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Abstract  102 

Sleep is an essential homeostatically-regulated state of decreased activity and alertness 103 

conserved across animal species, and both short and long sleep duration associate with 104 

chronic disease and all-cause mortality1,2. Defining genetic contributions to sleep 105 

duration could point to regulatory mechanisms and clarify causal disease relationships. 106 

Through genome-wide association analyses in 446,118 participants of European 107 

ancestry from the UK Biobank, we discover 78 loci for self-reported sleep duration that 108 

further impact accelerometer-derived measures of sleep duration, daytime inactivity 109 

duration, sleep efficiency and number of sleep bouts in a subgroup (n=85,499) with up 110 

to 7-day accelerometry. Associations are enriched for genes expressed in several brain 111 

regions, and for pathways including striatum and subpallium development, 112 

mechanosensory response, dopamine binding, synaptic neurotransmission, 113 

catecholamine production, synaptic plasticity, and unsaturated fatty acid 114 

metabolism. Genetic correlation analysis indicates shared biological links between sleep 115 

duration and psychiatric, cognitive, anthropometric and metabolic traits and Mendelian 116 

randomization highlights a causal link of longer sleep with schizophrenia. 117 

  118 
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Research in model organisms (reviewed in 3,4) has delineated aspects of the neural-119 

circuitry of sleep-wake regulation5 and molecular components including specific 120 

neurotransmitter and neuropeptide systems, intracellular signaling molecules, ion 121 

channels, circadian clock genes and metabolic and immune factors4, but their specific 122 

roles and relevance to human sleep regulation are largely unknown. Prospective 123 

epidemiologic studies suggest that both short (<6,7 hours per night) and long (>8,9 124 

hours per night) habitual self-reported sleep duration associate with cognitive and 125 

psychiatric, metabolic, cardiovascular, and immunological dysfunction as well as all-126 

cause mortality compared to sleeping 7-8 hours per night6–12. Furthermore, chronic 127 

sleep deprivation in modern society may lead to increased errors and accidents13. Yet, 128 

whether short or long habitual sleep duration causally contributes to disease initiation or 129 

progression remains to be established. 130 

 131 

Habitual self-reported sleep duration is a complex trait with an established genetic 132 

component (twin- and family-based heritability (h2) estimates =9-45%14–20). Candidate 133 

gene sequencing in pedigrees and functional validation of rare, missense variants 134 

established BHLHE41 (previously DEC2), a repressor of CLOCK/ARNTL activity, as a 135 

causal gene 21,22, supporting the role of the circadian clock in sleep regulation. Previous 136 

genome-wide association studies (GWAS) in up to 128,286 individuals identified 137 

association of common variants at or near the PAX8 and VRK2 genes20,23,24. 138 

 139 

Here, we extend GWAS of self-reported sleep duration in UK Biobank to discover 78 140 

loci, test for consistency of effects in independent studies of adults and 141 
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children/adolescents, determine their impact on accelerometer-derived estimates, 142 

perform pathway and tissue enrichment to highlight relevant biological processes and 143 

explore causal relationships with disease traits.   144 

 145 

Among UK Biobank participants of European ancestry (n =446,118), mean self-reported 146 

habitual sleep duration was 7.2 hours per day (Supplementary Table 1).  GWAS using 147 

14,661,600 imputed genetic variants identified 78 loci for self-reported habitual sleep 148 

duration (P <5x10-8; Figure 1a, Supplementary Table 2, Supplementary Figure 1a, 149 

Appendix 1). Individual signals exert an average effect of 1.04 [95% CI: 1.00-1.07] 150 

minutes per allele, with the largest effect at the PAX8 locus, with an estimate of 2.44 151 

[2.14-2.75] min per allele, consistent with previous reports20,23,24. The 5% of participants 152 

carrying the most of the 78 sleep duration-increasing alleles self-reported 22.2 [22.1-153 

22.3] minutes longer sleep duration compared to the 5% carrying the fewest. The 78 loci 154 

explain 0.69% of the variance in sleep duration, and genome-wide SNP-based 155 

heritability25 was estimated at 9.8 (0.001)%. 156 

 157 

Sensitivity analyses indicated that the 78 genetic associations were largely independent 158 

of known risk factors (Supplementary Table 3). Effect estimates at 18/78 loci were 159 

attenuated by 15-30% upon adjustment for frequent insomnia symptoms, perhaps 160 

reflecting contribution to an insomnia sub-phenotype with physiological hyperarousal 161 

and objective short sleep duration26 (Supplementary Table 3). Interestingly, no further 162 

signal attenuation was observed when accounting for BMI at rs9940646 at FTO, the 163 

established BMI-associated signal (r2 =0.81 with rs993960927 and where the higher BMI 164 
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allele associates with shorter sleep duration). Conditional analyses identified 4 165 

secondary association signals at the VRK2, DAT1 (SLC6A3), DRD2, and MAPT loci 166 

(Supplementary Table 4). Effect estimates were largely consistent in GWAS excluding 167 

shift workers and those with prevalent chronic and psychiatric disorders (excluding n 168 

=119,894 participants) (Supplementary Table 2,5, Supplementary Figure 1b,2, 169 

Appendix 1). GWAS results were similar for men and women [rg (SE) =0.989 (0.042); 170 

