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Figure 10: Schematic of AuNP/CTxB/GM1 structures
leading to Gaussian and non-Gaussian con�nement pro-
�les. (A) Free diffusion, (B) wide Gaussian-like confine-
ment, (C) narrow Gaussian-like confinement, (D) non-
Gaussian confinement. Insets in (B-D) are example his-
tograms of particle positions pooled over confinement events
within selected trajectories (e.g. Fig. S14, Fig. S15). Insets
have side length 0:1µm. Schematic based on a figure in
reference (4).
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Figure 11: Correlation between D and con�nement statis-
tics. (A) mean confinement radius, (B) confinement lifetime.
Plots include all confinement events of at least 0.01s.

data and whether the confinement zone is static, or has time-
dependent shape variation or drift. For instance, transient
confinement in lipid rafts - which both diffuse and have an
irregular shape - has been hypothesized.

The observation that individual AuNP/CTxB/GM1 com-
plexes have a specific spatial signature means that distin-
guishing the effects of the tag from other factors, such as
the cell membrane environment, is difficult. It follows that
homogenous tags should improve characterisation of the
membrane environment. Since the variability in the tag sig-
nature presumably arises from the random placing of CTxB

molecules on the AuNP surface, using particles with a struc-
tured surface is predicted to reduce or potentially eliminate
this problem. Virions are ideal, given their highly geometric
3D structure. Interferometric label-free tracking of virions
has been demonstrated at 3 s temporal resolution (39); thus
achieving the high spatial and temporal resolution of recent
iSCAT microscopy (such as in the data set explored here)
with viral particle tags is a distinct possibility. The reso-
lution of the tag’s signature and the length of events will
then determine the resolution of that trajectory, and thus the
length scale to which SPT can discriminate different types
of particle movement. Whether this can be taken below the
size of the tag, reminiscent of super-resolution, remains to
be ascertained.

Conclusion

We use a HMM-based analysis to partition SPT trajectories
into periods of free diffusion and confinement. Our algo-
rithm infers the switching times between these two states,
the diffusion coefficient D , and the characteristics of the
confinement events: the HPW strength �, the position of
the HPW centre C, and the centre diffusion coefficient
DC . We demonstrate the utility of the method on simu-
lated and experimental data; on simulated data confinement
zones were accurately detected and HPW centres accurately
tracked whilst experimental trajectories were partitioned
with high confidence. The model could potentially detect
various biological phenomena such as lipid microdomains
(or “rafts”), receptor clustering, and hop diffusion.
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