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A Hidden Markov Model for Detecting Confinement in Single Particle
Tracking Trajectories
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Abstract

State-of-the-art single particle tracking (SPT) techniques can generate long trajectories with high temporal and spatial res-
olution. This offers the possibility of mechanistically interpreting particle movements and behaviour in membranes. To this
end, a number of statistical techniques have been developed that partition SPT trajectories into states with distinct diffusion
signatures, allowing a statistical analysis of diffusion state dynamics and switching behaviour. Here we develop a confinement
model, within a hidden Markov framework, that switches between phases of free diffusion, and confinement in a harmonic
potential well. By using a Markov chain Monte Carlo (MCMC) algorithm to fit this model, automated partitioning of individ-
ual SPT trajectories into these two phases is achieved, which allows us to analyse confinement events. We demonstrate the
utility of this algorithm on a previously published dataset, where gold nanoparticle (AuNP) tagged GM1 lipids were tracked
in model membranes. We performed a comprehensive analysis of confinement events, demonstrating that there is heterogene-
ity in the lifetime, shape, and size of events, with confinement size and shape being highly conserved within trajectories.
Our observations suggest that heterogeneity in confinement events is caused by both individual nanoparticle characteristics
and the binding site environment. The individual nanoparticle heterogeneity ultimately limits the ability of iSCAT to resolve
molecular dynamics to the order of the tag size; homogeneous tags could potentially allow the resolution to be taken below
this limit by deconvolution methods. In a wider context, the presented harmonic potential well confinement model has the
potential to detect and characterise a wide variety of biological phenomena, such as hop diffusion, receptor clustering, and
lipid rafts.

Introduction

Single particle tracking (SPT) experiments directly observe
the motion of single molecules, and hence offer a pow-
erful method to analyse the membrane environment. For
instance, detection and characterisation of heterogenous dif-
fusion behaviours yields information on membrane structure
(1, 2). However, SPT methods require the molecule of inter-
est to be tagged with a trackable label that is imaged over
a number of time steps. A number of experimental design
limitations constrain the amount of information that can be
extracted from such data, including spatial accuracy, tem-
poral resolution and tracking period. New technologies are
capable of extending the trajectory length whilst retaining
high sampling rates and high spatial resolution. For example
interferometric scattering microscopy (iSCAT) can gener-
ate very long (50,000 step) trajectories, with high spatial
(< 2 nm) and temporal (up to 500 kHz) resolution (3–6).

However, a fundamental problem that impacts on interpreta-
tion is the effect of the tag itself (7). This is particularly rele-
vant for iSCAT microscopy as the gold nanoparticle (AuNP)
tags are 20-40 nm in diameter whilst spatial resolution is
estimated to be ∼2 nm for a 20 nm AuNP (4, 5); relative
movements between the AuNP and the bound GM1 will
thus convolve with the movement of the GM1. For example,
an iSCAT study on model membranes demonstrated both
Gaussian-like and ring-like confinement events, which was
ascribed to transient multivalent binding of the tag (4). Thus,
in order to extend this technique to in vivo experiments there
is a need to deconvolve the tag signature from the environ-
ment signal. Failure to achieve this separation means that
interpretation of the high resolution dynamics measured by
these techniques may be limited to the order of the tag’s size.

Analysis of SPT data is not straightforward primarily
because of the stochastic nature of diffusion. This has led to
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the development of a range of statistical methods that detect
deviations from Brownian motion, such as mean square dis-
placement (MSD) (8–13), and confinement (14–19) analy-
ses. A new breed of methods model switching in the move-
ment dynamics between various dynamic states (20–24),
often within a hidden Markov chain framework (25–30).
For high resolution data the latter techniques can utilise
the high level of information present in the trajectory to
extract detailed motion characteristics, and potentially infer
underlying biophysical mechanisms.

In this paper, we develop a harmonic potential well
(HPW) confinement analysis within the context of a hid-
den Markov model (HMM). Specifically the particle moves
between two states hidden to the observer: free diffu-
sion with (to be determined) diffusion coefficient D, and
confinement in a HPW (centre and strength to be deter-
mined). Working in a Bayesian framework, we developed
a Markov chain Monte Carlo (MCMC) algorithm to infer
model parameters and hidden states from a single trajec-
tory. We tested the algorithm on simulated data, then applied
it to previously published experimental iSCAT trajectories
of GM1 lipids diffusing in model membranes (4). Specif-
ically, a (20 nm or 40 nm) AuNP was coated in cholera
toxin B subunits (CTxB) by streptavidin binding, each
CTxB then binding 5 GM1 molecules in the lipid mem-
brane to form an AuNP/CTxB/GM1 complex. In trajecto-
ries of 20 nm AuNP/CTxB/GM1 diffusing in model mem-
branes on a glass substrate, we detected clear periods of
trapping in wells of mean radius 18nm with a mean trapping
time 0.024s. However, we also observed inherent hetero-
geneities in both AuNP/CTxB/GM1 particles and trapping
sites, which ultimately affect trajectory characteristics.

