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Summary 

The selection of appropriate cancer models is a key prerequisite for maximising 

translational potential and clinical relevance of in vitro studies. An important criterion for this 

selection is the molecular resemblance of available models to the primary disease they 

represent. While studies are being increasingly conducted to comprehensively compare 

genomic profiles of cell lines and matched primary tumours, there is no data-driven, robust 

and user-friendly tool assisting scientists in such selection, by adequately estimating the 

molecular heterogeneity of a primary disease that is captured by existing models. We 

developed CELLector: a computational tool implemented in an open source R Shiny 

application and R package that allows researchers to select the most relevant cancer cell 

lines in a genomic-guided fashion. CELLector combines methods from graph theory and 

market basket analysis; it leverages tumour genomics data to explore, rank, and select 

optimal cell line models in a user-friendly way, enabling scientists to make appropriate and 

informed choices about model inclusion/exclusion in retrospective analyses and future 

studies. Additionally, it allows the selection of models within user-defined contexts, for 

example, by focusing on genomic alterations occurring in biological pathways of interest or 
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considering only predetermined sub-cohorts of cancer patients. Finally, CELLector identifies 

combinations of molecular alterations underlying disease subtypes currently lacking 

representative cell lines, providing guidance for the future development of new cancer 

models. To demonstrate usefulness and applicability of our tool, we present example case 

studies, where it is used to select representative cell lines for user-defined populations of 

colorectal cancer patients of current clinical interest. 
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Introduction 

The use of appropriate cancer in vitro models is one of the most important 

requirements for investigating cancer biology and successfully developing new anticancer 

therapies. Much effort has been devoted to evaluating the extent of phenotypic and 

genotypic similarities between existing cancer models and the primary tumours they aim to 

represent (Ahmed et al., 2013; Beaufort et al., 2014; Ince et al., 2015; Medico et al., 2015; 

Qiu et al., 2016). Despite inherent limitations, immortalised human cancer cell lines are the 

most commonly used experimental models in oncology research. Technological 

advancement in high-throughput ‘omics’ techniques and the availability of rich cancer 

genomics datasets, such as those provided by The Cancer Genome Atlas (TCGA, 

http://cancergenome.nih.gov), the International Cancer Genome Consortium (ICGC) (Zhang 

et al., 2011), the NCI-60 panel (Shoemaker, 2006), the Cancer Cell Line Encyclopedia 

(CCLE) (Barretina et al., 2012), the Genomics of Drug Sensitivity in Cancer (GDSC) (Garnett 

et al., 2012; Iorio et al., 2016), the COSMIC Cell Line Project (Forbes et al., 2017) and many 

others, have transformed the way preclinical cancer models can be assessed and prioritized. 

To this end, several studies have proposed analytical methods to evaluate the suitability of 
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cell lines as tumour models (Domcke et al., 2013; Jiang et al., 2016; Mouradov et al., 2014; 

Sinha et al., 2017; Sun and Liu, 2015; Vincent et al., 2015; Zhao et al., 2017). Although 

these studies provide useful guidelines for choosing appropriate and avoiding poorly suited 

cell line models, they are restricted to individual cancer types. Most importantly, they require 

an expert knowledge of the genomic alterations known to have a specific functional role in 

the tumour (sub)type under consideration (Domcke et al., 2013; Jiang et al., 2016). As a 

consequence, there is a need for robust computational methods able to integrate the 

molecular characterisation of large cohorts of primary tumours from different tissues, 

extracting the most clinically relevant features in an unbiased way, and evaluating/selecting 

representative in vitro models on the domain of these features. 

 

We have recently published a large molecular comparison of cancer cell lines and 

matched primary tumours at the sample population level (Iorio et al., 2016). Our results 

show that cell lines recapitulate most of the oncogenic alterations identified in matched 

primary tumours, and at similar frequencies. Building on our previous work, here we present 

CELLector, a tool for genomics-guided selection of cancer in vitro models. CELLector is 

based on an algorithm that combines methods from graph theory and market basket 

analysis (Han et al., 2012). It makes use of large-scale tumour genomics data to explore and 

rank patient subtypes based on genomic signatures (e.g. combinations of genomic 

alterations) identified in an unsupervised way and their prevalence. Subsequently, it ranks 

cell line models based on their genomic resemblance to the identified patient subtypes. 

