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ABSTRACT

Computational models in neuroscience typically contain many parameters that are poorly
constrained by experimental data. Uncertainty quantification and sensitivity analysis provide
rigorous procedures to quantify how the model output depends on this parameter uncertainty.
Unfortunately, the application of such methods is not yet standard within the field of neuroscience.

Here we present Uncertainpy, an open-source Python toolbox, tailored to perform uncertainty
quantification and sensitivity analysis of neuroscience models. Uncertainpy aims to make it easy
and quick to get started with uncertainty analysis, without any need for detailed prior knowledge.
The toolbox allows uncertainty quantification and sensitivity analysis to be performed on already
existing models without needing to modify the model equations or model implementation.
Uncertainpy bases its analysis on polynomial chaos expansions, which are more efficient than
the more standard Monte-Carlo based approaches.

Uncertainpy is tailored for neuroscience applications by its built-in capability for calculating
characteristic features in the model output. The toolbox does not merely perform a point-to-
point comparison of the “raw” model output (e.g. membrane voltage traces), but can also
calculate the uncertainty and sensitivity of salient model response features such as spike timing,
action potential width, mean interspike interval, and other features relevant for various neural
and neural network models. Uncertainpy comes with several common models and features built
in, and including custom models and new features is easy.

The aim of the current paper is to present Uncertainpy for the neuroscience community in a user-
oriented manner. To demonstrate its broad applicability, we perform an uncertainty quantification
and sensitivity analysis on three case studies relevant for neuroscience: the original Hodgkin-Huxley
point-neuron model for action potential generation, a multi-compartmental model of a thalamic
interneuron implemented in the NEURON simulator, and a sparsely connected recurrent network
model implemented in the NEST simulator.
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SIGNIFICANCE STATEMENT

A major challenge in computational neuroscience is to specify the often large number of
parameters that define the neuron and neural network models. Many of these parameters have
an inherent variability, and some may even be actively regulated and change with time. It is
important to know how the uncertainty in model parameters affects the model predictions.
To address this need we here present Uncertainpy, an open-source Python toolbox tailored
to perform uncertainty quantification and sensitivity analysis of neuroscience models.

1 INTRODUCTION

Computational modeling has become a useful tool for examining various phenomena in
biology in general (Brodland, 2015) and neuroscience in particular (Koch and Segev, 1998;
Dayan and Abbott, 2001; Sterratt et al., 2011). The field of neuroscience has seen the
development of ever more complex models, and models now exist for large networks of
biophysically detailed neurons (Izhikevich and Edelman, 2008; Merolla et al., 2014; Markram
et al., 2015).
Computational models typically contain a number of parameters that for various reasons

are uncertain. A typical example of an uncertain parameter in a neural model can be the
conductance gx of a fully open ion channel of a specific type x. Despite the parameter
uncertainty, it is common practice to construct models that are deterministic in the sense
that single numerical values are assigned to each parameter.
Uncertainty quantification is a means to quantify the uncertainty in the model output that

arise from uncertainty in the model parameters. Instead of using fixed model parameters
as in a deterministic model (as illustrated in Figure 1A), one assigns a distribution of
possible values to each model parameter. The uncertainties in the model parameters are
then propagated through the model and give rise to a distribution in the model output (as
illustrated in Figure 1B). An uncertainty quantification can thus be seen as a transformation
from a deterministic model to a stochastic model.
Sensitivity analysis is tightly linked to uncertainty quantification, and is the process of

quantifying how much of the output uncertainty each parameter is responsible for (Saltelli,
2002). In addition to providing insight into how different aspects of the model affects its
overall properties, knowing the sensitivity of the model to each parameter can be used in
guiding experimental analysis, model reduction and parameter estimation (Degenring et al.,
2004; Zi, 2011; Snowden et al., 2017).
The uncertainty in a model parameter may have many origins. It may be due to (i)

measurement uncertainty or (ii) lack of experimental techniques that enables the parameter

2

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 5, 2018. ; https://doi.org/10.1101/274779doi: bioRxiv preprint 

https://doi.org/10.1101/274779
http://creativecommons.org/licenses/by/4.0/


Figure 1. Illustration of an uncertainty quantification of a deterministic model.
(A) A traditional deterministic model where each input parameter has a fixed value, and we
get one output of the model (grey). (B) An uncertainty quantification of the model makes
the parameters of the model have distributions, and the output of the model becomes a
range of possible values (light grey).

to be measured. The uncertainty can also be due to an inherent biological variability, meaning
the value of a parameter can vary (iii) between neurons of the same species (Edelman and
Gally, 2001; Hay et al., 2013), or (iv) dynamically within a single neuron due to plasticity or
homeostatic mechanisms (Marder and Goaillard, 2006). Additionally, some models include
parameters that are (v) phenomenological abstractions, and therefore do not represent
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directly measurable physical entities. They might for example represent the combined effect
of several physical processes.

A common way to avoid addressing the uncertainty in measured parameters is to use the
mean of several experimental measurements. This can be problematic since the underlying
distribution of a set of parameters can be poorly characterized by the mean and variance
of each parameter (Golowasch et al., 2002). Additionally, during model construction, a
subset of the uncertain parameters are commonly treated as free parameters. This means
the parameters are tuned by the modeller to values that makes the model output match a
set of experimental constraints. An example is fitting an ion-channel conductance gx so the
membrane potential of a neuron model reproduces an experimentally measured voltage trace.
Historically, such parameter tuning was often done manually by trial and error, but a variety
of automated parameter fitting algorithms have gradually taken over (Bhalla and Bower,
1993; Vanier and Bower, 1999; Druckmann et al., 2007; Van Geit et al., 2007, 2008; Taylor
et al., 2009; Hay et al., 2011; Svensson et al., 2012; Bahl et al., 2012; Friedrich et al., 2014;
Pozzorini et al., 2015; Van Geit et al., 2016; Mäki-Marttunen et al., 2018). Whatever method
used, the tuning procedure does not guarantee a unique solution for the correct parameter
set, since it often is the case that a wide range of different parameter combinations give rise
to similar model behavior (Bhalla and Bower, 1993; Beer et al., 1999; Goldman et al., 2001;
Golowasch et al., 2002; Prinz et al., 2004; Tobin, 2006; Schulz et al., 2007; Halnes et al., 2007;
Taylor et al., 2009; Marder and Taylor, 2011).

Given that most neuroscience models contain a variety of uncertain parameters, the
need for systematic approaches to quantify what confidence we can have in the model
output is pressing. The importance of uncertainty quantification and sensitivity analysis
of computational models is well known in a wide variety of fields (Leamer, 1985; Beck, 1987;
Turanyi and Turányi, 1990; Oberkampf et al., 2002; Wood-Schultz, 2011; Marino et al.,
2008; Najm, 2009; Rossa et al., 2011; Yildirim and Karniadakis, 2015; Wang and Sheen,
2015). Due the prevalence of inherent variability in the parameters of biological systems,
uncertainty quantification and sensitivity analysis is at least as important in neuroscience.

Unfortunately, a generally accepted practice for uncertainty quantification and sensitivity
analysis does not currently exist within the field of neuroscience, and models are commonly
presented without including any form of uncertainty quantification or sensitivity analysis.
When an effort is made in that direction, it is still common to use rather simple, so
called One-At-A-Time methods, where one examines how much the model output changes
when varying one parameter at a time (see e.g., De Schutter and Bower (1994); Blot and
Barbour (2014); Kuchibhotla et al. (2017)). Such approaches do not account for potential
dependencies between the parameters, and thereby miss correlations within the often multi-
dimensional parameter space (Borgonovo and Plischke, 2016). Other methods that have
been applied are local methods, which are multi-dimensional, but confined to exploring
small perturbations surrounding a single point in the parameter space (see e.g., Gutenkunst
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et al. (2007); Blomquist et al. (2009); O’Donnell et al. (2017)). Such methods can thus not
explore the effect of arbitrarily broad uncertainty distributions for the parameters.
Methods for uncertainty quantification and sensitivity analysis that take the entire

parameter space into account are often called global methods (Borgonovo and Plischke,
2016; Babtie and Stumpf, 2017). Global methods are only occasionally used within the field
of neuroscience (see e.g., Torres Valderrama et al. (2015); Halnes et al. (2009)). The most
well known of the global methods are (quasi-)Monte Carlo methods, which rely on randomly
sampling the parameter distributions, and then calculate statistics from the following model
outputs. The problem with (quasi-)Monte Carlo methods is that they are computationally
very demanding, particularly for large and complex models. A means to obtain similar
results in a much more efficient way, is provided by the recent mathematical framework of
polynomial chaos expansions (Xiu and Hesthaven, 2005). Polynomial chaos expansions are
used to approximate the model with a polynomial (as a surrogate model), on which the
uncertainty and sensitivity analysis can be performed much more efficiently.
To lower the threshold for neuroscientists to perform uncertainty quantification and

sensitivity analysis we have created Uncertainpy1, an open-source Python toolbox for efficient
uncertainty quantification and sensitivity analysis. Uncertainpy aims to make it easy and
quick to get started with uncertainty quantifications and sensitivity analysis, just a few lines
of Python code are needed, without any need for detailed prior knowledge of uncertainty
analysis. Uncertainpy implements both quasi-Monte Carlo methods and polynomial chaos
expansions. The toolbox is model independent and treats the model as a “black box”,
meaning that uncertainty quantification can be performed on already existing models without
needing to modify the model equations or model implementation. We hope Uncertainpy can
help to enable uncertainty quantification and sensitivity analysis in neuroscience.
Whereas its statistical methods are generally applicable, Uncertainpy is tailored for

neuroscience applications by having an built-in capability for recognizing characteristic
features in the model output. This means Uncertainpy does not merely perform a point-
to-point comparison of the “raw” model output (e.g., a voltage trace). When applicable,
Uncertainpy also recognizes and calculates the uncertainty in model response features, for
example the spike timing and action potential shape for neural models, and measurements
of spiking neural network activity, such as firing rates and interspike intervals, for neural
networks.
To present Uncertainpy, we start this paper with an overview of the theory behind

uncertainty quantification and sensitivity analysis in Section 2, with a focus on (quasi-
)Monte Carlo methods and polynomial chaos expansions. In Section 3 we explain how to
use Uncertainpy, and give details on how the uncertainty quantification is implemented. In
Section 4 we illustrate the use of Uncertainpy by showing four different case studies where
we perform uncertainty analysis of: (i) a cooling coffee-cup model (Newton’s law of cooling)

1 https://github.com/simetenn/uncertainpy
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to start with a simple use case, (ii) the original Hodgkin-Huxley point-neuron model for
action potential generation, (iii) a comprehensive multi-compartmental model of a thalamic
interneuron, and (iv) a sparsely connected recurrent network model. We end with a discussion
and some future prospects in Section 5.