P<0.001] (Supplementary Tables 6, Supplementary Figure 1c,1d,3). 171 

Separate GWAS for short (<7 hours; n =106,192 cases) and long (≥9 hours; n =34,184 172 

cases) sleep relative to 7-8 hours sleep duration (n=305,742 controls) highlighted 27 173 

and 8 loci, respectively, of which 13 were independent from the 78 sleep duration loci 174 

(Figure 1b, Supplementary Tables 7,8, Supplementary Figures 1e,f, Appendix 1). 175 

Only the PAX8 signal was shared across all 3 traits, consistently indicating associations 176 

between the minor allele and longer sleep duration. For most long sleep loci, we could 177 

exclude equivalent effects on short sleep based on non-overlapping effects 178 

(Supplementary Figure 4, Supplementary Table 8). Sensitivity analyses accounting 179 

for factors potentially influencing sleep did not alter the results (Supplementary Table 180 

9,10) Future studies will be necessary to test if these loci reflect partially distinct genetic 181 

effects on short or long sleep, or reflect differences in statistical power in these 182 

dichotomized analyses. 183 

We tested for independent replication of lead loci in the CHARGE consortium GWAS of 184 

adult sleep duration (n =47,180 from 18 studies20) and observed replication evidence for 185 

individual association signals at the PAX8 and VRK2 loci (P <6.4x10-4; Supplementary 186 
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Table 11,12, Supplementary Figure 5a, Appendix 1). 55/70 signals showed a 187 

consistent direction of effect (binomial P =6.1x10-7), and a combined weighted genetic 188 

risk score (GRS) of the 70 signals was associated with a 0.66 [0.54-0.78] minutes 189 

longer sleep per allele (P =1.23x10-25) in the CHARGE study (Table 1). Consistently 190 

strong genetic correlation was observed between the CHARGE and UK Biobank studies 191 

(rg (SE) =1.00 (0.123); P<0.001; Supplementary Table 13). 192 

 193 

In the childhood/adolescent GWAS for sleep duration from the EAGLE consortium28 (n 194 

=10,554), marginal evidence of association was observed for the adult sleep duration 195 

loci, with 45/77 signals demonstrating consistent directionality (binomial P =0.031; 196 

Supplementary Table 11,12, Supplementary Figure 5b, Appendix 1). For a 197 

combined 77 SNP GRS, we observed an effect of 0.16 [0.02-0.30] minutes longer sleep 198 

per allele (P =0.03; Table 1). No significant overall genetic correlation was observed 199 

with GWAS of adult sleep duration (rg (SE) =0.098 (0.076), P =0.20 with UK Biobank; 200 

Supplementary Table 13), as reported previously28, however because of known 201 

changes in sleep patterns throughout the lifespan29–31, larger GWAS of sleep duration in 202 

children/adolescents are needed. Results of a meta-analysis of all three sleep duration 203 

GWAS are shown in Supplementary Table 11,12 (also Supplementary Figure 5c, 204 

Appendix 1). 205 

 206 

Given the limitations of self-reported sleep duration32,33, we tested the 78 lead variants 207 

for association with 8 accelerometer-derived sleep estimates in a subgroup who had 208 

completed up to 7 days of wrist-worn accelerometry (n =85,499; Supplementary Table 209 
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14)34. The lead PAX8 genetic variant was associated with 2.68 (0.29) min longer sleep 210 

duration (compared to 2.44 (0.16) min by self-report), 0.21 (0.04) % greater sleep 211 

efficiency, and 0.94 (0.23) min greater daytime inactivity duration per minor A allele (P 212 

<0.00064; Supplementary Table 15). The 5% of participants carrying the most of the 213 

78 sleep duration-increasing alleles were estimated to have 9.7 [7.5-11.8] min longer 214 

sleep duration compared to the 5% carrying the fewest. The 78 SNP GRS associated 215 

with longer accelerometer-derived sleep duration, longer duration of daytime inactivity, 216 

greater sleep efficiency, and larger number of sleep bouts, but not with day-to-day 217 

variability in sleep duration or estimates of sleep timing (Table 1). A GRS of 27 short 218 

sleep variants was associated with shorter accelerometer-derived sleep duration, lower 219 

sleep efficiency and fewer sleep bouts, whereas a GRS of 8 long sleep variants 220 

associated with longer accelerometer-derived sleep duration, higher sleep efficiency, 221 

and longer daytime inactivity (Table 1, Supplementary Table 16).   222 

 223 

The sleep duration association signals encompass >200 candidate causal genes and a 224 

summary of reported gene-phenotype annotations is shown in Supplementary Table 225 

17. Compelling candidates include genes in the dopaminergic (DRD2, SLC6A3), 226 

MAPK/ERK signaling (ERBB4, VRK2, KSR2), orexin receptor (HCRTR2) and GABA 227 

(GABRR1) signaling systems4,35. Further, studies of sleep regulation in animal models 228 

prioritize several candidates (GABRR1, GNAO1, HCRTR2, NOVA1, PITX3, SLC6A3 229 

and DRD2, VAMP2 for sleep duration; PDE4B, SEMA3F for short sleep; PDE4D for 230 

long sleep). Circadian genes within associated loci include PER3, BTRC and the 231 

previously implicated PER1 36, which may act through glucocorticoid stress related 232 
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pathways to influence sleep duration. Association signals at 4 loci directly overlapped 233 

with other GWAS signals (r2 >0.8 in 1KG CEU; from NHGRI), with the shorter sleep 234 

allele associated with higher BMI (FTO), increased risk of Crohn’s disease (NFKB1, 235 