Additionally, CELLector enables the identification of disease subtypes currently lacking 

representative in vitro models, which could be prioritised for future development. CELLector 

also implements interactive visualisations and intuitive explorations of results and underlying 

data, and it is available as open-source, user-friendly R Shiny application at 

https://ot-cellector.shinyapps.io/cellector_app/ 

(code available at https://github.com/francescojm/CELLector_App) 

and R package at https://github.com/francescojm/CELLector. 
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Results 

Overview of CELLector 

CELLector is implemented into two distinct modules. The first module recursively 

identifies the most frequently occurring sets of molecular alterations (signatures) in a cohort 

of primary tumours, by focusing on the set of clinically relevant genomic features that we 

previously published (Iorio et al., 2016). These encompass somatic mutations in 470 high-

confidence cancer driver genes and copy number gains/losses of 425 recurrently altered 

chromosomal segments, and were identified by applying state-of-art computational tools 

(such as the intOGen pipeline (Gonzalez-Perez et al., 2013; Gundem et al., 2010) and 

ADMIRE (van Dyk et al., 2013)) to the genomic characterisation of a cohort of 11,289 cancer 

patients (from the TCGA (http://cancergenome.nih.gov), the ICGC (Zhang et al., 2011) and 

other publicly available studies). Based on the collective presence/absence of these 

alterations sets, CELLector partitions the primary tumours into distinct subpopulations 

(Figure 1A). The second module examines the identified molecular signatures in cancer cell 

lines in order to identify the best-representative models for each patient subpopulation 

(Figure 1B). This approach not only helps in maximising the covered disease heterogeneity 

but also enables the identification of molecular signatures underlying tumour subtypes 

currently lacking representative models (Figure 1C). 

 

To demonstrate the power of CELLector and to allow an easy and immediate use of 

its functionalities, we have included in its implementation datasets from the genomic 

characterisation of tumours and cell lines derived from 16 different tissues (Table S1 and 

STAR Methods). 

 

CELLector modules 

In the first module, CELLector assembles a search space in the form of a binary tree 

as follows. Starting from an initial cohort of patients affected by a given cancer type, the 

most frequent alteration or set of molecular alterations with the largest support (the 
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subpopulation of patients in which these alterations occur simultaneously) is identified using 

the Eclat algorithm (Zaki et al., 1997). Based on this, the cohort of patients is split into two 

subpopulations depending on the collective presence or absence of the identified alterations. 

This process is then executed recursively on the two resulting subpopulations and it 

continues until all the alteration sets (with a support of user-defined prevalence) are 

identified. Each of the alterations sets identified through this recursive process is stored in a 

tree node. Linking nodes identified in adjacent recursions yields a binary tree: the CELLector 

search space. Each individual path (from the root to a node) of this tree defines a rule 

(signature), represented as a logic AND of multiple terms (which can be also negated), one 

per each node in the path. If the genome of a given patient in the analysed cohort satisfies 

the rule then it is contained in the subpopulation represented by the terminal node of that 

path. Collectively, all the paths in the search space provide a representation of the spectrum 

of combinations of molecular alterations observed in a given cancer type, and their clinical 

prevalence in the analysed patient population (Figure 2A). 

 

Subsequently, the CELLector search space is mined in the second module for: 

● Exploring, and mapping cell lines to tree nodes (therefore to relevant patient 

subpopulations) based on the corresponding rules; 

● Selecting the most representative set of cell lines maximising their covered genomic 

heterogeneity, via a guided visit of the search space (detailed in the STAR Methods); 

● Identifying tumour subtypes lacking representative cell line models. 

Finally, CELLector supports interactive visualisation and exploration of both the search 

space and final results (Figure 2). 