2 THEORY ON UNCERTAINTY QUANTIFICATION AND SENSITIVITY
ANALYSIS

Uncertainty quantification and sensitivity analysis provide rigorous procedures to analyse
and characterize the effects of parameter uncertainty on the output of a model. The methods
for uncertainty quantification and sensitivity analysis can be divided into global and local
methods. Local methods examine how the model output changes with small perturbations
around a fixed point in the parameter space. Global methods, on the other hand, consider
the entire parameter space. Global methods can therefore identify complex dependencies
between the model parameters in terms of how they affect the model output.

The global methods can be further divided into intrusive and non-intrusive methods.
Intrusive methods require changes to the underlying model equations, and are often
challenging to implement. Models in neuroscience are often created with the use of advanced
simulators such as NEST (Eppler et al., 2015) and NEURON (Hines and Carnevale, 1997).
Modifying the underlying equations of models using these simulators is a complicated task
best avoided. Non-intrusive methods, on the other hand, consider the model as a black
box, and can be applied to any model without needing to modify the model equations or
model implementation. Global, non-intrusive methods are therefore the methods of choice in
Uncertainpy. The uncertainty calculations in Uncertainpy is based on the Python package
Chaospy (Feinberg and Langtangen, 2015), which provides global non-intrusive methods for
uncertainty quantification and sensitivity analysis.

In this section we go through the theory behind the methods for uncertainty quantification
and sensitivity analysis used in Uncertainpy. We start by introducing the notation used in
this paper (Section 2.1). Next, we introduce the statistical measurements for uncertainty
quantification (Section 2.2) and sensitivity analysis (Section 2.3). Further, we give an
introduction to (quasi-)Monte Carlo methods (Section 2.4) and polynomial chaos expansions
(Section 2.5), the two methods used to perform the uncertainty analysis in Uncertainpy. We
next explain how Uncertainpy handle cases with statistically dependent model parameters
(Section 2.6). Finally, we explain the concept and benefits of performing a feature-
based analysis (Section 2.7). We note that detailed insight into the theory of uncertainty
quantification and sensitivity analysis is not a prerequisite for using Uncertainpy, so the
more practical oriented reader may chose to skip this section, and go directly to the user
guide in Section 3.
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2.1 Problem definition

Consider a model U that depends on space x and time t, has D uncertain input parameters
Q = [Q1, Q2, . . . , QD], and gives the output Y :

Y = U(x, t,Q). (1)

The output Y can have any value within the output space ΩY and has an unknown probability
density function ρY . The goal of an uncertainty quantification is to describe the unknown ρY
through statistical metrics. We are only interested in the input and output of the model, and
we ignore all details on how the model works. The model U is thus considered a black box,
and may represent any model, for example a spiking neuron model that returns a voltage
trace, or a neural network model that returns a spike train.

We assume the model includes uncertain parameters that can be described by a
multivariate probability density function ρQ. Examples of parameters that can be uncertain
in neuroscience are the conductance of a single ion channel, or the synaptic weight between
two types of neurons in a neural network. If the uncertain parameters are independent, the
multivariate probability density function ρQ can be given as separate univariate probability
density functions ρQi

, one for each uncertain parameterQi. The joint multivariate probability
density function for the independent uncertain parameters is then:

ρQ =
D∏
i=1

ρQi
. (2)

In cases where the uncertain input parameters are dependent, the multivariate probability
density function ρQ must be defined directly. We assume the probability density functions
are known, and are not here concerned with how they are determined. They may be the
product of a series of measurements, a parameter estimation, or educated guesses made by
experts.

2.2 Uncertainty quantification

As mentioned, the goal of an uncertainty quantification is to describe the unknown
distribution of the model output ρY through statistical metrics. The two most common
statistical metrics used in this context are the mean E (also called the expectation value)
and the variance V. The mean is defined as:

E[Y ] =

∫
ΩY

yρY (y)dy, (3)

and tells us the expected value of the model output Y . The variance is defined as:

V[Y ] =

∫
ΩY

(y − E[Y ])2ρY (y)dy, (4)
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and tells us how much the output varies around the mean.

Another useful metric is the (100 · x)-th percentile Px of Y , which defines a value below
which 100·x percent of the simulation outputs are located. For example, 5% of the simulations
of a model will give an output lower than the 5-th percentile. The (100 · x)-th percentile is
defined as:

x =

∫ Px

−∞
ρY (y)dy. (5)

We can combine two percentiles to create a prediction interval Ix, which is a range of values
such that a 100 · x percentage of the outputs Y occur within this range:

Ix =
[
P(x/2), P(1−x/2)

]
. (6)

The 90% prediction interval gives us the interval within 90% of the Y outcomes occur, which
also means that 5% of the outcomes are above and 5% below this interval.

2.3 Sensitivity analysis

Sensitivity analysis quantifies how much of the uncertainty in the model output each
uncertain parameter is responsible for. It is the computational equivalent of analysis of
variance (ANOVA) performed on experimental data (Archer et al., 1997). For a review of
different sensitivity analysis methods, see Hamby (1994); Borgonovo and Plischke (2016).
Several different sensitivity measures exist, but Uncertainpy uses the commonly used Sobol
sensitivity indices (Sobol, 1990). The Sobol sensitivity indices quantify how much of the
variance in the model output each uncertain parameter is responsible for. If a parameter has
a low sensitivity index, variations of this parameter results in comparatively small variations
in the final model output. On the other hand, if a parameter has a high sensitivity index, a
change in this parameter leads to a large change in the model output.

A sensitivity analysis provides a better understanding of the relationship between the
parameters and output of a model. This can be useful in a model reduction context. For
example, a parameter with a low sensitivity index can essentially be set to any fixed value
(within the explored distribution), without affecting the variance of the model much. In some
cases, such an analysis can justify leaving out entire mechanisms from a model. For example,
if a single neuron model is insensitive to the conductance of a given ion channel gx, this ion
channel could possibly be removed from the model without changing the model behavior
much. Additionally, a model-based sensitivity analysis can guide the experimental focus, so
that special care is taken to obtain accurate measures of parameters with high sensitivity
indices, while more crude measures are acceptable for parameters with low sensitivity indices.
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There exist several types of Sobol indices. The first-order Sobol sensitivity index S measures
the direct effect each parameter has on the variance of the model:

Si =
V[E[Y |Qi]]

V[Y ]
. (7)

Here, E[Y |Qi] denotes the expected value of the output Y when parameter Qi is fixed. The
first-order Sobol sensitivity index tells us the expected reduction in the variance of the model
when we fix parameter Qi. The sum of the first-order Sobol sensitivity indices can not exceed
one (Glen and Isaacs, 2012).

Higher order sobol indices exist, and give the sensitivity due interactions between a
parameter Qi and various other parameters. It is customary to only calculate the first
and total-order indices (Saltelli et al., 2010). The total Sobol sensitivity index STi includes
the sensitivity of both the first-order effects, as well as the sensitivity due to interactions
(covariance) between a given parameter Qi and all other parameters (Homma and Saltelli,
1996). It is defined as:

STi = 1− V[E[Y |Q−i]]

V[Y ]
, (8)

where Q−i denotes all uncertain parameters except Qi. The sum of the total Sobol sensitivity
indices is equal to or greater than one (Glen and Isaacs, 2012). If no higher order interactions
are present, the sum of both the first and total-order sobol indices are equal to one.

We might want to compare Sobol indices across different features (introduced in
Section 2.7). This can be problematic when we have features with different number of output
dimensions. In the case of a zero-dimensional output the Sobol indices is a single number,
while for a one-dimensional output we get Sobol indices for each point in time. To better be
able to compare the Sobol indices across such features, we therefore calculate the normalized
sum of both the first-order Sobol indices Ŝ, and the total-order Sobol indices ŜT .

2.4 (Quasi-)Monte Carlo methods

A typical way to obtain the statistical metrics mentioned above is to use (quasi-)Monte
Carlo methods. We give a brief overview of these methods here, for more comprehensive
reviews see Lemieux (2009); Rubinstein and Kroese (2016).

The general idea behind the standard Monte Carlo method is quite simple. A set of
parameters is randomly drawn from the joint multivariate probability density function ρQ
of the parameters. The model is then evaluated for the sampled parameter set. This process
is repeated thousands of times, and statistical metrics such as the mean and variance are
computed for the resulting series of model outputs. The problem with the standard Monte
Carlo method is that a very high number of model evaluations is required to get reliable
statistics. If the model is computationally expensive, the Monte Carlo method may require
insurmountable computer power.
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Quasi-Monte Carlo methods improve upon the standard Monte Carlo method by using
variance-reduction techniques to reduce the number of model evaluations needed. These
methods are based on increasing the coverage of the sampled parameter space by distributing
the samples more evenly. Fewer samples are then required to get a given accuracy.
Instead of randomly selecting parameters from ρQ, the samples are selected using a low-
discrepancy sequence such as the Hammersley sequence (Hammersley, 1960), which is used
in Uncertainpy. Quasi-Monte Carlo methods are faster than the Monte Carlo method, as
long as the number of uncertain parameters is sufficiently small (Lemieux, 2009).

Uncertainpy allows quasi-Monte Carlo methods to be used to compute the statistical
metrics. When this option is chosen, the metrics are computed as follows. With N model
evaluations, which gives the results Y = [Y1, Y2, . . . , YN ], the mean is given by

E[Y ] ≈ 1

N

N∑
i=1

Yi, (9)

and the variance by

V[Y ] ≈ 1

N − 1

N∑
i=1

(Yi − E[Y ])2. (10)

Prediction intervals are found by sorting the model evaluations Y in an increasing order, and
then finding the (100 · x/2)-th and (100 · (1 − x/2))-th percentiles. The sensitivity analysis
in Uncertainpy is based on polynomial chaos expansions (see below), and Uncertainpy
does currently not support calculation of Sobol indices from (quasi-)Monte Carlo methods,
although methods for this are available in the literature (Saltelli et al., 2010).

