP-dom-5911-Fv’ and 

GFP-dom-300-Rv' (10 µM each, SI Fig 1), 0.02 U µl-1 Phusion HF-II DNA polymerase (Thermo Fisher 

Scientific, Hvidovre, Denmark), 1 µl dNTP’s (final concentration 200 µM each) and 10 µl 5X Phusion HF 

Buffer. PCR amplification used the following cycle conditions: 98 °C for 30s, 30 X (98 °C for 10s, 60 °C for 30s 

and 72 °C for 15s), final extension was done at 72 °C for 10 minutes and samples were hereafter kept at 4°C. 

The resulting PCR amplicons (= 405 bp) were visualized on a 1% agarose gel, the correct bands excised and 

purified using the Qiaex gel extraction kit (Qiagen Nordic, Copenhagen, Denmark). Based on the extracted 

DNA, a sequencing library was prepared according to the manufacturer’s instructions using the Nextera kit 

(Illumina Inc., San Diego, CA, USA). Library concentrations were quantified and checked using a fragment 

analyzer and paired-end (2x250 bp) sequenced on an Illumina MiSeq system (Illumina Inc., San Diego, CA, 

USA). 

Calculation of enrichment ratios 

To assess whether variants on the protein level are favored or disfavored, we calculate the log10 of the relative 

frequency of each individual amino acid substitution in the bright pool vs. the dim pool. Numbers of 

synonymous variants (SI Fig. 2) and local log10 ratios (SI Fig. 3) fluctuate across the length of the mutagenized 

strands, likely due to base pair composition. We chose the 90th percentile of the distribution, 0.29, as our 

threshold for significance. Variants with absolute enrichment or depletion below this threshold are considered 

near-neutral. 

Biophysical stability predictions 

Rosetta ΔΔGs were calculated using a previously published protocol (25) (protocol 13), version with GitHub 

SHA-1 6922a68c56c0a3c5f64570c55097ba5d5439e22c (Nov 2016). A special parameter file for chromophore was 

generated based on PDB 1ema and the instructions in 

https://www.rosettacommons.org/docs/latest/rosetta_basics/preparation/preparing-ligands. Command lines for 

the initial minimization and subsequent ΔΔGs calculations were: 
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 /path/to/rosetta/source/bin/minimize_with_cst.macosclangrelease -in:file:l lst  -in:file:fullatom -extra_res_fa CRO.params -

ignore_unrecognized_res -fa_max_dis 9.0 -database /path/to/rosetta/database/ -ddg::harmonic_ca_tether 0.5 -

ddg::constraint_weight 1.0 -ddg::out_pdb_prefix min_cst -ddg::sc_min_only false > mincst.log; sh 

/path/to/rosetta/source/src/apps/public/ddg/convert_to_cst_file.sh mincst.log > input.cst  

Commands used to calculate ΔΔGs: 

/path/to/rosetta/source/bin/ddg_monomer.linuxgccrelease -database /path/to/rosetta /database -ex1 -ex2 -ddg:local_opt_only 

true -constraints::cst_file ../input.cst -ddg::min_cst true -s ../min_cst.GFP_het_Rosetta_renum_0001.pdb -ddg:iterations 32 -

ddg:mut_only -resfile ../GFP_mutagenize.resfile -extra_res_fa ../CRO.params  

To account for the large sampling space, 32 trials were performed for each variant. ΔΔGs reported here are 

calculated based on the mean energies of the 3 lowest-scoring replicas of each variant. 

 

FoldX (26) ΔΔGs were calculated by first running RepairPDB on the starting structure, and then using the 

BuildModel command to generate each individual single residue variant. The chromophore is removed during 

RepairPDB. The protein backbone is kept constant by FoldX. After 5 iterations for each variant, the energy 

difference of the mean scores was reported.  
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