 

CELLector capabilities 

CELLector assists in the selection of the best-representative preclinical models to be 

employed in molecular oncology studies. It also enables molecular subtyping/classification of 

any disease cohort. As detailed in the previous section, one of the approaches that users 
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can pursue with CELLector is a simple guided visit of its search space (detailed in the STAR 

Methods) to select the optimal set of n cell lines to be included in a small-scale in vitro study 

or a low-throughput screen. The selected cell lines are picked from those mapped to the first 

n node, as they appear in the guided visit of the tree and, per construction, this guarantees 

that the coverage of the genomic heterogeneity of a particular cancer type is maximised by 

the selected cell lines. 

 

Another approach is to use the position of a given cell line within the search space, 

based on the alteration sets that it harbours, as a mean to score its quality. This can be in 

fact estimated as a trade-off between the depth of the resulting node (proportional to the 

length of the corresponding genomic signature, in terms of considered genomic alterations) 

and the size of the corresponding patient subpopulation.  

 

In addition, given that the choice of appropriate in vitro models often depends on the 

context of the study, users can restrict the analysis to a given sub-cohort of patients (while 

constructing the search space), determined a priori based on the presence/absence of a 

given genomic feature. For example, users can restrict the CELLector analysis to subset of 

tumours harbouring TP53 mutations, or genomic alterations in the PI3K/Akt signalling 

pathway. In this case, only tumours characterised by these features are taken into 

consideration when building the CELLector search space (Supplementary Case Study 1 and 

next section). Notably, this can involve also other user-defined characteristics, for example 

the microsatellite instability (MSI) status of cancer cell lines. As a consequence, CELLector 

allows users to flexibly tailor the selection of cell lines in a context-dependent manner. 

 

Finally, the CELLector R Shiny app provides additional functionalities enabling an 

interactive exploration of the tumour/cell line genomic features and final results. A tutorial 

demonstrating all these functionalities, example case studies, and a step-by-step guide to 

reproduce the reported results is provided as Supplemental Information. 
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Case Study 

In this section, we present a practical example to demonstrate the usefulness of 

CELLector in an experimental study design. Detailed instructions on this and other case 

studies are provided in the user tutorial available as Supplemental Information. 

 

In this example, we want to identify the most clinically relevant microsatellite instable 

cell lines that capture the genomic diversity of a sub-cohort of colorectal cancer patients that 

harbour BRAF mutations. The BRAF mutant colorectal cancer has a low prevalence (5%-

8%) and very poor prognosis (Sanz-Garcia et al., 2017). The model selection should be 

guided by somatic mutations that are prevalent in at least 5% of the considered patient 

population (Figure 2A: box 1 and box 2). 

 

Building the CELLector search space 

After setting the CELLector app parameters to reflect the search criteria detailed in 

the previous section (Figure 2A: box 1 and box 2), the CELLector search space is 

assembled using a built-in dataset containing the genomic characterisation of a cohort of 

517 colorectal cancer tumours (Table S1 and STAR Methods).  

 

First, the cohort is reduced to the 86 tumours harbouring BRAF mutations (Figure 

2A: node 1). CELLector then identifies 3 major molecular subpopulations characterised, 

respectively, by APC mutations (Figure 2A: node 2), FBXW7 mutations (Figure 2A: node 3), 

and PIK3CA mutations (Figure 2A: node 10), collectively representing 85 % of the studied 

BRAF mutant cohort (n = 50 + 14 + 9 = 73). The remaining 15% (n = 13) of BRAF mutant 

tumours do not fall into any of the identified molecular subpopulations, i.e. they do not 

harbour APC, FBXW7 nor PIK3CA mutations; Figure 2A).  