2.5 Polynomial chaos expansions

A recent mathematical framework for estimating uncertainty is that of polynomial chaos
expansions (Xiu and Hesthaven, 2005). Polynomial chaos expansions can be seen as a subset
of polynomial approximation methods. For a review of polynomial chaos expansions see Xiu
(2010). Polynomial chaos expansions are much faster than (quasi-)Monte Carlo methods as
long as the number of uncertain parameters is relatively low, typically smaller than about
twenty (Crestaux et al., 2009). This is the case for many neuroscience models, and even for
models with a higher number of uncertain parameters, the analysis can be performed for
selected subsets of the parameters.

The general idea behind polynomial chaos expansions is to approximate the model U with
a polynomial expansion Û :

U ≈ Û(x, t,Q) =

Np−1∑
n=0

cn(x, t)ϕn(Q), (11)
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where ϕn denote polynomials, and cn denote expansion coefficients. The number of expansion
factors Np is given by

Np =

(
D + p

p

)
, (12)

where p is the polynomial order. The polynomials ϕn(Q) are chosen so they are orthogonal
with respect to the probability density function ρQ, which ensures useful statistical
properties.

When creating the polynomial chaos expansion, the first step is to find the orthogonal
polynomials ϕn, which in Uncertainpy is done using the so called three-term recurrence
relation (Xiu, 2010). The next step is to estimate the expansion coefficients cn. The non-
intrusive methods for doing this can be divided into two classes, point-collocation methods
and pseudo-spectral projection methods, both of which are implemented in Uncertainpy.

Point collocation is the default method used in Uncertainpy. This method is based on
demanding that the polynomial approximation is equal to the model output evaluated at a
set of collocation nodes drawn from the joint probability density function ρQ. This demand
results in a set of linear equations for the polynomial coefficients cn, which can be solved
by the use of regression methods. The regression method used in Uncertainpy is Tikhonov
regularization (Rifkin and Lippert, 2007).

Pseudo-spectral projection methods are based on least squares minimization in the
orthogonal polynomial space, and finds the expansion coefficients cn through numerical
integration. The integration uses a quadrature scheme with weights and nodes, and the
model is evaluated at these nodes. The quadrature method used in Uncertainpy is Leja
quadrature, with Smolyak sparse grids to reduce the number of nodes required (Narayan
and Jakeman, 2014; Smolyak, 1963). Pseudo-spectral projection methods are only used in
Uncertainpy when requested by the user.

Several of the statistical metrics of interest can be obtained directly from the polynomial
chaos expansion Û . The mean is simply

E[U ] ≈ E[Û ] = c0, (13)

and the variance is

V[U ] ≈ V[Û ] =

Np−1∑
n=1

γnc
2
n, (14)

where γn is a normalization factor defined as

γn = E
[
ϕ2
n(Q)

]
. (15)
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The first and total-order Sobol indices can also be calculated directly from the polynomial
chaos expansion (Sudret, 2008; Crestaux et al., 2009). On the other hand, the percentiles
and prediction interval must be estimated using Û as a surrogate model, and then perform
the same procedure as for the (quasi-)Monte Carlo methods.

2.6 Dependency between uncertain parameters

One of the underlying assumptions when creating the polynomial chaos expansions is that
the model parameters are independent. However, dependent parameters in neuroscience
models are quite common (Achard and De Schutter, 2006). Fortunately, models containing
dependent parameters can be analyzed with Uncertainpy by the aid of the Rosenblatt
transformation from Chaospy (Rosenblatt, 1952; Feinberg and Langtangen, 2015). In brief,
the idea is to create a reformulated model Ũ(x, t,R) based on an independent parameter
set R, and then perform polynomial chaos expansions on the reformulated model. The
Rosenblatt transformation is used to construct the reformulated model so it gives the same
output (and statistics) as the original model, i.e.:

Ũ(x, t,R) = U(x, t,Q). (16)

For more information on the use of the Rosenblatt transformation, see the Uncertainpy
documentation2 or Feinberg and Langtangen (2015).

2.7 Feature-based analysis

When measuring the membrane potential of a neuron, the precise timing of action
potentials often vary between recordings, even if the experimental conditions are maintained
constant to the highest degree possible. This behaviour is typical for biological system. Since
the experimental data displays such variation, it is often meaningless (or even misguiding)
to base the success of a computational model on a direct point-to-point comparison between
the experimental data and model output (Druckmann et al., 2007; Van Geit et al., 2008). A
common modeling practice is therefore to rather have the model reproduce essential features
of the experimentally observed dynamics, such as the action potential shape, or action
potential firing rate (Druckmann et al., 2007). Such features are typically more robust
between different experimental measurements, or between different model simulations, than
the raw data or raw model output, at least if sensible features have been chosen.

Uncertainpy takes this aspect of neural modeling into account, and is constructed so it can
extract a set of features relevant for various common model types in neuroscience from the
raw model output. Examples include the action potential shape in single neuron models, or
the mean interspike interval in neural network models. This means Uncertainpy performs an
uncertainty quantification and sensitivity analysis not only on the raw model output, but
also on a set of relevant features selected by the user. A list of the implemented features is

2 https://github.com/simetenn/uncertainpy
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given in Section 3.4, and the value of feature-based analysis is illustrated in two of the case
studies (Section 4.3 and Section 4.4).

3 USER GUIDE FOR UNCERTAINPY

Uncertainpy is a Python toolbox, tailored to make uncertainty quantification and sensitivity
analysis easily accessible to the computational neuroscience community. The toolbox is
based on Python, since Python is a high level, open-source language in extensive and
increasing use within the scientific community (Oliphant, 2007; Einevoll, 2009; Muller et al.,
2015). Uncertainpy utilizes the Python-package Chaospy (Feinberg and Langtangen, 2015)
to perform the uncertainty calculations. Uncertainpy currently only works with Python 2,
due to limitations in some of the Python packages utilized. In this section we present a guide
to how to use Uncertainpy. We do not present an exhaustive overview, but refer to the online
description of Uncertainpy for a complete documentation. A complete case study with code
is shown in Section 4.1.

Uncertainpy is easily installed by following the instructions in Section 3.8. After installation,
we get access to Uncertainpy by simply importing it:

import uncertainpy as un

Performing an uncertainty quantification and sensitivity analysis with Uncertainpy includes
three main components:

1. The model we want to examine.
2. The parameters of the model.
3. Specifications of features in the model output.

The model and parameters are required components, while the feature specifications
are optional. The three (or two) components are brought together in the
UncertaintyQuantification class. This class performs the uncertainty calculations and
is the main class the user interacts with. In this section we explain how to use
UncertaintyQuantification with the above components, and introduce a few additional
utility classes.

3.1 The uncertainty quantification class

The UncertaintyQuantification class is used to define the problem, perform the
uncertainty quantification and sensitivity analysis, and save and visualize the results. Among
others, UncertaintyQuantification takes the arguments:

UQ = un.UncertaintyQuantification(
model=Model(...), # Required
parameters=Parameters(...), # Required
features=Features(...) # Optional
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)

The arguments are given as instances of their corresponding Uncertainpy classes (Model,
Parameters, and Features). We go through how to use each of these classes in the next
three sections (Sections 3.2 to 3.4).

After the problem is set up, an uncertainty quantification and sensitivity analysis can
be performed by using the UncertaintyQuantification.quantify method. Among others,
quantify takes the optional arguments:

data = UQ.quantify(
method="pc"|"mc",
pc_method="collocation"|"spectral",
rosenblatt=False|True

)

The method argument allows the user to choose whether Uncertainpy should use polynomial
chaos expansions ("pc") or quasi-Monte Carlo ("mc") methods to calculate the relevant
statistical metrics. If polynomial chaos expansions are chosen, pc_method further specifies
whether point collocation ("collocation") or spectral projection ("spectral") methods are
used to calculate the expansion coefficients. Finally, rosenblatt (False or True) determines
if the Rosenblatt transformation should be used. If nothing is specified, Uncertainpy by
default uses polynomial chaos expansions based on point collocation without the Rosenblatt
transformation.

The results from the uncertainty quantification are returned in data, as a Data object (see
Section 3.6). The results are also automatically saved in a folder named data, and figures are
automatically plotted and saved in a folder named figures, both in the current directory.
The returned data object is therefore not necessarily needed.

Polynomial chaos expansions are recommended as long as the number of uncertain
parameters is small (typically > 20), as polynomial chaos expansions in these cases are much
faster than quasi-Monte Carlo methods. Additionally, sensitivity analysis is not yet available
for studies based on the quasi-Monte Carlo method. Which of the polynomial chaos expansion
methods to choose is problem dependent, but in general the pseudo-spectral method is faster
than point collocation, but has lower stability. We therefore generally recommend the point
collocation method.

We note that there is no guarantee each set of sampled parameters produces a valid model
or feature output. For example, a feature such as the spike width will not be defined in a
model evaluation that produces no spikes. In such cases, Uncertainpy gives a warning which
includes the number of runs that failed to return a valid output, and performs the uncertainty
quantification and sensitivity analysis using the reduced set of valid runs. Point collocation
(as well as the quasi-Monte Carlo method) are robust towards missing values as long as
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the number of results remaining is high enough (Eck et al., 2016), another reason the point
collocation method is recommended. However, if a large fraction of the simulations fail, the
user could consider redefining the problem (e.g., by using narrower parameter distributions).

3.2 Models

In order to perform the uncertainty quantification and sensitivity analysis of a model,
Uncertainpy needs to set the parameters of the model, run the model using those parameters,
and receive the model output. Uncertainpy has built-in support for NEURON and NEST
models, found in the NeuronModel (Section 3.2.4) and NestModel (Section 3.2.5) classes
respectively. It should be noted that while Uncertainpy is tailored towards neuroscience, it
is not restricted to neuroscience models. Uncertainpy can be used on any model that meets
the criteria in this section. Below, we first explain how to create custom models, before we
explain how to use NeuronModel and NestModel.

3.2.1 The model class

Generally, models are created through the Model class. Model takes the argument run and
the optional arguments postprocess, adaptive and labels.

model = un.Model(run=example_model ,
postprocess=example_postprocess ,
adaptive=True ,
labels=["xlabel", "ylabel"])

The run argument must be a Python function that runs a simulation on a specific model
for a given set of model parameters, and returns the simulation output. In this paper we
call such a function for a model function. The postprocess argument is a Python function
used to postprocess the model output if required. We go into details on the requirements
of the postprocess and model functions below. The adaptive argument specifies whether
the model uses adaptive time steps or not. For adaptive models, Uncertainpy automatically
interpolates the output to a regular form (the same number of measurement points for each
model evaluation, most commonly time points). Finally, labels allows the user to specify a
list of labels to be used on the axes when plotting the results.