SLC39A8, BANK1 region), febrile seizures and generalized epilepsy (SCN1A), and 236 

cardiometabolic risk (FADS1/2 gene cluster), and decreased risk of interstitial lung 237 

disease (MAPT/KANSL). Fine-mapping using credible set analysis in PICS37 highlighted 238 

52 variants (Supplementary Tables 18,19). Partitioning of heritability by functional 239 

annotations identified excess heritability across genomic regions conserved in 240 

mammals, consistent with earlier findings24, and additionally in regions with active 241 

promoters and enhancer chromatin marks (Supplementary Table 20). 242 

 243 

Gene-based tests identified 235, 54 and 20 genes associated with sleep duration, short 244 

and long sleep, respectively (P ≤2.29x10-6; Supplementary Table 21,22). Pathway 245 

analyses of these genes using MAGMA38 and Pascal39 indicated enrichment of 246 

pathways including striatum and subpallium development, mechanosensory response, 247 

dopamine binding, catecholamine production, and long-term depression (Figure 2a,b, 248 

Supplementary Table 23,24). In agreement the FADS1/2 signal, we also observe an 249 

enrichment in genes related to unsaturated fatty acid metabolism, supporting 250 

experimental and observational evidence linking polyunsaturated fatty acids with sleep 251 

and related diseases, including neuropsychiatric disorders and depression40–42. 252 

 253 

Tissue enrichment analyses of gene expression from GTEx tissues identified 254 

enrichment of associated genes in several brain regions including the cerebellum, a 255 
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region of emerging importance in sleep/wake regulation43, frontal cortex, anterior 256 

cingulated cortex, nucleus accumbens, caudate nucleus, hippocampus, hypothalamus, 257 

putamen, and amygdala (Figure 2c, Supplementary Table 25). Enrichment was also 258 

observed in the pituitary gland. Integration of gene expression data with GWAS using 259 

transcriptome-wide association analyses in 11 tissues44 identified 38 genes for which 260 

sleep duration SNPs influence gene expression in the tissues of interest 261 

(Supplementary Table 26). 262 

 263 

Several lead SNPs were associated with one or more of 3,144 human brain structure 264 

and function traits assessed in the UK Biobank (P <2.8x10-7, n =9,707; Oxford Brain 265 

Imaging Genetics Server45; Supplementary Figure 6). These include associations 266 

between the PAX8 locus with resting-state fMRI networks (Supplementary Figure 267 

6a,h,m), rs13109404 (BANK1; Supplementary Figure 6b) and bilateral putamen and 268 

striatum volume, possibly relating to functional findings on reward processing after 269 

experimental sleep deprivation46, and rs330088 (PPP1R3B region; Supplementary 270 

Figure 6c) and temporal cortex morphometry, which may relate to recent findings 271 

showing extreme sleep durations predict subsequent frontotemporal gray matter 272 

atrophy47. 273 

 274 

Genome-wide genetic correlations using LD-score regression analyses48 indicated 275 

shared biological links between sleep duration and cognitive, psychiatric and physical 276 

disease traits (Figure 3, Supplementary Table 27). We observed positive genetic 277 

correlations between sleep duration and schizophrenia, bipolar disorder, and age at 278 
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menarche, and a negative correlation with insomnia that persisted even upon excluding 279 

participants with psychiatric disorders, indicating that genetic relationships are not 280 

driven by the presence of co-morbid conditions. Both short and long sleep showed 281 

positive genetic correlations with depressive symptoms, waist circumference, waist-to-282 

hip ratio and negative correlations with years of schooling. For short sleep, genetic 283 

correlations were also observed with insomnia, neuroticism, and smoking, and for long 284 

sleep, positive correlations were evident with schizophrenia, body fat, type 2 diabetes, 285 

and coronary artery disease.  286 

 287 

Mendelian Randomization (MR) analyses to test for causal links between sleep duration 288 

and genetically correlated traits suggested longer sleep duration is causal for increased 289 

risk of schizophrenia [weighted median: 0.008 (0.003) P =4.29 x 10-3; inverse variance 290 

weighted: 0.008 (0.003) P =1.82 x 10-2], consistent with previous findings24,49,50 (Figure 291 

4, Supplementary Table 28). No other causal links were identified. Furthermore, no 292 

evidence of causal association was evident between sleep duration (excluding FTO) 293 

and BMI from the GIANT and UK Biobank datasets or with type 2 diabetes from the 294 

DIAGRAM and UK Biobank datasets (Supplementary Table 28, Supplementary 295 

Figure 7). 296 

 297 

In summary, our GWAS for sleep duration expands our understanding of the genetic 298 

architecture of sleep duration, identifying 76 additional independent loci beyond the two 299 

previously known loci (PAX8 and VRK220,23,24). Further replication is important. We 300 

observed largely consistent effects with accelerometer-estimated sleep duration even 301 
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though self-report, actigraphy and polysomnography estimated sleep duration provide 302 

both unique and overlapping information, have different sources of measurement error 303 

and may reflect different neurophysiological and psychological aspects32,33. Association 304 

of the sleep duration GRS with sleep efficiency suggests that sleep duration genetic loci 305 

might impact other correlated parameters such as sleep latency, sleep fragmentation 306 

and early awakening. Investigation of a role of these loci in EEG-derived physiological 307 

correlates of sleep architecture and sleep homeostasis from polysomnography, and 308 

follow-up in cellular and animal models will help to dissect functional mechanisms. All 309 

together, this work and follow-up studies will advance understanding of the molecular 310 

processes underlying sleep regulation and should open new avenues of treatment for 311 

sleep and related disorders. 312 

 313 

 314 
Online Methods: 315 

Population and study design 316 

Study participants were from the UK Biobank study, described in detail elsewhere51. In 317 

brief, the UK Biobank is a prospective study of >500,000 people living in the United 318 