 

The largest molecular subpopulation (58.14%, n = 50, harbouring BRAF and APC 

mutations) is assigned to the root of the search space (Figure 2A: node 2, in purple). The 

second largest subpopulation (16.28%, n = 14) is characterised by the co-occurrence of 
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BRAF and FBXW7 mutations in the absence of APC mutations (Figure 2A: node 3, in 

magenta), and the third largest subpopulation (10.47%, n = 9) harbours the BRAF and 

PIK3CA mutations in the absence of both APC and FBXW7 mutations (Figure S2A: node 10, 

in cyan). At this point, each identified tumour subpopulation is further refined based on the 

prevalence of remaining set of alterations (STAR Methods). This process runs recursively 

and stops when all alteration sets with a user-determined prevalence (in this case 5%, 

Figure 2A: box 1) are identified. In this study case, a total number of 10 distinct tumour 

subpopulations with corresponding genomic signatures are identified (Figure 2). Notably, 

some of the mutational signatures identified in the BRAF mutated tumours are linked to 

differential prognosis in colorectal tumour stratification (Schell et al., 2016).  

 

Selection of representative in vitro models  

The CELLector search space generated in the previous section is next translated into 

a Cell Line Map table (Figure 2B), indicating the order in which cancer in vitro models 

mirroring the identified genomic signatures should be selected, accounting for tumour 

subpopulations currently lacking representative in vitro models. This selection order is 

defined by a guided visit of the CELLector search space (detailed in the STAR Methods), 

aiming at maximising the heterogeneity observed in the studied primary tumours. The Cell 

Map table uncovers the complete set of molecular alterations (e.g. genomic signatures) 

defining each tumour subpopulation. For example, the least prevalent BRAF mutant 

colorectal tumour subpopulation (node 8, 9.30% of tumours) is characterised by the co-

occurrence of BRAF, APC, PIK3CA, PTEN, TP53 and KRAS mutations; this genomic 

signature is not mirrored by any of the available microsatellite instable colorectal cancer 

models included in the built-in dataset (Figure 2B).  

 

In this example, we wanted to select only microsatellite instable cell lines (16 out of 

51 available in CELLector, Table S1). As cell lines are derived from tumours at various 

levels of differentiation and stages of development, out of these 16 considered models only 
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4 mirror the genomic signatures identified in the primary disease (i.e. they are mapped to 

nodes of the CELLector search space). Effectively, this means that these 4 microsatellite 

instable cell lines are good representatives of the examined patient cohort accounting for 

tumour subpopulations of different sizes. 

 

Finally, the representative cell lines are picked from each of the molecular tumour 

subpopulations (as detailed in the STAR Methods) starting from the most prevalent one. A 

possible choice of in vitro models that best represent the genomic diversity of the studied 

tumour cohort include: LS-411N, SNU-C5, RKO and KM12 (Figure 2B). 

Additional case studies are included in the user tutorial provided as Supplemental 

Information.  

 

Discussion 

The translational potential of preclinical studies is highly dependent on the clinical 

relevance of the employed in vitro models. Good models are required to capture the 

genomic heterogeneity of a cancer type under investigation and/or accurately represent 

alterations in relevant biological pathways. 

 

We present CELLector, a tool that allows scientists to select the most representative 

set of cell line models, maximising the covered genomic heterogeneity of the disease under 

consideration. The overall aim of the CELLector algorithm is to globally assess the quality of 

cancer in vitro models in terms of their similarity to genomic subtypes detected in matched 

primary tumours, and to make available to the research community a user-controlled 

environment to perform such a task. 

 

A key strength of CELLector is its generality: the algorithm can be applied to any 

disease for which in vitro models and matching primary/model genomic data are available. 

CELLector enables the systematic identification of recurrent tumour subtypes with paired 
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genomic signatures, and selection of in vitro models based on the recurrence of these 

signatures. In addition, the algorithm identifies disease subtypes currently lacking 

representative models enabling prioritisation of new model development. To the best of our 

knowledge, CELLector represents the first computational method that ranks and selects 

cancer in vitro models, in a data driven way, across different cancer types, and without the 

need for expert knowledge about the primary disease under consideration. However, the 

model selection performed by CELLector can be flexibly tailored to fit the context of a study. 