3.2.2 Defining a model function

As explained above, the run argument is a Python function that runs a simulation on a
specific model for a given set of model parameters, and returns the simulation output. An
example outline of a model function is:

def example_model(parameter_1 , parameter_2):
# An algorithm for the model , or a script that runs
# an external model , using the given input parameters.
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# Returns the model output and model time
# along with the optional info object.
return time , values , info

Such a model function has the following requirements:

1. Input. The model function takes a number of arguments which define the uncertain
parameters of the model.

2. Run the model. The model must then be run using the parameters given as arguments.
3. Output. The model function must return at least two objects, the model time (or

equivalent, if applicable) and model output. Additionally, any number of optional info
objects can be returned. In Uncertainpy, we refer to the time object as time, the model
output object as values, and the remaining objects as info.
a. Time (time). time can be interpreted as the x-axis of the model. It is used when

interpolating (see below), and when certain features are calculated. We can return
None if the model has no time associated with it.

b. Model output (values). The model output must either be regular, or it must be
possible to interpolate or postprocess the output (see Section 3.2.3) to a regular form.

c. Additional info (info). Some of the methods provided by Uncertainpy, such as the
later defined model postprocessing, feature preprocessing, and feature calculations,
require additional information from the model (e.g., the time a neuron receives an
external stimulus). We recommend to use a single dictionary as info object, with key-
value pairs for the information, to make debugging easier. Uncertainpy always uses
a single dictionary as the info object. Certain features require that specific keys are
present in this dictionary.

The model itself does not need to be implemented in Python. Any simulator can be
used, as long as we can control the model parameters and retrieve the simulation output
via Python. We can as a shortcut pass a model function to the model argument in
UncertaintyQuantification, instead of first having to create a Model instance.

3.2.3 Defining a postprocess function

The postprocess function is used to postprocess the model output before it is used in
the uncertainty quantification. Postprocessing does not change the model output sent to the
feature calculations. This is useful if we need to transform the model output to a regular result
for the uncertainty quantification, but still need to preserve the original model output to
reliably detect the model features. Figure 2 illustrates how the objects returned by the model
function are sent to both model postprocess, and feature preprocess (see Section 3.4).

An example outline of the postprocess function is:

def example_postprocess(time , values , info):
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model_function

Uncertainty
Quantification

time_post, values_post

*preprocess_results

time, values, info_1, info_2,...

postprocess(time, values, *info)

feature_function(*preprocess_results)

time_feature, values_feature

preprocess(time, values, *info)

Figure 2. Classes that affect the objects returned by the model. The Uncertainpy
methods that use, change, and perform calculations on the objects returned by the model
function (time, values, and the optional info). Functions associated with the model are in
red while functions associated with features are in green.

# Postprocess the result to a regular form using time,
# values , and info returned by the model function.

# Return the postprocessed model output and time.
return time_postprocessed , values_postprocessed

The only time postprocessing is required for Uncertainpy to work, is when the
model produces output that can not be interpolated to a regular form by Uncertainpy.
Postprocessing is for example required for network models that give output in the form of
spike trains, i.e. time values indicating when a given neuron fires. It should be noted that
postprocessing of spike trains is already implemented in Uncertainpy (see Section 3.2.5). For
most purposes user defined postprocessing will not be necessary.

The requirements for the postprocess function are:

1. Input. The postprocess function must take the objects returned by the model function
as input arguments.

2. Postprocessing. The model time (time) and output (values) must be postprocessed
to a regular form, or to a form that can be interpolated to a regular form by Uncertainpy.
If additional information is needed from the model, it can be passed along in the info
object.
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3. Output. The postprocess function must return two objects:
a. Model time (time_postprocessed). The first object is the postprocessed time (or

equivalent) of the model. We can return None if the model has no time. Note that
the automatic interpolation of the postprocessed time can only be performed if a
postprocessed time is returned (if an interpolation is required).

b. Model output (values_postprocessed). The second object is the postprocessed
model output.

3.2.4 NEURON model class

NEURON (Hines and Carnevale, 1997) is a widely used simulator for multi-compartmental
neural models. Uncertainpy has support for NEURON models through the NeuronModel
class, a subclass of Model. Among others, NeuronModel takes the arguments:

model = un.NeuronModel(path="path/to/neuron_model",
adaptive=True ,
stimulus_start=1000, # ms
stimulus_end=1900) # ms

path is the path to the folder where the NEURON model is saved (the location of the
mosinit.hoc file). adaptive indicates whether the NEURON model uses adaptive time
steps. stimulus_start and stimulus_end denotes the start and end time of any stimulus
given to the neuron. NeuronModel loads the NEURON model from mosinit.hoc, sets the
parameters of the model, evaluates the model and returns the somatic membrane potential
of the neuron. NeuronModel therefore does not require a model function. A case study of a
NEURON model analysed with Uncertainpy is found in Section 3.2.4.

If changes are needed to the standard NeuronModel, such as measuring the voltage from
other locations than the soma, the Model class with an appropriate model function should
be used instead. Alternatively, NeuronModel can be subclassed and the existing methods
customized as required. An example of the later is shown in /uncertainpy/examples/bahl/.

3.2.5 NEST model class

NEST (Eppler et al., 2015) is a simulator for large networks of spiking neurons. NEST
models are supported through the NestModel class, another subclass of Model:

model = un.NestModel(run=nest_model_function)

NestModel requires the model function to be specified through the run argument, unlike
NeuronModel. The NEST model function has the same requirements as a regular model
function, except it is restricted to return only two objects: the final simulation time (denoted
simulation_end), and a list of spike times for each neuron in the network, which we refer
to as spike trains (denoted spiketrains).
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A spike train returned by a NEST model is a set of irregularly spaced time points
where a neuron fired a spike. NEST models therefore require postprocessing to make
the model output regular. Such a postprocessing is provided by the implemented
NestModel.postprocess method, which converts a spike train to a list of zeros
(no spike) and ones (a spike) for each time step in the simulation. For example,
if a NEST simulation returns the spike train [0, 2, 3.5], it means the neuron
fired three spikes occurring at t = 0, 2, and 3.5 ms. If the simulation have a
time resolution of 0.5 ms and ends after 4 ms, NestModel.postprocess returns the
postprocessed spike train [1, 0, 0, 0, 1, 0, 0, 1, 0], and the postprocessed time array
[0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]. The final uncertainty quantification of a NEST
network therefore predicts the probability for a spike to occur at any specific time point in
the simulation. An Uncertainpy-based analysis of a NEST model is found in the case study
in Section 4.4.

3.3 Parameters of the model

The parameters of a model are defined by two properties, they must have (i) a name and
(ii) either a fixed value or a distribution. It is important that the name of the parameter
is the same as the name given as the input argument in the model function. A parameter
is considered uncertain if it is given a probability distribution, and the distributions are
given as Chaospy distributions. 64 different univariate distributions are defined in Chaospy,
and Chaospy has support for easy creation of multivariate distributions. For a list of
available distributions and detailed instructions on how to create probability distributions
with Chaospy, see Section 3.3 in Feinberg and Langtangen (2015).

The parameters are defined by the Parameters class. Parameters takes the argument
parameters, which is a dictionary with the above information. The names of the parameters
are the keys, and the fixed values or distributions of the parameters are the values. As an
example, if we have two parameters, where the first is named name_1 and has a uniform
probability distributions in the interval [8, 16], and the second is named name_2 and has a
fixed value 42, the list becomes:

import chaospy as cp
parameters = {"name_1": cp.Uniform(8, 16), "name_2": 42}

And Parameters is initialized:

parameters = un.Parameters(parameters=parameters)

We can as a shortcut pass the above dictionary to the parameters argument in
UncertaintyQuantification, instead of first having to create a Parameters instance.

If the parameters do not have separate univariate probability distributions, but a joint
multivariate probability distribution, the multivariate distribution can be set by giving
Parameters the optional argument distribution:
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multivariate = cp.J(cp.Uniform(8, 16), cp.Uniform(40, 44))

parameters = un.Parameters(parameters=parameters ,
distribution=multivariate))

3.4 Features

As discussed in Section 2.7, it is often more meaningful to examine the uncertainty in
salient features of the model output, than to base the analysis directly on a point-to-point
comparison of the raw output data (e.g. a voltage trace). Upon user request, Uncertainpy
can identify and extract features of the model output. If we give the features argument
to UncertaintyQuantification, Uncertainpy will perform uncertainty quantification and
sensitivity analysis of the given features, in addition to the analysis of the raw output data
(if desired).

Three sets of features comes predefined with Uncertainpy, SpikingFeatures,
EfelFeatures, and NetworkFeatures. Each of the feature classes contains a set of features
tailored towards one specific type of models. We first explain how to create custom features,
before explaining how to use the built-in features.

Features are defined through the Features class:

list_of_feature_functions = [example_feature]

features = un.Features(new_features=list_of_feature_functions ,
features_to_run=["example_feature"],
preprocess=example_preprocess ,
adaptive=["example_feature"])

new_features is a list of Python functions that each calculates a specific feature, whereas
features_to_run tells which of the features to perform uncertainty quantification of. If
nothing is specified, the uncertainty quantification is by default performed on all features
(features_to_run="all"). preprocess is a Python function that performs common
calculations for all features. adaptive is a list of features that have adaptive time steps.
As with models, Uncertainpy automatically interpolates the output of adaptive features to
a regular form. Below we first go into details on the requirements of a feature function, and
then the requirements of a preprocess function.

3.4.1 Feature functions

A specific feature is given as a Python function. The outline of such a feature function is:

def example_feature(time , values , info):
# Calculate the feature using time, values and info.
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# Return the feature times and values.
return time_feature , values_feature

Feature functions have the following requirements:

1. Input. The feature function takes the objects returned by the model function as input,
except in the case when a preprocess function is used (see below). In that case, the
feature function instead takes the objects returned by the preprocess function as input.
preprocess is normally not used.

2. Feature calculation. The feature function calculates the value of a feature from the
data given in time, values and optional info objects. As previously mentioned, in all
built-in features in Uncertainpy, info is a dictionary containing required information as
key-value pairs.

3. Output. The feature function must return two objects:
a. Feature time (time_feature). The time (or equivalent) of the feature. We can return

None instead for features where it is not relevant.
b. Feature values (values_feature). The result of the feature calculation. As for the

model output, the feature results must be regular, or able to be interpolated. If there
are no feature results for a specific model evaluation (e.g., if the feature was spike
width and there was no spike), the feature function can return None. The specific
feature evaluation is then discarded in the uncertainty calculations.