Kingdom. All people in the National Health Service registry who were aged 40-69 and 319 

living <25 miles from a study center were invited to participate between 2006-2010. In 320 

total 503,325 participants were recruited from over 9.2 million invitations. Extensive 321 

phenotypic data were self-reported upon baseline assessment by participants using 322 

touchscreen tests and questionnaires and at nurse-led interviews. Anthropometric 323 

assessments were also conducted and health records were obtained from secondary 324 

care data from linked Hospital episode statistics (HES) obtained up until 04/2017. For 325 
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the current analysis, 24,533 individuals of non-white ethnicity (as defined in “Genotyping 326 

and quality control”) were excluded to avoid confounding effects.  327 

 328 

Sleep duration and covariate measures 329 

Study participants (n ~500,000) self-reported sleep duration at baseline assessment. 330 

Participants were asked, “About how many hours sleep do you get in every 24 hours? 331 

(please include naps),” with responses in hour increments. Sleep duration was treated 332 

as a continuous variable and also categorized as either short (6 hours or less), normal 333 

(7 or 8 hours), or long (9 hours or more) sleep duration. Extreme responses of less than 334 

3 hours or more than 18 hours were excluded23 and “Do not know” or “Prefer not to 335 

answer” responses were set to missing. Participants who self-reported any sleep 336 

medication (see Supplementary Method 1) were excluded. Furthermore, participants 337 

who self-reported any shift work or night shift work or those with prevalent chronic 338 

disease (i.e., breast, prostate, bowel or lung cancer, heart disease or stroke) or 339 

psychiatric disorders (see Supplementary Method 2) were later additionally excluded 340 

in a secondary GWAS. 341 

Participants further self-reported age, sex, caffeine intake (self-reported cups of 342 

tea per day and cups of coffee per day), daytime napping (“Do you have a nap during 343 

the day?”), smoking status, alcohol intake frequency (never, once/week, 2-3 344 

times/week, 4-6 times/week, daily), menopause status, and employment status during 345 

assessment. Socio-economic status was represented by the Townsend deprivation 346 

index based on national census data immediately preceding participation in the UK 347 

Biobank. Weight and height were measured and body-mass index (BMI) was calculated 348 

as weight (kg) / height2(m2). Cases of sleep apnea were determined from self-report 349 
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during nurse-led interviews or health records using International Classification of 350 

Diseases (ICD)-10 codes for sleep apnea (G47.3). Cases of insomnia were determined 351 

from self-report to the question, “Do you have trouble falling asleep at night or do you 352 

wake up in the middle of the night?" with responses “never/rarely”, “sometimes”, 353 

“usually”, “prefer not to answer”. Participants who responded “usually” were set as 354 

insomnia cases, and remaining participants were set as controls. Missing covariates 355 

were imputed by using sex-specific median values for continuous variables (i.e., BMI, 356 

caffeine intake, alcohol intake, and Townsend index), or using a missing indicator 357 

approach for categorical variables (i.e., napping, smoking, menopause, and 358 

employment). 359 

 360 
Activity-monitor derived measures of sleep 361 

Actigraphy devices (Axivity AX3) were worn 2.8 - 9.7 years after study baseline by 362 

103,711 individuals from the UK Biobank for up to 7 days. Details are described 363 

elsewhere52. Of these 103,711 individuals, we excluded 11,067 individuals based on 364 

accelerometer data quality. Samples were excluded if they satisfied at least one of the 365 

following conditions (see also http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1008): a 366 

non-zero or missing value in data field 90002 (“Data problem indicator”), “good wear 367 

time” flag (field 90015) set to 0 (No), “good calibration” flag (field 90016) set to 0 (No), 368 

“calibrated on own data” flag (field 90017) set to 0 (No) or overall wear duration (field 369 

90051) less than 5 days. Additionally, samples with extreme values of mean sleep 370 

duration (<3 hours or >12 hours) or mean number of sleep periods (<5 or >30) were 371 

excluded. 85,502 samples remained after non-white ethnicity exclusions. Sleep 372 

measures were derived by processing raw accelerometer data (.cwa). First we 373 
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converted .cwa files available from the UK Biobank to .wav files using Omconvert 374 

(https://github.com/digitalinteraction/openmovement/tree/master/Software/AX3/omconve375 

rt ) for signal calibration to gravitational acceleration52,53 and interpolation52. The .wav 376 

files were processed with the R package GGIR to infer activity monitor wear time54, and 377 

extract the z-angle across 5-second epoch time-series data for subsequent use in 378 

estimating the sleep period time window (SPT-window)34 and sleep episodes within it55. 379 