 

Clinically relevant disease subtyping takes time and multiple resources. In recent 

years, an increasing number of studies have taken advantage of the availability of rich 

genomics/transcriptomics data for systematic molecular subclassification of tumours across 

tissues (Dawson et al., 2013; Guinney et al., 2015). Based on similar principles, CELLector 

can serve as a valuable tool to aid designing experimental studies minimising the risk of 

clinically relevant signal being missed due to ‘noise’ contributed by inclusion of less relevant 

models, or conversely identification of false positives due to strong signals from poor quality 

models. Addressing both of these issues will have direct and immediate implications on the 

quality of future in vitro experiments and in analysis of retrospective data derived from 

cancer cell lines. 
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Figure legends 

 

Figure 1 - Schematic representation of the CELLector modules. 

A. Primary tumours genomic features are used to identify tumours molecular subpopulations 

within a cohort of patients. B. The resulting CELLector search space is then used to map 

molecular similarities between the identified tumour subpopulations and cell line models. C. 

CELLector returns a list of cell line models that best represent the identified tumour 

subpopulations, thus maximising the coverage of disease heterogeneity, and highlighting 

tumour subtypes currently lacking representative in vitro models. 

 

Figure 2 CELLector in use: results from an example case study.  

A. Visual representation of the CELLector search space constructed based on the 

prevalence of co-occurring mutations in the BRAF mutant colorectal (COREAD) tumours 

(box 1 and box 2). Each node of the binary tree (top) represents a tumour subpopulation 

with define genomic signature. The prevalence of the identified signatures, and their 

hierarchical co-occurrence is represented by the sunburst (below). Each segment of the 

sunburst corresponds to a node in the three and is color-coded accordingly. B. Cell Line 

Map table including microsatellite instable cell lines mirroring the genomic signatures of the 

BRAF mutant COREAD tumour subpopulations identified in the CELLector search space. 

The models in green represent a possible choice of n-user-defined cell lines that could be 

selected in the presented case study. 
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STAR Methods 
 
 
KEY RESOURCES TABLE 
 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Deposited Data 

Binary event matrices with status of 
high-confidence cancer genes (CGs) 
across primary tumours (COSMIC 
filtered variants) 

Iorio et al., 2016 

http://www.cancerrxgene.org/gdsc10
00/GDSC1000_WebResources///Dat
a/BEMs/PrimaryTumours/PrimTum_
CG_BEMs/PrimTum_CG_BEMs_cf.z
ip 

Binary event matrices with CNA status 
of recurrently altered chromosomal 
segments (RACSs) across primary 
tumours 

Iorio et al., 2016 

http://www.cancerrxgene.org/gdsc10
00/GDSC1000_WebResources///Dat
a/BEMs/PrimaryTumours/PrimTum_
CNV_BEMs.zip 

Binary event matrices with status of 
high-confidence cancer genes (CGs) 
across cell lines 

Iorio et al., 2016 

http://www.cancerrxgene.org/gdsc10
00/GDSC1000_WebResources///Dat
a/BEMs/CellLines/CellLines_CG_BE
Ms.zip 

Binary event matrices with CNA status 
of recurrently altered chromosomal 
segments (RACSs) across cell lines 
 

Iorio et al., 2016 

http://www.cancerrxgene.org/gdsc10
00/GDSC1000_WebResources///Dat
a/BEMs/CellLines/CellLines_CNV_B
EMs.zip 

Software and Algorithms 

R version 3.4.0 R Foundation for 
Statistical Computing 

https://www.r-project.org/; RRID: 
SCR_001905 

CELLector package This paper https://github.com/francescojm/CELL
ector  

 
 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and will 

be fulfilled by the Lead Contact, Francesco Iorio (fi1@sanger.ac.uk). 

 

METHOD DETAILS 

Implementation  

The CELLector algorithm and interactive visualisation tools are implemented in R and 

available as an open-source R package (code available at 

https://github.com/francescojm/CELLector, interactive vignette available at 

http://rpubs.com/francescojm/CELLector, user manual available at 

https://github.com/francescojm/CELLector/blob/master/CELLector.pdf) and R Shiny web 
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application (deployed at https://ot-cellector.shinyapps.io/cellector_app/, code available at 

https://github.com/francescojm/CELLector_App). 