As with models, we can as a shortcut give a list of feature functions as the feature argument
in UncertaintyQuantification, instead of first having to create a Features instance.

3.4.2 Feature preprocessing

Some of the calculations needed to quantify features may overlap between different features.
One example is finding the spike times from a voltage trace. The preprocess function is
used to avoid having to perform the same calculations several times. An example outline of
a preprocess function is:

def preprocess(time , values , info):
# Perform all common feature calculations using time,
# values , and info returned by the model function.

# Return the preprocessed model output and info.
return time_preprocessed , values_preprocessed , info

The requirements for a preprocess function are:

1. Input. A preprocess function takes the objects returned by the model function as
input.
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2. Preprocesssing. The model output time, values, and additional info objects are used
to perform all preprocess calculations.

3. Output. The preprocess function can return any number of objects as output. The
returned preprocess objects are used as input arguments to the feature functions, so the
two must be compatible.

Figure 2 illustrates how the objects returned by the model function are passed to
preprocess, and the returned preprocess objects are used as input arguments in all
feature functions. The preprocessing makes it so feature functions have different required
input arguments depending on the feature class they are added to. As mentioned
earlier, Uncertainpy comes with three built-in feature classes. These classes all take the
new_features argument, so custom features can be added to each set of features. These
feature classes all perform a preprocessing, and therefore have different requirements for the
input arguments of new feature functions. Additionally, certain features require specific keys
to be present in the info dictionary. Each class has a reference_feature method that
states the requirements for feature functions of that class in its docstring.

3.4.3 Spiking features

Here we introduce the SpikingFeatures class, which contains a set of features relevant
for models of single neurons that receive an external stimulus and responds by eliciting a
series of action potentials, also called spikes. Many of these features require the start time
and end time of the stimulus, which must be returned as info["stimulus_start"] and
info["stimulus_start"] in the model function. info is then used as an additional input
argument in the calculation of each feature. A set of spiking features is created by:

features = SpikingFeatures()

SpikingFeatures implements a preprocess method, which locates spikes in the model
output. This preprocess can be customized, see the documentation on SpikingFeatures.

The features included in SpikingFeatures are briefly defined below. This set of features
was taken from the previous work of Druckmann et al. (2007), with the addition of the
number of action potentials during the stimulus period. We refer to the original publication
for more detailed definitions.

1. nr_spikes – Number of action potentials (during stimulus period).
2. spike_rate – Action-potential firing rate (number of action potentials divided by

stimulus duration).
3. time_before_first_spike – Time from stimulus onset to first elicited action potential.
4. accommodation_index – Accommodation index (normalized average difference in length

of two consecutive interspike intervals).
5. average_AP_overshoot – Average action-potential peak voltage.
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6. average_AHP_depth – Average afterhyperpolarization depth (average minimum voltage
between action potentials).

7. average_AP_width – Average action potential width taken at midpoint between the
onset and peak of the action potential.

The user may want to add custom features to the set of features in SpikingFeatures. The
SpikingFeatures.preprocess method changes the input given to the feature functions,
and as such each spiking feature function has the following input arguments:

1. The time array returned by the model simulation.
2. An Spikes object (spikes) which contain the spikes found in the model output.
3. An info dictionary with info["stimulus_start"] and info["stimulus_end"] set.

The Spikes object is the preprocessed version of the model output, used as a container
for Spike objects. In turn, each Spike object contain information of a single spike. This
information includes a brief voltage trace represented by a time and a voltage (V) array that
only includes the selected spike. The information in Spikes is used to calculate each feature.
As an example, let us assume we want to create a feature that is the time at which the first
spike in the voltage trace ends. Such a feature can be defined as follows:

def first_spike_end_time(time , spikes , info):
# Calculate the feature from the spikes object
spike = spikes[0] # Get the first spike
values_feature = spike.t[-1] # The last time point in the spike

return None , values_feature

This feature may now be used as a feature function in the list given to the new_features
argument.

From the set of both built-in and user defined features, we may select subsets of features
that we want to use in the analysis of a model. Let us say we are interested in how
the model performs in terms of the three features: nr_spikes, average_AHP_depth and
first_spike_end_time. A spiking features object that calculates these features is created
by:

features_to_run = ["nr_spikes",
"average_AHP_depth",
"first_spike_end_time"]

features = un.SpikingFeatures(new_features=[first_spike_end_time],
features_to_run=features_to_run)
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3.4.4 Efel features

A more extensive set of features for single neuron voltage traces is found in the Electrophys
Feature Extraction Library (eFEL) (Blue Brain Project, 2015). A set of eFEL spiking features
is created by:

features = EfelFeatures()

Uncertainpy has all features in the eFEL library in the EfelFeatures class. eFEL currently
contains 153 different features. Due to the high number of features, we do not list them
here, but refer to the eFEL documentation3 for detailed definitions, or the Uncertainpy
documentation for a list of the features. EfelFeatures is used in the same way as the
SpikingFeatures.

3.4.5 Network features

The last set of features implemented in Uncertainpy is found in the NetworkFeatures
class:

features = NetworkFeatures()

This class contains a set of features relevant for the output of neural network models and are
calculated using the Elephant software (NeuralEnsemble, 2017). The implemented features
are:

1. mean_firing_rate – Mean firing rate (averaged over all recorded neurons).
2. instantaneous_rate – Instantaneous firing rate (averaged over all recorded neurons

within a small time window).
3. mean_isi – Mean interspike interval (averaged over all recorded neurons).
4. cv – Coefficient of variation of the interspike interval (for a single recorded neuron).
5. mean_cv – Mean coefficient of variation of the interspike interval (averaged over all

recorded neurons).
6. lv – Local variation (variability of interspike intervals for a single recorded neuron).
7. mean_lv – Mean local variation (variability of interspike intervals averaged over all

recorded neurons).
8. fanofactor – Fanofactor (variability of spike trains).
9. victor_purpura_dist – Victor Purpura distance (spike train dissimilarity between two

recorded neurons).
10. van_rossum_dist – Van Rossum distance (spike train dissimilarity between two recorded

neurons).
11. binned_isi – Histogram of the interspike intervals (for all recorded neurons).

3 http://efel.readthedocs.io
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12. corrcoef – Pairwise Pearson’s correlation coefficients (between the binned spike trains
of two recorded neurons).

13. covariance – Covariance (between the binned spike trains of two recorded neurons).

A few of these network features can be customized, see the documentation on
NetworkFeatures for a further explanation.

The use of NetworkFeatures in Uncertainpy follows the same logic as the use of the
other feature classes, and custom features can easily be included. As with SpikingFeatures,
NetworkFeatures implements a preprocessmethod. This preprocess returns the following
objects:

1. End time of the simulation (end_time).
2. A list of NEO (Garcia et al., 2014) spike trains (spiketrains).

Each feature function therefore require the same objects as input arguments. Note that the
info object is not used.

3.5 Uncertainty calculations in Uncertainpy

In this section we describe how Uncertainpy performs the uncertainty calculations, as well
as which options the user have to customize the calculations. Moreover, a detailed insight
into this is not required to use Uncertainpy, as in most cases, the default settings works
fine. In addition to the customization options shown below, Uncertainpy has support for
implementing entirely custom uncertainty quantification and sensitivity analysis methods.
This is only recommended for expert users, as knowledge of both Uncertainpy and uncertainty
quantification is needed. We do not go into details here, but refer to the Uncertainpy
documentation for more information.

3.5.1 Quasi-Monte Carlo method

To use the quasi-Monte Carlo method, we call quantify with method="mc", and the
optional argument nr_mc_samples:

data = UQ.quantify(
method="mc",
nr_mc_samples=10**3,

)

By default, the quasi-Monte Carlo method quasi-randomly draws 1000 parameter samples
from the joint multivariate probability distribution of the parameters ρQ using Hammersley
sampling (Hammersley, 1960). As the name indicates, the number of samples is specified by
the nr_mc_samples argument. The model is evaluated for each of these parameter samples,
and features are calculated for each model evaluation (when applicable). To speed up the
calculations, Uncertainpy uses the multiprocess Python package (McKerns et al., 2012) to
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perform this step in parallel. When model and feature calculations are done, Uncertainpy
calculates the mean, variance, and 5-th and 95-th percentile (which gives the 90% prediction
interval) for the model output as well as for each feature.

3.5.2 Polynomial chaos expansions

To use polynomial chaos expansions we use quantify with the argument method="pc",
which takes a set of optional arguments (the specified values are default):

data = UQ.quantify(
method="pc",
pc_method="collocation",
rosenblatt=False ,
polynomial_order=3,
nr_collocation_nodes=None ,
quadrature_order=None ,
nr_pc_mc_samples=10**4,

)

As previously mentioned, Uncertainpy allows the user to select between point collocation
(pc_method="collocation") and pseudo-spectral projections (pc_method="spectral").
The goal is to create separate polynomial chaos expansions Û for the model and each feature.
In both methods, Uncertainpy creates the orthogonal polynomial ϕn using the three-term
recurrence relation and ρQ. Uncertainpy uses a third order polynomial expansion, which can
be changed with the polynomial_order argument. The polynomial ϕn is shared between the
model and all features, since they have the same uncertain input parameters, and therefore
the same ρQ. Only the polynomial coefficients cn differ between the model and each feature.

The two polynomial chaos methods differ in terms of how they calculate cn. For point
collocation Uncertainpy uses 2(Np + 1) collocation nodes, as recommended by Hosder et al.
(2007), where Np is the number of polynomial chaos expansion factors. The number of
collocation nodes can be customized with nr_collocation_nodes, but the new number
of nodes must be chosen carefully. The collocation nodes are sampled from ρQ using
Hammersley sampling (Hammersley, 1960). The model and features are calculated for each
of the collocation nodes. As with the quasi-Monte Carlo method, this step is performed in
parallel. The polynomial coefficients cn are calculated using the model and feature results,
and Tikhonov regularization (Rifkin and Lippert, 2007).