The SPT-window was estimated using an algorithm described in34, implemented 380 

in the GGIR R package and validated using PSG in an external cohort. Briefly, for each 381 

individual, median values of the absolute change in z-angle (representing the dorsal-382 

ventral direction when the wrist is in the anatomical position) across 5-minute rolling 383 

windows were calculated across a 24-hour period, chosen to make the algorithm 384 

insensitive to activity-monitor orientation. The 10th percentile was incorporated into the 385 

threshold distinguishing movement from non-movement. Bouts of inactivity lasting ≥30 386 

minutes are recorded as inactivity bouts. Inactivity bouts that are <60 minutes apart are 387 

combined to form inactivity blocks. The start and end of longest block defines the start 388 

and end of the SPT-window34. Sleep duration. Sleep episodes within the SPT-window 389 

were defined as periods of at least 5 minutes with no change larger than 5° associated 390 

with the z-axis of the accelerometer, as motivated and described55. The summed 391 

duration of all sleep episodes was used as indicator of sleep duration. Sleep efficiency. 392 

This was calculated as sleep duration (defined above) divided by the time elapsed 393 

between the start of the first inactivity bout and the end of the last inactivity bout (which 394 

equals the SPT-window duration). Number of sleep bouts within the SPT-window. This 395 

is defined as the number of sleep bouts separated by last least 5 minutes of 396 
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wakefulness within the SPT-window. The least-active five hours (L5) and the most-397 

active ten hours (M10) of each day were defined using a five-hour and ten-hour daily 398 

period of minimum and maximum activity, respectively. These periods were estimated 399 

using a rolling average of the respectively time window. L5 was defined as the number 400 

of hours elapsed from the previous midnight whereas M10 was defined as the number 401 

of hours elapsed from the previous midday. Sleep midpoint was calculated for each 402 

sleep period as the midpoint between the start of the first detected sleep episode and 403 

the end of the last sleep episode used to define the overall SPT-window (above). This 404 

variable is represented as the number of hours from the previous midnight, e.g. 2am = 405 

26. Daytime inactivity duration is the total daily duration of estimated bouts of inactivity 406 

that fall outside of the SPT-window. All activity-monitor phenotypes were adjusted for 407 

age at accelerometer wear, sex, season of wear, release (categorical; UK BiLeVe, UK 408 

Biobank Axiom interim, release UK Biobank Axiom full release) and number of valid 409 

recorded nights (or days for M10) when performing the association test in BOLT-LMM. 410 

Genetic risk scores for sleep duration, short sleep and long sleep were tested using the 411 

weighted genetic risk score calculated by summing the products of the sleep trait risk 412 

allele count for all 78, 27, or 8 genome-wide significant SNPs multiplied by the scaled 413 

effect from the primary GWAS using the GTX package in R56. 414 

 415 

Genotyping and quality control 416 

Phenotype data is available for 502,631 subjects in the UK Biobank. Genotyping was 417 

performed by the UK Biobank, and genotyping, quality control, and imputation 418 

procedures are described in detail here57. In brief, blood, saliva, and urine was collected 419 

from participants, and DNA was extracted from the buffy coat samples. Participant DNA 420 
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was genotyped on two arrays, UK BiLEVE and UK Biobank Axiom with >95% common 421 

content and genotypes for ~800,000 autosomal SNPs were imputed to two reference 422 

panels. Genotypes were called using Affymetrix Power Tools software. Sample and 423 

SNPs for quality control were selected from a set of 489,212 samples across 812,428 424 

unique markers. Sample QC was conducted using 605,876 high quality autosomal 425 

markers. Samples were removed for high missingness or heterozygosity (968 samples) 426 

and sex chromosome abnormalities (652 samples). Genotypes for 488,377 samples 427 

passed sample QC (~99.9% of total samples). Marker based QC measures were tested 428 

in the European ancestry subset (n=463,844), which was identified based on principal 429 

components of ancestry. SNPs were tested for batch effects (197 SNPs/batch), plate 430 

effects (284 SNPs/batch), Hardy-Weinberg equilibrium (572 SNPs/batch), sex effects 431 

(45 SNPs/batch), array effects (5417 SNPs), and discordance across control replicates 432 

(622 on UK BiLEVE Axiom array and 632 UK Biobank Axiom array) (p-value <10-12 or 433 

<95% for all tests). For each batch (106 batches total) markers that failed at least one 434 

test were set to missing. Before imputation, 805,426 SNPs pass QC in at least one 435 

batch (>99% of the array content). Population structure was captured by principal 436 

component analysis on the samples using a subset of high quality (missingness <1.5%), 437 

high frequency SNPs (>2.5%) (~100,000 SNPs) and identified the sub-sample of white 438 

British descent. We further clustered subjects into four ancestry clusters using K-means 439 

clustering on the principal components, identifying 453,964 subjects of European 440 

ancestry. Imputation of autosomal SNPs was performed centrally by the UK Biobank to 441 

UK10K haplotype, 1000 Genomes Phase 3, and Haplotype Reference Consortium 442 

(HRC) with the current analysis using only those SNPs imputed to the HRC reference 443 
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panel. Autosomal SNPs were pre-phased using SHAPEIT358 and imputed using 444 