This paper is organised as follows. In Methods we
introduce the HPW confinement model and an associated
inference (MCMC) algorithm. The full derivation of the
MCMC algorithm is described in Note S1 in the Support-
ing Material. In Results we demonstrate accurate inference
of model parameters and hidden states on simulated tra-
jectories, then apply the algorithm to iSCAT trajectories of
AuNP/CTxB/GM1 diffusing in model membranes.

Methods

Harmonic potential well model

We developed a model for a particle that switches between
a freely diffusing state, and a confinement state localised
around a slowly diffusing centre. The state is encoded by
a hidden variable z, with zi = 0 if the particle is freely dif-
fusing at time ti, and zi = 1 if confined, where i = 1..N
denotes the timepoint (i.e. frame). The state zi+1 depends
only on zi with transition probabilities (constant frame rate)

free (z = 0)
pesc
�
ptrap

confined (z = 1) (1)

where ptrap and pesc are the per frame probabilities of
switching into and out of confinement respectively. The
probability of being in state zi+1 given state zi is therefore

π(zi+1|zi) = Bernoulli(zi+1; zi(1− pesc) + (1− zi)ptrap)
(2)

where Bernoulli(x; p) denotes the Bernoulli probability dis-
tribution with variable x and parameter p. In the free state
the particle diffuses freely with diffusion coefficient D. In
the confined state the particle is assumed to have a directed
component to its diffusive motion, proportional to the dis-
tance from the well centre Ci, i.e. the force is proportional
to Xi−Ci where Xi is the particle position at time ti. (Note
that Xi and Ci are 2D vectors.) During confinement the cen-
tre diffuses much slower than the particle itself (diffusion
coefficient DC << D). When the particle is free C diffuses
with diffusion coefficient Dest, where Dest is sufficiently
high that the centre can relocate between different confine-
ment sites. The centre is thus still present even when it is not
affecting the particle. The stochastic differential equations
(SDEs) for this model are

dXt = −κzt(Xt − Ct)dt+
√

2DdWt (3)

dCt =
√

2
(
DCzt +Dest(1− zt)

)
dW

(C)
t (4)

where Wt,W
(C)
t are independent Weiner processes. Dur-

ing confinementXt has Ornstein-Uhlenbeck (OU) dynamics
with centre Ct. We assume that switching can only occur at
the sampling points. We also assume that Ct is slowly vary-
ing and therefore ignore its time dependence over the time
step ∆t. The frame-to-frame dynamics are hence

Xi+1 −Xi ∼ N
(
zi
(

(Ci −Xi)
(
1− e−κ∆ti

) )
,

D
(

(1− zi)2∆ti +
zi
κ

(
1− e−2κ∆ti

)))
(5)

Ci+1 − Ci ∼ N (0, 2∆ti (DCzi +Dest(1− zi))) . (6)

See Note S1 for full details. If the step size is sufficiently
small relative to the confinement strength (κ∆t << 1)
an Euler-Maruyama approximation is justified, but if the
particle explores the well over ∆t, this OU solution is
required. We refer to this discrete time stochastic model as
the harmonic potential well (HPW) confinement model.

The model has two hidden states to be inferred at all tra-
jectory timepoints i = 1, .., N : the state zi (confined or free),
and the position of the HPW centre Ci when confined. There
are also five parameters to be inferred: two diffusion coef-
ficients (D and DC), the strength of the HPW (κ), and two
transition probabilities (pesc and ptrap). Dest is treated sep-
arately as it only weakly affects the trajectory, and doesn’t
affect the likelihood or parameter estimates provided it is
sufficiently high. Fig. 1A shows a simulated HPW model
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trajectory. In the simulation we include a drift term for the
centre so that C tracks X when not confined. This ensures
that C is close to X when the particle switches from free
diffusion to confinement, and therefore confinement zones
remain within a reasonable field of view. This tracking of X
by C isn’t included in the inference algorithm as diffusion
alone is sufficient to allow the Markov chain to find high
probability paths.
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Figure 1: Simulated harmonic potential well (HPW)
model trajectory. (A) Simulated trajectory colored by state.
Model parameters: D = 0.5 µm2 s−1, Dest = 0.5 µm2 s−1,
DC = 0.01 µm2 s−1, κ = 3000 s−1, pesc = 0.001, ptrap =
0.002, time step 2× 104 s, N = 5000 frames. Simulation
performed using Equation (5), and a modified version of
Equation (6) as discussed in the main text. Trajectory colour:
blue free diffusion, yellow confined. Colorbar length 0.1 µm.
(B) Schematic of AuNP/CTxB/GM1 complex in DOPC lipid
bilayer, based on figure in reference (4).