For the pseudo-spectral projection, Uncertainpy chooses nodes and weights using a
quadrature scheme, instead of choosing nodes from ρQ. The quadrature scheme used is
Leja quadrature with a Smolyak sparse grid (Narayan and Jakeman, 2014; Smolyak, 1963).
The Leja quadrature is of order two greater than the polynomial order, but can be changed
with quadrature_order. The model and features are calculated for each of the quadrature
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Calculated statistical metric Symbol Variable
Model and feature evaluations U evaluations
Model and feature times t time
Mean E mean
Variance V variance
5-th percentile P5 percentile_5
95-th percentile P95 percentile_95
First-order Sobol indices S sobol_first
Total-order Sobol indices ST sobol_total
Normalized sum of first-order Sobol indices Ŝ sobol_first_sum
Normalized sum of total-order Sobol indices ŜT sobol_total_sum

Table 1. Calculated values and statistical metrics, for the model and each feature stored in
the Data class.

nodes. As before, this step is performed in parallel. The polynomial coefficients cn are then
calculated from the quadrature nodes, weights, and model and feature results.

When Uncertainpy has derived Û for the model and features, it uses Û to compute
the mean, variance, and the first and total-order Sobol indices. The first and total-
order Sobol indices are also summed and normalized. Finally, Uncertainpy uses Û as a
surrogate model, and performs a quasi-Monte Carlo method with Hammersley sampling and
nr_pc_mc_samples=10**4 samples to find the 5-th and 95-th percentiles.

If the model parameters have a dependent joint multivariate distribution, the Rosenblatt
transformation must be used by setting rosenblatt=True. To perform the transformation
Uncertainpy chooses ρR to be a multivariate independent normal distribution, which is used
instead of ρQ to perform the polynomial chaos expansions. Both the point collocation method
and the pseudo-spectral method are performed as described above. The only difference is that
we use ρR instead of ρQ, and use the Rosenblatt transformation to transform the selected
nodes from R to Q, before they are used in the model evaluation.

3.6 Data format

All results from the uncertainty quantification and sensitivity analysis in Uncertainpy is
returned as a Data object, as well as being stored in UncertaintyQuantification.data.
The Data class works similarly to a Python dictionary. The name of the model or feature
is the key, while the values are DataFeature objects that stores each statistical metric in
Table 1 as attributes. Results can be saved and loaded through Data.save and Data.load,
and are saved as hdf5 files (Collette, 2013).

An example: if we have performed uncertainty quantification of a spiking neuron model
with the number of spikes as one of the features, we can load the results and get the variance
of the number of spikes by typing:

data = un.Data()
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data.load("filename")
variance = data["nr_spikes"].variance

3.7 Visualization

Uncertainpy plots the results for all zero and one-dimensional statistical metrics, and some
two-dimensional statistical metrics. These visualizations are intended as quick way to get an
overview of the results, and not to create publication-ready plots. Custom plots of the data
can easily be created by retrieving the results from the Data class.

3.8 Technical aspects

Uncertainpy is open-source and found at https://github.com/simetenn/uncertainpy.
Uncertainpy can easily be installed using pip:

pip install uncertainpy

or from source by cloning the Github repository:

$ git clone https://github.com/simetenn/uncertainpy
$ cd uncertainpy
$ sudo python setup.py install

Uncertainpy comes with an extensive test suite that can be run with the test.py script.
For information on how to use test.py, run:

$ python test.py --help

4 EXAMPLE APPLICATIONS

In the current section, we demonstrate how to use Uncertainpy by applying it to four
different case studies: (i) a simple model for the temperature of a cooling coffee cup
implemented in Python, (ii) the original Hodgkin-Huxley model implemented in Python,
(iii) a multi-compartment model of a thalamic interneuron implemented in NEURON, and
(iv) a sparsely connected recurrent network model implemented in NEST. All four case
studies are available in /uncertainpy/examples/, which generates all results shown in this
paper. All case studies can be run on a regular workstation computer. Uncertainpy does
not create publication-ready figures, so custom plots have been created for the case studies
below. The code for creating all figures in this paper is found in a Jupyter Notebook in
/uncertainpy/examples/article_plots/. The version of Uncertainpy used to create these
results is commit 2503fec.
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4.1 Cooling coffee cup

To give a simple, first demonstration of Uncertainpy, we perform an uncertainty
quantification and sensitivity analysis of a hot cup of coffee that follows Newton’s law of
cooling. We start with a model that has independent uncertain parameters, before we expand
the model to have dependent parameters to show the use of the Rosenblatt transformation.

4.1.1 Cooling coffee cup with independent parameters

The temperature T of the cooling coffee cup is given by:

dT (t)

dt
= −κ(T (t)− Tenv), (17)

where Tenv is the temperature of the environment in units of ◦C. κ is a cooling constant
in units of 1/min that is characteristic of the system and regulates how fast the coffee cup
radiates heat to the environment. We set the initial temperature to a fixed value, T0 =
95◦C, and assume that κ and Tenv are uncertain parameters characterized by the uniform
probability distributions:

ρκ = Uniform(0.025, 0.075), (18)
ρTenv = Uniform(15, 25). (19)

The following code is available in /uncertainpy/examples/coffee_cup/. We start by
importing the packages required to perform the uncertainty quantification:

import uncertainpy as un
import chaospy as cp # To create distributions
import numpy as np # For the time array
from scipy.integrate import odeint # To integrate our equation

Next, we create the cooling coffee-cup model. To do this we define a Python function
(coffee_cup) that takes the uncertain parameters kappa and T_env as input arguments,
solves Equation (17) by integration using scipy.integrate.odeint over 200 minutes, and
returns the resulting time and temperature arrays.

def coffee_cup(kappa , T_env):
# Initial temperature and time array
time = np.linspace(0, 200, 150) # Minutes
T_0 = 95 # Celsius

# The equation describing the model
def f(T, time , kappa , T_env):

return -kappa*(T - T_env)
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# Solving the equation by integration.
temperature = odeint(f, T_0, time , args=(kappa , T_env))[:, 0]

# Return time and model output
return time , temperature

We now use coffee_cup to create a Model object, and add labels:

model = un.Model(run=coffee_cup ,
labels=["Time (min)", "Temperature (C)"])

As previously mentioned, it is possible to use coffee_cup directly as the model argument
in the UncertaintyQuantification class, however we would then be unable to specify the
labels.

In the next step, we use Chaospy to assign distributions to the uncertain parameters κ and
Tenv, and use these distributions to create a Parameters object:

# Create the distributions
kappa_dist = cp.Uniform(0.025, 0.075)
T_env_dist = cp.Uniform(15, 25)

# Define the parameters dictionary
parameters = {"kappa": kappa_dist , "T_env": T_env_dist}

# and use it to create the parameters
parameters = un.Parameters(parameters)

We can now set up the UncertaintyQuantification:

UQ = un.UncertaintyQuantification(model=model ,
parameters=parameters)

With that, we are ready to calculate the uncertainty and sensitivity of the model. We use
polynomial chaos expansions with point collocation, the default options of quantify:

data = UQ.quantify()

quantify calculates all statistical metrics discussed in Section 2.2 and Section 2.3, but here
we only show the mean, variance, and 90% prediction interval (Figure 3A), and the first-order
Sobol indices (Figure 3B). As the mean (blue line) in Figure 3A shows, the cooling gives rise
to an exponential decay in the temperature, towards the temperature of the environment
Tenv. From the sensitivity analysis (Figure 3B) we see that T is most sensitive to κ early
in the simulation, and to Tenv towards the end of the simulation. This is as expected, since
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Figure 3. The uncertainty quantification and sensitivity analysis for the cooling
coffee-cup model. (A) The mean, variance and 90% prediction interval of the temperature
of the cooling coffee cup. (B) First-order Sobol indices of the cooling coffee-cup model.

κ determines the rate of the cooling, while Tenv determines the final temperature. After
about 150 minutes, the cooling is essentially completed, and the uncertainty in T exclusively
reflects the uncertainty of Tenv.

4.1.2 Cooling coffee cup with statistically dependent parameters

Uncertainpy can also perform uncertainty quantification and sensitivity analysis using
polynomial chaos expansions on models with statistically dependent parameters. Here we
use the cooling coffee-cup model to construct such an example. Let us parameterize the
coffee cup differently:

dT (t)

dt
= −ακ̂ (T (t)− Tenv) . (20)

In order for the model to describe the same cooling process as before, the new variables α

and κ̂ should be dependent, so ακ̂ = κ. We can achieve this by demanding that ρκ̂ = ρκ/ρα,
and otherwise define the problem following the same procedure as in the original case study.
Since we now have dependent parameters, Uncertainpy returns an error message unless we
tell it to use the Rosenblatt transformation to solve the problem:

data = UQ.quantify(rosenblatt=True)

In this case, the distribution we assign to α does not matter for the end result, as
the distribution for κ̂ will be scaled accordingly. Using the Rosenblatt transformation,
an uncertainty quantification and sensitivity analysis of the dependent coffee-cup model
therefore returns the same results as seen in Figure 3, where the role of the
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Parameter Value Unit Meaning
V0 −10 mV Initial voltage
Cm 1 µF/cm2 Membrane capacitance
ḡNa 120 mS/cm2 Sodium (Na) conductance
ḡK 36 mS/cm2 Potassium (K) conductance
ḡI 0.3 mS/cm2 Leak current conductance
ENa 112 mV Sodium equilibrium potential
EK −12 mV Potassium equilibrium potential
EI 10.613 mV Leak current equilibrium potential
n0 0.0011 Initial potassium activation gating variable
m0 0.0003 Initial sodium activation gating variable
h0 0.9998 Initial sodium inactivation gating variable

Table 2. Parameters in the original Hodgkin-Huxley model.

original κ is taken over by κ̂, while the sensitivity to the additional parameter
α becomes strictly zero (we do not show the results here, but see example in
/uncertainpy/examples/coffee_cup_dependent/).

4.2 Hodgkin-Huxley model

From here on, we focus on case studies more relevant to neuroscience, starting with the
original Hodgkin-Huxley model (Hodgkin and Huxley, 1952). An uncertainty analysis of this
model has been performed previously (Torres Valderrama et al., 2015), and here we repeat
a part of that study using Uncertainpy.

The here used version of the Hodgkin-Huxley model has 11 parameters with the numerical
values listed in Table 2. As in the previous study, we assume each of these parameters have
a uniform distribution in the range ±10% around their original value. We use uncertainty
quantification and sensitivity analysis to explore how this parameter uncertainty affect the
model output, i.e., the action potential response of the neural membrane potential Vm to an
external current injection.

As in the cooling coffee-cup example, we implement the Hodgkin-Huxley model as a
Python function, and use polynomial chaos expansions with point collocation to calculate
the uncertainty and sensitivity of the model (the code for this case study is found in
/uncertainpy/examples/valderrama/).