IMPUTE4. In total ~96 million SNPs were imputed. Related individuals were identified 445 

by estimating kinship coefficients for all pairs of samples, using only markers weakly 446 

informative of ancestral background. In total there are 107,162 related pairs comprised 447 

of 147,731 individuals related to at least one other participants in the UK Biobank. 448 

 449 
Genome-wide association analysis 450 

Genetic association analysis was performed in related subjects of European ancestry (n 451 

=446,118) using BOLT-LMM25 linear mixed models and an additive genetic model 452 

adjusted for age, sex, 10 principal components of ancestry, genotyping array and 453 

genetic correlation matrix [jl2] with a maximum per SNP missingness of 10% and per 454 

sample missingness of 40%. We used a genome-wide significance threshold of 5x10-8 455 

for each GWAS. Genetic association analysis was also performed in unrelated subjects 456 

of white British ancestry (n=326,224) using PLINK59 linear/logistic regression and an 457 

additive genetic model adjusted for age, sex, 10 PCs and genotyping array to determine 458 

SNP effects on sleep traits. We used a hard-call genotype threshold of 0.1, SNP 459 

imputation quality threshold of 0.80, and a MAF threshold of 0.001. Genetic association 460 

analysis for the X chromosome was performed using the genotyped markers on the X 461 

chromosome with the additional –sex flag in PLINK. Similarly, sex-specific GWAS were 462 

also performedusing BOLT-LMM25 linear mixed models. Trait heritability was calculated 463 

as the proportion of trait variance due to additive genetic factors measured in this study 464 

using BOLT-REML25, to leverage the power of raw genotype data together with low 465 

frequency variants (MAF≥0.001). Lambda inflation (λ) values were calculated using 466 

GenABEL in R56, and estimated values were consistent with those estimated for other 467 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 19, 2018. ; https://doi.org/10.1101/274977doi: bioRxiv preprint 

https://doi.org/10.1101/274977


highly polygenic complex traits. Additional independent risk loci were identified using the 468 

approximate conditional and joint association method implemented in GCTA (GCTA-469 

COJO)60. 470 

 471 
Post-GWAS analyses 472 

Sensitivity analyses of top signals 473 

Follow-up analyses on genome-wide significant loci in the primary analyses included 474 

covariate sensitivity analyses adjusting for BMI, insomnia, or caffeine intake 475 

adjustments individually, or a combined adjustment for BMI, day naps, Townsend index, 476 

smoking, alcohol intake, menopause status, employment status, and sleep apnea in 477 

addition to baseline adjustments for age, sex, 10 principal components of ancestry, and 478 

genotyping array. Sensitivity analyses were performed in PLINK 1.959 using 479 

linear/logistic regression conducted only in unrelated subjects of white British ancestry.  480 

 481 

Replication and meta-analyses with self-reported sleep duration GWAS 482 

Using publicly available databases, we conducted a lookup of lead self-reported sleep 483 

duration signals in self-reported sleep duration GWAS results from adult (CHARGE) and 484 

childhood/adolescent (EAGLE). If lead signal was unavailable, a proxy SNP was used 485 

instead. In addition, we combined self-reported sleep duration GWAS results from adult 486 

(CHARGE) and childhood/adolescent (EAGLE) with the UK Biobank (primary model) in 487 

fixed-effects meta-analyses using the inverse variance-weighted method in METAL61. 488 

Meta-analyses were conducted first separately [UK Biobank + CHARGE (n=3,044,490 489 

variants) or UK Biobank + EAGLE (n=7,147,509 variants)], then combined (UK Biobank 490 

+ CHARGE + EAGLE; n=2,545,157 variants). A genetic risk score for sleep duration 491 
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was tested using the weighted genetic risk score calculated by summing the products of 492 

the sleep duration risk allele count for as many available SNPs of the 78 genome-wide 493 

significant SNPs in each study (70 for CHARGE, 77 for EAGLE) multiplied by the scaled 494 

effect from the primary GWAS using the GTX package in R56. 495 

 496 
 497 

 498 
Gene, pathway and tissue-enrichment analyses 499 

Gene-based analysis was performed using Pascal39. Pascal gene-set enrichment 500 

analysis uses 1,077 pathways from KEGG, REACTOME, BIOCARTA databases, and a 501 

significance threshold was set after Bonferroni correction accounting for 1,077 pathways 502 

tested (P  <0.05/1,077). Pathway analysis was also conducted using MAGMA38 gene-503 

set analysis in FUMA62, which uses the full distribution of SNP P values and is 504 

performed for curated gene sets and GO terms obtained from MsigDB (total of 10,891 505 

pathways). A significance threshold was set after Bonferroni correction accounting for 506 

all pathways tested (P <0.05/10,891). Tissue enrichment analysis was conducted using 507 

FUMA62 for 53 tissue types, and a significance threshold was set following Bonferroni 508 

correction accounting for all tested tissues (P  <0.05/53). Integrative transcriptome-wide 509 

association analyses with GWAS were performed using the FUSION TWAS package44 510 

with weights generated from gene expression in 9 brain regions and 2 tissues from the 511 

GTEx consortium (v6). Tissues for TWAS testing were selected from the FUMA tissue 512 

enrichment analyses and here we present significant results that survive Bonferroni 513 

correction for the number of genes tested per tissue and for all 11 tissues. 514 

 515 
Genetic correlation analyses 516 
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Post-GWAS genome-wide genetic correlation analysis of LD Score Regression 517 