 

Genomics data 

CELLector provides built-in genomics data for disease-matched primary tumours and cell 

lines derived from 16 cancer types, encompassing the characterisation of 4,550 tumours and 

499 immortalised and commercially available cancer cell lines (Table S1), and accounting 

for somatic mutations and copy number alterations for high-confidence cancer genes and 

recurrently altered chromosomal segments, i.e. cancer functional events (CFEs). These 

CFEs are described in Iorio et al., 2016 and corresponding data were obtained from the 

accompanied web-portal (http://www.cancerrxgene.org/gdsc1000/). 

 

QUANTIFICATION AND STATISTICAL ANALYSIS: The CELLector algorithm  

The CELLector algorithm combines methods from graph theory and market basket analysis. 

In the analytical framework of CELLector, the genomic background of a cohort of patients 

affected by a given cancer type is represented as a binary tree whose topology is 

determined by the most-frequently observed combinations of molecular alterations (item-

sets) and their supports, i.e. the fraction of patients in which these alterations occur 

simultaneously. This tree is built recursively by sequential applications of the Eclat algorithm 

(Zaki et al., 1997) as follows. The tree construction starts from the root, modelling the 

combination of genomic alterations (item-set) with the largest support across the entire 

cohort. Then two sibling nodes are included, modelling the item-sets with the greatest 

supports when considering the population supporting the item-set of the parent node (right 

sibling node) and its complementary population (left sibling node). This is recursively 

performed at each new node included in the tree if the corresponding modelled item-set is 

supported by at least a user-defined ratio of patients in the considered patient subpopulation 

(for example 5%). 
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Subsequently, a logic AND formula F is assigned to each node x, considering the path to x 

from the root of the three. For each node n on this path (including the terminal ones) the 

corresponding modelled item-set is added to F as a term, negated if n is a left sibling 

(complement) node. Finally, a given cell line in the built-in collection is mapped to a node n if 

its genomic background satisfies F(n). 

The algorithm continues with a guided deep-first-visit of the obtained tree, which return all 

the identified subtypes as a sorted list, as detailed in the following pseudo code: 

 

Variables and initial settings 

Q = an empty queue 

T = a CELLector searching space 

r = the root of T 

U = a set of nodes that have not been visited yet 

Idx = a queue index 

CurrentNode = r 

Idx = -1 

U = all the nodes of T 

 

Algorithm 

While U is not empty 

 remove CurrentNode from U 

 While CurrentNode as a left child 

  Add CurrentNode to the queue 

  CurrentNode = left child of CurrentNode 

 end 

 Add the right children of all the nodes in Q to Q (by level) and remove them from U 

 If there are right nodes in Q in position > Idx then 

Advance Idx to the first right node in Q in a position > Idx 

CurrentNode = Q[Idx] 

end 

Return Q 
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Finally, a Cell Line map is built by considering all subtypes (nodes) as they appear in Q, with 

corresponding signatures and mapped cell lines. 

N Cell lines are selected among those appearing in the first N entries of this map with a 

heuristic method, minimizing the number of nodes each selected cell line is mapped onto. 

 

DATA AND SOFTWARE AVAILABILITY 

Source code for the R package and the R Shiny app is publicly available on GitHub: 

Package code https://github.com/francescojm/CELLector 

Package interactive vignette  http://rpubs.com/francescojm/CELLector 

Package user manual https://github.com/francescojm/CELLector/blob/master/CELLector.pdf, 

App deployed at https://ot-cellector.shinyapps.io/cellector_app/ 

App code available at https://github.com/francescojm/CELLector_App. 

 

Detailed instructions on how to install the R package, run the CELLector analysis and 

interactively explore the results are also provided in the GitHub repository and in the 

supplemental information, together with a tutorial with instructions how to set up the 

analysis, interactively explore the results and execute CELLector on example case studies. 

 

Supplemental Information 

Supplemental Information includes one table, two case studies, instructions and user tutorial 

demonstrating the full functionality of CELLector app. 
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