The uncertainty quantification of the Hodgkin-Huxley model is shown in Figure 4A, and
the sensitivity analysis in Figure 4B. Although the action potential is robust (within the
selected parameter ranges), the onset and amplitude of the action potential varied. The
variance in Vm is largest during the upstroke and peak of the action potential (Figure 4A),
which occurs in the time interval between t = 8 and 9 ms.
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Figure 4. The uncertainty quantification and sensitivity analysis for the Hodgkin-
Huxley model. The model was exposed to a continuous external stimulus of 140 µA/cm2

starting at t = 0, and we examined the membrane potential in the time window between t
= 5 and 15 ms. (A) Mean, variance and 90% prediction interval for the membrane potential
of the Hodgkin-Huxley model. (B) First-order Sobol indices of the uncertain parameters in
the Hodgkin-Huxley model.

The sensitivity analysis reveals that the variance in Vm mainly is due to the uncertainty
in two parameters: the maximum conductance of the K+ channel, ḡK, and the Na+ reversal
potential, ENa (Figure 4B). We see that ḡK is most important during the upstroke of the
action potential, indicating the K+ channel plays an important role for the timing of the
action potential. ENa is most important during the peak, reflecting the important role of
ENa in determining the action potential amplitude. The low sensitivity to the remaining
parameters means that most of the variability of the Hodgkin-Huxley model would be
maintained if these remaining parameters were kept fixed (at least for the given stimulus
conditions). Due to some lacking implementation details in Torres Valderrama et al. (2015),
our analysis is likely not an exact replica of the previous study, but the results obtained are
quantitatively similar.

4.3 Multi-compartment model of a thalamic interneuron

In the next case study, we illustrate how Uncertainpy can be used on models implemented
in NEURON (Hines and Carnevale, 1997). For this study, we select a previously published
model of an interneuron in the dorsal lateral geniculate nucleus of the thalamus(Halnes et al.,
2011). Since the model is implemented in NEURON, the original model can be used directly
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Parameter Value Unit Variable Meaning
Epas −67 mV Epas Membrane reversal potential
Rm 22 kΩ/cm2 Rm Membrane Resistance
gNa 0.09 S/cm2 gna Max Na+-conductance in soma
ShNa −52.6 mV nash Shift in Na+-kinetics
gKdr 0.37 S/cm2 gkdr Max direct rectifying K+-conductance in soma
ShKdr −51.2 mV kdrsh Shift in Kdr-kinetics.
gCaT 1.17× 10−5 S/cm2 gcat Max T-type Ca2+-conductance in soma
gCaL 9× 10−4 S/cm2 gcal Max L-type Ca2+-conductance in soma
gh 1.1× 10−4 S/cm2 ghbar Max conductance of a non-specific

hyperpolarization activated cation channel in soma
gAHP 6.4× 10−5 S/cm2 gahp Max afterhyperpolarizing K+-conductance in soma
gCAN 2× 10−8 S/cm2 gcanbar Max conductance of a Ca2+-activated

non-specific cation channel in soma

Table 3. Uncertain parameters in the thalamic interneuron model.

with Uncertainpy with the use of the NeuronModel class. The code for this case study is
found in /uncertainpy/examples/interneuron/.

In the original modeling study, a set of 11 parameters were tuned manually through
trial and error until the interneuron model obtained the desired response characteristics
(Halnes et al., 2011). The final parameter set is listed in Table 3. To perform an uncertainty
quantification and sensitivity analysis of this model, we assume each of these 11 parameters
have a uniform uncertainty distribution in the interval ±2.5% around their original value.

As discussed in Section 2.7, a point-to-point comparison of voltage traces is often
uninformative, and we therefore want to perform a feature-based analysis of the model.
Since we examine a spiking neuron model, we choose the features in the SpikingFeatures
class.

The simulation starts at t = 0 and we study the response of the interneuron to a somatic
current injection between 1000 ms < t < 1900 ms. SpikingFeatures needs to know the
start and end time of this stimulus to be able to calculate certain features. They are specified
through the stimulus_start and stimulus_end arguments when initializing NeuronModel.
Additionally, the interneuron model uses adaptive time steps, meaning we have to set
adaptive=True. We also give the path to the folder where the neuron model is stored with
path="interneuron_modelDB/". As before, we use polynomial chaos expansion with point
collocation to compute the statistical metrics for the model output and all features.

The uncertainty quantification of the membrane potential in the soma of the interneuron
is seen in Figure 5A. The model is exposed to a somatic current injection and typically
respond by eliciting one or several action potentials. To illustrate the variety of response
characteristics hiding in the statistics in Figure 5A, four selected example simulations are
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Figure 5. The uncertainty quantification and four selected model results for the
interneuron model. (A) The mean and 90% prediction interval for the membrane potential
of the interneuron model. (B) Four selected model outputs for different sets of parameters.

shown in Figure 5B, all obtained by drawing the uncertain parameters from intervals ±2.5%
of their original values. The qualitative differences between the simulations in Figure 5B
indicate that a feature-based analysis is more informative than a point-to-point comparison
of the voltage traces.

A feature-based analysis of the model output is shown in Figure 6. All statistical metrics
from Section 2.2 and Section 2.3 are calculated by Uncertainpy for the model and each
feature in SpikingFeatures, but for illustrative purposes we here only show the normalized
sum of the first-order Sobol indices. See Section 3.4.3 for a description of each feature. As
Figure 6 shows, different features are sensitive to different parameters. For example, the
membrane potential of the neuron (panel C) is mainly sensitive to the reversal potential
(Epas) of the passive current. The accommodation index (B) is most sensitive to the reversal
potential. The spike rate (A), time before first spike (D), number of spikes (F), average
action potential overshoot (G), and afterhyperpolarization depth (H) are most sensitive to
the activation threshold of the Na+ channel (ShNa). The average action potential overshoot
(G) is also highly sensitive to the activation threshold of the K+ channel (ShKdr), as is the
width of the action potential (E).

A feature-based sensitivity analysis like this gives valuable insight into the role of various
biological mechanisms in determining the firing properties of a neuron. In the current
model, the features in SpikingFeatures are almost exclusively sensitive to only four
parameters (Epas, Rm, ShNa and ShKdr), but the remaining parameters could be important
for features not included in the relatively limited SpikingFeatures set. For example, one
characteristic feature of thalamic interneurons is that they sometimes elicit characteristic
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bursts of action potentials (Zhu et al., 1999). Such a bursty behavior indeed occurs for some
parameterizations of the model, as in Figure 5B (IV) where a closer inspection reveals that
each of the four visible “thick spikes” actually consists of several spikes in rapid succession.
The burstiness is likely to be sensitive to the T-type Ca2+ conductance (gCaT ), which in
previous modelling studies has been found important for burst generation (Zhu et al., 1999;
Halnes et al., 2011; Allken et al., 2014). Several aspects of bursting activity is covered by
EfelFeatures, and an analysis based on the extended feature list could likely reveal a higher
sensitivity to gCaT and possibly other model parameters. We do not here analyze additional
features of the interneuron model, as the main purpose of the case study was to demonstrate
the use of Uncertainpy on a detailed multicompartmental model.

4.4 Recurrent network of integrate-and-fire neurons

In the last case study, we use Uncertainpy to perform a feature-based analysis of the
sparsely connected recurrent network of integrate-and-fire neurons by Brunel (2000). We
implement the Brunel network using NEST inside a Python function, and create 10000
inhibitory and 2500 excitatory neurons. We record the output from 20 of the excitatory
neurons, and simulate the network for 1000 ms. The code for this case study is found in
/uncertainpy/examples/brunel/.

The Brunel model has four uncertain parameters, (i) the external input rate (νext) relative
to threshold rate (νthr) given as η = νext/νthr, (ii) the relative strength of the inhibitory
synapses g, (iii) the synaptic delay D, and (iv) the amplitude of excitatory postsynaptic
current Je. Depending on the parameterizations of the model, the Brunel network may be
in several different activity states. For the current case study we limit our analysis to two of
these states, the synchronous regular (SR) state, where the neurons are almost completely
synchronized, and the asynchronous irregular (AI) state, where the neurons fire individually
at low rates.. We create two sets of parameters and assume the parameter uncertainties
are characterized by uniform probability distributions within the ranges shown in Table 4,
which corresponds to the network being in each of the two states. Two selected model results
representative of the network in both states are shown in Figure 7, which illustrates the
difference between the two states. Figure 7 (A) shows the recorded spike trains for the
Brunel network in the SR state between 200 ms and 300 ms of the simulation. This time
window is representative of the network during the entire simulation after spiking has started,
and is chosen to give more detailed overview due to the number of spikes that occur during
the simulation. Figure 7 (B) shows the recorded spike trains for the Brunel network in the
in the AI state for the entire simulation period.

We use the features in NetworkFeatures to examine features of the network dynamics.
We perform an uncertainty quantification and sensitivity analysis for the model and all
features for each of the network states, using polynomial chaos with point collocation. Of
the 13 built-in network features in NetworkFeatures, we here only focus on two: the mean
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Parameter Range SR Range AI Variable Meaning
η [1.5, 3.5] [1.5, 3.5] eta External rate relative to threshold rate
g [1, 3] [5, 8] g Relative strength of inhibitory synapses
D [1.5, 3] [1.5, 3] delay Synaptic delay (ms)
Je [0.05, 0.15] [0.05, 0.15] J_e Amplitude excitatory postsynaptic current (mV)

Table 4. Parameters in the Brunel network for the asynchronous irregular (AI) and
synchronous regular (SR) state. Each parameter has a uniform distribution within the given
range.
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(H) Average AHP depth

Figure 6. The sensitivity for features of the interneuron model. Normalized sum
of the first-order Sobol indices for the thalamic interneuron model and features of the
model. (A) Spike rate, that is, number of action potentials divided by stimulus duration.
(B) Accommodation index, which is the normalized average difference in length of two
consecutive interspike intervals. (C) Interneuron, which is the membrane potential of the
model itself. (D) Time before first spike, that is, the time from stimulus onset to first
elicited action potential. (E) Average AP width is the average action potential width taken
at midpoint between the onset and peak of the action potential. (F) Number of spikes,
which is the number of action potentials during stimulus period. (G) Average AP overshoot
is the average action-potential peak voltage. (H) Average AHP depth, that is, the average
minimum voltage between action potentials.
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Figure 7. Example model results for the Brunel network. (A) The recorded spike
train for the Brunel network in the synchronous regular state between 200 ms and 300
ms of the simulation. (B) The recorded spike trains for the Brunel network in the in
the asynchronous irregular state for the entire simulation period. The network has 10000
inhibitory and 2500 excitatory neurons. We record the output from 20 of the excitatory
neurons and simulate the network for 1000 ms.
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Figure 8. The mean interspike interval for the Brunel network in the two states.
Mean, variance, 90% prediction interval, and first-order Sobol indices of the mean interspike
interval of the Brunel network in the synchronous regular state (A), and in the asynchronous
irregular state (B). The 90% prediction interval is indicated by the 5-th and 95-th percentiles,
i.e., 90% of the mean spike intervals are between P5 and P95.

interspike interval and the correlation coefficient. These features are well suited to highlight
the differences between the AI and SR network states.