(LDSC)63–65 using LDHub was conducted using all UK Biobank SNPs also found in 518 

HapMap3 and included publicly available data from 224 published genome-wide 519 

association studies, with a significance threshold after Bonferroni correction for all tests 520 

performed (P  <0.05/224 tests). LDSC estimates genetic correlation between two traits 521 

from summary statistics (ranging from -1 to 1) using the fact that the GWAS effect-size 522 

estimate for each SNP incorporates effects of all SNPs in LD with that SNP, SNPs with 523 

high LD have higher X2 statistics than SNPs with low LD, and a similar relationship is 524 

observed when single study test statistics are replaced with the product of z-scores from 525 

two studies of traits with some correlation.  Furthermore, genetic correlation is possible 526 

between case/control studies and quantitative traits, as well as within these trait types. 527 

We performed partitioning of heritability using the 8 pre-computed cell-type regions, and 528 

25 pre-computed functional annotations available through LDSC, which were curated 529 

from large-scale robust datasets63. Enrichment both in the functional regions and in an 530 

expanded region (+500bp) around each functional class was calculated in order to 531 

prevent the estimates from being biased upward by enrichment in nearby regions. The 532 

multiple testing threshold for the partitioning of heritability was determined using the 533 

conservative Bonferroni correction (P  <0.05/25 classes). Summary GWAS statistics will 534 

be made available at the UK Biobank web portal.  535 

 536 

Mendelian randomization analyses 537 

MR analysis was carried out using MR-Base 538 

(https://www.biorxiv.org/content/early/2016/12/16/078972), using the inverse variance 539 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 19, 2018. ; https://doi.org/10.1101/274977doi: bioRxiv preprint 

https://doi.org/10.1101/274977


weighted approach as our main analysis method66, and MR-Egger67 and weighted 540 

median estimation68 as sensitivity analyses. MR results may be biased by horizontal 541 

pleiotropy – i.e. where the genetic variants that are robustly related to the exposure of 542 

interest (here sleep duration) independently influence levels of a causal risk factor for 543 

the outcome. IVW assumes that there is either no horizontal pleiotropy, or that, across 544 

all SNPs, horizontal pleiotropy is (i) uncorrelated with SNP-risk factor associations and 545 

(ii) has an average value of zero. MR-Egger assumes (i) but relaxes (ii) by explicitly 546 

estimating the non-zero mean pleiotropy, and adjusting the causal estimate accordingly. 547 

Estimation of the pleiotropy parameter means that the MR-Egger estimate is generally 548 

far less precise than the IVW estimate. The weighted median approach is valid if less 549 

than 50% of the weight is pleiotropic (i.e. no single SNP that contributes 50% of the 550 

weight or a number of SNPs that together contribute 50% should be invalid because of 551 

horizontal pleiotropy). Given these different assumptions, if all three methods are 552 

broadly consistent this strengthens our causal inference. For all our MR analyses we 553 

used two-sample MR, in which, for all 78 GWAS hits identified in this study for sleep 554 

duration, we looked for the per allele difference in odds (binary outcomes) or means 555 

(continuous) with outcomes from summary publicly available data in the MR-Base 556 

platform. Results are therefore a measure of ‘longer sleep duration’ and sample 1 is UK 557 

Biobank (our GWAS) and sample 2 a number of different GWAS consortia covering the 558 

outcomes we explored (Supplementary Table 31,32). The number of SNPs used in 559 

each MR analysis varies by outcome from because of some SNPs (or proxies for them) 560 

not being located in the outcome GWAS. 561 

 562 
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Main Figures 
 
Figure 1. Plots for genome-wide association analysis results for A) sleep duration and B) short and long sleep. Manhattan 
(a) and Miami (b) plots show the -log10 P values (y-axis) for all genotyped and imputed SNPs passing quality control in 
each GWAS, plotted by chromosome (x-axis). Horizontal red line denotes genome-wide significance (P =5 x 10-8). 
 
A. Sleep duration (n =446,118) 
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B. Short (cases n =106,192/305,742) and long (cases n =34,184/305,742) sleep. 
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Figure 2. Pathway-based (A,B) and tissue expression enrichment analyses (C) for sleep duration. A) Pathway analysis is 
based on MAGMA gene-sets. Top 10 of 10,891 pathways are shown, and significant pathways are indicated in orange (P 
<4.59 x 10-6). For each significant pathway, respective sleep genes are indicated with a colored orange box. Sleep genes 
from significant pathways that overlap with remaining pathways are indicated in blue. B) Pathway analysis is based on 
Pascal (gene-set enrichment analysis using 1,077 pathways from KEGG, REACTOME, BIOCARTA databases) Top 10 
pathways are shown, and significant pathways are indicated in orange (P <4.64 x 10-5). C) MAGMA tissue expression 
analysis using gene expression per tissue based on GTEx RNA-seq data for 53 specific tissue types. Significant tissues 
are shown in red (P <9.43 x 10-4). All pathway and tissue expression analyses in this figure can be found in tabular form in 
Supplementary Tables 23,24,25. 
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Figure 3. Genetic architecture shared between sleep duration and behavioral and disease traits. LD score regression 
estimates of genetic correlation (rg) were obtained by comparing genome-wide association estimates for sleep duration 
with summary statistics estimates from 224 publically available GWAS. Blue, positive genetic correlation; red, negative 
genetic correlation; rg values are displayed for significant correlations. Larger colored squares correspond to more 
significant P values, and asterisks indicate significant (P <2.2 x 10-4) genetic correlations. All genetic correlations in this 
report can be found in tabular form in Supplementary Table 27. 
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Figure 4. Causal relationship of sleep duration with schizophrenia in the UK Biobank. Association between single 
nucleotide polymorphisms (SNP) associated with sleep duration and schizophrenia (A) and forest plot shows the estimate 
of the effect of genetically increased sleep duration on schizophrenia (B). Results are shown for three MR association 
tests. Forest plots show each SNP with the 95% confidence interval (gray line segment) of the estimate and the Inverse 
Variance MR, MR-Egger, and Weighted Median MR results in red. MR results can be found in tabular form in 
Supplementary Table 28. 
 
 
A.         B. 
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Table 1. A risk score of genetic variants for self-reported sleep duration (78 SNPs), self-reported short (27 SNPs) or long (8 SNPs) sleep duration associates with 
a) activity-monitor based measures of sleep fragmentation, timing and duration from 7 day accelerometry in the UK Biobank (n =85,499), b) self-reported sleep 
duration in the CHARGE study (n =47,180) and c) self-reported sleep duration in the EAGLE study (n =10,554). 
	 	

  Sleep Duration GRS Short Sleep GRS Long Sleep GRS 

Study Trait 
Beta or OR* [95% 

CI] per effect allele P value Beta or OR* [95% CI] per effect allele P value 

Beta or OR* [95% 
CI] per effect 

allele P value 
CHARGE Study  
(n =47,180) Self-reported sleep duration (minutes)# 0.66 [0.54 – 0.78] 1.23 x 10-25     

EAGLE Study  
(n =10,554) Self-reported sleep duration (minutes)* 0.16 [0.02 – 0.30] 2.80 x 10-2     

         
UK Biobank 7-day 
Accelerometry  
(n =85,499) 

Sleep Duration Estimates       

  Sleep duration (minutes) 0.47 [0.40 – 0.53] 1.93 x 10-44 -0.43 [-0.56 – -0.31] 1.21 x 10-11 2.12 [1.65 – 2.59] 1.08 x 10-18 
  Short sleep duration (n=13,760 cases, 

66,110 controls) 0.98 [0.98 – 0.99]* 4.00 x 10-19 1.02 [1.01–1.02]* 4.91 x 10-6 0.94 [0.92 – 0.97]* 1.10 x 10-5 
  Long sleep duration (n=5,629 cases, 

66,110 controls) 1.01 [1.01 – 1.02]* 3.78 x 10-9 0.99 [0.98 – 1.00]* 0.11 1.10 [1.07 – 1.14]* 1.29 x 10-8 

  Daytime Inactivity Duration (minutes) 0.08 [0.03 – 0.13] 2.74 x 10-3 0.01 [-0.09 – 0.11] 0.89 0.65 [0.28 – 1.02] 6.49 x 10-4 
  Sleep duration standard deviation 

(minutes) -0.02 [-0.07 – 0.02] 0.34 0.05 [-0.04 – 0.14] 0.26 -0.07 [-0.40 – 0.27] 0.69 

  Sleep Fragmentation Estimates       
  Sleep efficiency % 0.05 [0.04 – 0.06] 8.38 x 10-23 -0.05 [-0.07 – -0.04] 4.79 x 10-9 0.15 [0.08 – 0.22] 1.56 x 10-5 
  Number of sleep bouts (n) 0.02 [0.01 – 0.02] 1.59 x 10-10 -0.01 [-0.02 – 0.00] 2.42 x 10-3 0.02 [-0.01 – 0.05] 0.24 

  Sleep Timing Estimates       
  Midpoint of 5-hour daily period of minimum 

activity (L5 timing) (minutes) -0.05 [-0.13 – 0.03] 0.23 0.07 [-0.09 – 0.22] 0.41 0.39 [-0.20 – 0.97] 0.20 

  Midpoint of 10-hour daily period of 
maximum activity (M10 timing) (minutes) 0.03 [-0.06 – 0.12] 0.51 -0.05 [-0.23 – 0.12] 0.55 0.65 [-0.02 – 1.32] 6.00 x 10-2 

  Sleep Midpoint (minutes) -0.03 [-0.07 – 0.01] 0.20 0.01 [-0.07 – 0.08] 0.88 0.05 [-0.24 – 0.34] 0.74 

	
Genetic risk scores for sleep duration, short sleep and long sleep were tested using the weighted genetic risk score calculated by summing the products of the 
sleep trait risk allele count for all 78, 27, or 8 genome-wide significant SNPs multiplied by the scaled effect from the primary GWAS using the GTX package in R. 
Effect estimates (Beta or OR) are reported per each additional effect allele for sleep duration, short sleep, or long sleep. Abbreviations: CI=confidence interval, 
GRS=genetic risk score, OR=odds ratio. 
# Self-reported and varied by cohorts, typically: “How many hours of sleep do you usually get at night (or your main sleep period)?" 
* In all cohorts, except in GLAKU, child sleep duration was assessed by a single, parent-rated, open question, “How many hours does your child sleep per day 
including naps?” In GLAKU, parents were asked about the usual bed and rise times during school days, from which the total sleep duration could be estimated. 
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