4.4.1 Mean interspike interval

The mean interspike interval is the average time it takes from a neuron elicits a spike until
it elicits the next spike, averaged over all recorded neurons. The uncertainty quantification
and sensitivity analysis for the mean interspike interval of the Brunel network are shown in
Figure 8. The mean interspike interval is known to differ strongly between the SR and AI
states, as found here. In the SR state, the mean of the mean interspike interval is low, with
a comparable low variance reflecting the synchronous firing in the network. We can observe
this in Figure 7A, where the interspike intervals are short and does not vary much. In the
AI state, the mean of the mean interspike interval is high, with an even greater variance,
reflecting the asynchronous firing in the network. This fits what we observe in Figure 7B,
where the interspike intervals are relatively large and varies to a large degree.

The two states were also found to be different in terms of which parameters the mean
interspike interval is sensitive to. In the AI state, the network is almost exclusively sensitive
to the relative strength of inhibitory synapses g, and only slightly sensitive to η, while in the
SR state it is predominantly sensitive to the synaptic delay D, and less so to the relative
synaptic strength g.
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Figure 9. The pairwise Pearson’s correlation coefficient for the Brunel network
in the two states. Mean (A, D), variance (B, E) and first-order Sobol indices (C, F) for the
pairwise Pearson’s correlation coefficient of the Brunel network in the synchronous regular
(A, B, C) and asynchronous irregular (D, E, F) states.

4.4.2 Correlation coefficient

The pairwise Pearson’s correlation coefficient is a measure of how synchronous the spiking
of a network is. This correlation coefficient measures the correlation between the spike trains
of two neurons in the network. In Figure 9 we examine how the synchronicity in the Brunel
network depends on parameter uncertainties by plotting the mean, variance, and first-order
Sobol indices for the Pearson correlation coefficient in the SR and AI states.

As expected from examining Figure 7, in the SR state (Figure 9A) the mean correlation
coefficient between neurons is much higher than in the AI state (Figure 9D). The first-order
Sobol indices further show that the degree of synchronicity is by far most sensitive to the
synaptic delay D when the network is in the SR state (Figure 9C), and to the relative
strength of inhibitory synapses g when the network is in the AI state (Figure 9F).

In terms of both features investigated here (the mean interspike interval and the pairwise
Pearson’s correlation coefficient), the conclusions regarding model sensitivity are the same.
The SR state of the Brunel network is most sensitive to the synaptic delay D, while the AI
state is most sensitive to the relative strength of inhibitory synapses g. Neither of the states
are particularly sensitive to the remaining parameters, that is the external input rate η and
the excitatory postsynaptic current JE .
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4.5 Additional examples

Additional examples for uncertainty quantification of the Izikevich neuron (Izhikevich,
2003), a reduced layer 5 pyramidal cell (Bahl et al., 2012), and a Hodgkin-Huxley model
with shifted voltage (Sterratt et al., 2011) are found in /uncertainpy/examples/.

5 DISCUSSION

A major challenge with models in neuroscience is that they tend to contain a number of
uncertain parameters whose values are critical for the model behavior. In this paper we
have presented Uncertainpy, a Python toolbox for uncertainty quantification and sensitivity
analysis. Uncertainpy is tailored for neuroscience applications by its built-in capability for
recognizing features in the model output.

The key aim of Uncertainpy is to make it quick and easy for the user to get started
with uncertainty quantification and sensitivity analysis, without any need for detailed
prior knowledge of uncertainty analysis. Uncertainpy is applicable to a range of different
model types, as illustrated in the example applications. These included an uncertainty
quantification and sensitivity analysis of four different models: a simple cooling coffee-cup
model, the original Hodgkin-Huxley model for generation of action potentials, a NEURON
model of a multicompartmental thalamic interneuron, and a NEST model of a sparsely
connected recurrent network of integrate-and-fire neurons.

To our knowledge, Uncertainpy is the first toolbox to use polynomial chaos expansions
to perform uncertainty quantification and sensitivity analysis in neuroscience. Compared to
quasi-Monte Carlo methods, polynomial chaos expansions dramatically reduce the number
of model evaluations needed to get reliable statistics. This is especially important for models
that require a long simulation time, where uncertainty quantification using quasi-Monte
Carlo methods could require an unfeasible amount of computer time.

5.1 Results of the case studies

The case studies examined in this paper were predominantly performed to demonstrate the
use of Uncertainpy. We did not put much effort into estimating realistic distributions for the
parameter uncertainties. For example, for the thalamic interneuron model (Section 4.3) we
simply assumed that all parameters had uniform distributions within a ±2.5% range of the
values they had in the original model. This was a rather arbitrary choice, and it is unlikely
to capture the real uncertainty distributions. Furthermore, it is likely that some parameters
have broader uncertainty distributions than others. The conclusions from such an analysis
should therefore be considered with caution, as the results depend on the chosen parameter
distributions.
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5.2 Applicability of Uncertainpy

It is not always evident which model is best suited to describe a certain system. For example,
when we construct a neural model we first have to decide which mechanism (ion channels,
ion pumps, synapses, etc.) to include in the model. Next we select a set of mathematical
equations that describe these mechanisms. Such choices are seldom trivial, and no methods
for resolving this structural uncertainty aspect of modeling are included in Uncertainpy.
Uncertainpy focus on parameter uncertainties, which are important in their own right.

It is rarely the case that the distributions of the uncertain model parameters are precisely
known. This implies that an exact quantification of the absolute output uncertainty can not
be obtained. One way to deal with this is to limit the study to identify qualitative model
predictions that are essentially parameter-independent (Bailey, 2001). However, despite a
lack of precise knowledge of parameter uncertainties, quantitative measures such as those
obtained with Uncertainpy may still give valuable insights in the relationship between model
parameters and model output. This insight can guide experimentalists towards focusing on
accurately measuring the parameters most critical for the model output. Additionally it
can guide modellers by identifying mechanisms that can be sacrificed for model reduction
purposes.

Obtaining the distributions of the uncertain parameters is mainly an empirical problem,
and not a problem dealt with by Uncertainpy. The uncertainties of a parameter can
generally be divided into two main classes: aleatory uncertainties and epistemic uncertainties.
Epistemic uncertainty reflects a lack of knowledge, and can in principle be reduced to
zero by acquiring additional information. Measurement uncertainty is one example of
epistemic uncertainty. Aleatory uncertainty, on the other hand, is uncertainty due to
inherent variability of the parameters. Causes of aleatory uncertainty are biological variability
(Edelman and Gally, 2001) or regulation (Marder and Goaillard, 2006). The importance of
distinguishing between aleatory and epistemic uncertainties has evoked some debate (Hora,
1996; Ferson and Ginzburg, 1996; Oberkampf et al., 2002; Ferson et al., 2004; Kiureghian
and Ditlevsen, 2009; Mullins et al., 2016), but the distinction is at least important for how
to interpret the results of an uncertainty quantification. Due to inherent variability, the
parameters do not have true fixed values, but rather distributions of possible values. The
variance in the model output is in such cases an expression of biological variation. On the
other hand, parameters with epistemic uncertainties produce an uncertainty as to whether
or not we have gotten “the correct result”.

5.3 Further development of Uncertainpy

There are several ways that Uncertainpy can be further developed, and we list some of
these in this section. Currently, Uncertainpy only works with Python 2 due to limitations
in some of the packages utilized, so one obvious improvement is to implement support for
Python 3.
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If a model or features of a model uses adaptive time steps, Uncertainpy performs an
interpolation of the output to get the regular result needed in the uncertainty quantification
and sensitivity analysis. Currently, Uncertainpy only has support for interpolation of one-
dimensional output (vectors). Depending on requests from the community, this aspect can
be improved.

The current version of Uncertainpy can only perform sensitivity analysis when using
polynomial chaos expansions. This is the best choice of method for models with relatively few
parameters. However, polynomial chaos expansions scales worse with the number of uncertain
parameters than quasi-Monte Carlo methods, and the latter may be the best choice for
models with many (typically > 20) parameters. To make Uncertainpy more flexible in terms
of model size, a natural extension would be to include methods for performing sensitivity
analysis based on quasi-Monte Carlo methods.

Another possibility is to implement a screening method, such as the Morris One-At-a-Time
method (Morris, 1991), to be able to use polynomial chaos expansions on models with many
parameters. The idea of the screening is to reduce the number of uncertain parameters by
setting the parameters that have the least effect on the model output to fixed values. We can
then use only the parameters with the greatest effect on the model output when performing
the uncertainty quantification and sensitivity analysis.

The built-in feature library in Uncertainpy can easily be expanded by adding additional
features. The number of built-in simulators can also easily be extended. We encourage the
users to add custom features and models through Github pull requests.

5.4 Outlook

In many fields of the physical sciences, the model parameters that goes into simulations are
known with high accuracy. For example, in quantum mechanical simulations of molecular
systems, the masses of the nuclei and the electrons, as well as the parameters describing their
electrical interaction, are known so precisely that uncertainty in model parameters is not an
issue (Marx and Hutter, 2009). This is not the case in computational biology in general, and
in computational neuroscience in particular. Model parameters of biological systems often
have an inherent variability, and some may even be actively regulated and change with time.
They can therefore not be precisely known. We therefore consider uncertainty quantification
and sensitivity analysis to be particularly important in biology.

Uncertainpy was developed with the aim of enabling such analysis, by providing a tool
for precise evaluation of the effect of uncertain model parameters on the model predictions,
which makes it easy and quick to get started with uncertainty analysis, without any need for
detailed prior knowledge. Being an open-source Python toolbox, we hope that Uncertainpy
can be further developed through a joint effort within the neuroscience community.
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