MCMC sampler

There are a number of MCMC samplers for linear switch-
ing models in the literature; the main distinction is whether
variables are integrated out using an inverse Wishart prior
(31), or a Markov chain incorporating all variables is used.
The latter approach allows greater control of prior infor-
mation, including use of uninformative priors, whilst the
Wishart distribution, motivated by computational conve-
nience, imposes a dependence between variable correla-
tions and scale which is a concern for inference (32). We
developed an MCMC algorithm (Note S1) for the full sys-
tem of variables to fit the HPW model (Equations 5, 6)
to 2D trajectory data X = {Xi, ti}Ni=1. We chose unin-
formative priors for all parameters except for the transition
probabilities, where we use an informative prior to restrict
rapid switching between states (details in Note S1). For an
SPT trajectory, the algorithm samples the posterior distri-
bution, π(θ, z,C|X), giving K samples of the parameters
θ(k) = {D(k), D

(k)
C , κ(k), p

(k)
esc, p

(k)
trap}Kk=1, and hidden states

{z(k),C(k)}Kk=1. Here for each sample k, z = {zi}N−1
i=1

and C = {Ci}N−1
i=1 are the set of hidden states and centre

locations (2D vectors) throughout the trajectory.
We determined convergence of the MCMC sampler by

calculating the Gelman point scale reduction factor (PSRF)
(33), considering a run converged provided the PSRF was
below a threshold in all variables, set to 1.2 on experimen-
tal trajectories. The MCMC run length was increased up to
a maximum of 4 × 105 steps on trajectories that failed the
convergence criteria on shorter runs.

GM1 molecules diffusing in model membranes

We applied the MCMC algorithm to previously published
iSCAT SPT data (4), where CTxB coated AuNPs were intro-
duced to a DOPC lipid bilayer containing 0.03% GM1 lipids
(Fig 1B). A confinement event corresponds to an interaction
between an AuNP/CTxB/GM1 complex on the upper leaflet
with a lower leaflet GM1 that is immobilised on a glass
surface. This was previously referred to as “interleaflet cou-
pling and molecular pinning” (4). Both Gaussian and non-
Gaussian confinement events were observed; we investigated
these events in greater detail using our HPW model.

The dataset includes 71 trajectories of 20 nm
AuNP/CTxB/GM1 diffusing in a model membrane
on a glass substrate, and 18 trajectories of 40 nm
AuNP/CTxB/GM1 in a model membrane on a mica
substrate. There is a dynamic error in the localisation
accuracy at the 50 kHz sampling rate resulting in apparent
superdiffusive behaviour, which we removed by subsam-
pling down to 5 kHz (Note S2, Fig. S1, Fig. S2). We
also removed trajectory artifacts due to multiple AuNPs
in the focal area (Note S2). The MCMC algorithm did
not converge on 5 20 nm AuNP/CTxB/GM1 trajectories
(PSRF convergence criteria of 1.2) leaving a set of 66
trajectories for further analysis. MCMC runs on all 18
40 nm AuNP/CTxB/GM1 on mica trajectories converged.

Thresholding hidden states for lifetime analysis

For each trajectory, at each time point i, we computed the
probability of confinement π(zi|X) from the MCMC pos-
terior distribution samples. This probability distribution is
concentrated near 0 and 1 on experimental trajectories (only
2.7% of the state probabilities were between 0.2 and 0.8,
Fig. S3), indicating high confidence in confinement state
estimates. To annotate the trajectory by state we define the
Binary signal, zBi = 0 or zBi = 1, for free diffusion and con-
finement respectively, using a threshold of 0.5 on π(zi|X).
We then identify confinement events as a series of ones in
the (posterior) binary state vector zB , and free diffusions
as a series of zeros, allowing event lifetimes (and per-event
spatial statistics) to be computed. When considering event
lifetimes we exclude those containing either the first or last
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timepoint of the trajectory, as the full event is not witnessed
hence the state lifetime is unknown.

Confinement event profiling

To analyse confinement events in 20 nm AuNP/CTxB/GM1
trajectories we utilised spatial statistics (including the mean
confinement radius and radial skewness, defined in Table 1)
based on the Euclidean distance between the particle and
the confinement centre. We calculate these statistics for all
events of at least 0.01 s (50 frames). Unlike the event life-
time analysis, we allow events that contain either the first
or last (or both) timepoints. Furthermore, we compute statis-
tics including events revisiting a previous confinement zone
where applicable (details in Table 1). These restrictions left a
set of 271 confinement events when excluding repeat events,
and 427 when including them. The number of events within
a trajectory ranges from 1 - there were 6 examples where
the particle remained trapped for the entire trajectory - to 11
(without repeats) or 25 (with repeats).

Table 1: Calculation of confinement event statistics. We
denote the timepoints of the mth trapping event in the lth
trajectory Tlm. Events have associated particle positions
Xlm = {Xi}i∈Tlm

and harmonic well centre positions
Clm = {Ci}i∈Tlm

. The mean posterior harmonic well cen-
tre is given by C̄lm = 1

Mlm

∑
i∈Tlm

Ci, where Mlm is the
number of timepoints in Tlm. To remove events which revisit
a previous trapping zone we didn’t include events if C̄lm was
within 30 nm of a previous confinement centre (C̄ln, n < m)
within trajectory l. ‖.‖ denotes the Euclidean distance, and
R̂lm denotes the median.

Statistic Calculation
Confinement
radius

Rlm = {Ri}i∈Tlm
, Ri = ‖Xi − C̄lm‖

Mean confinement
radius

R̄lm = 1
Mlm

∑
i∈Tlm

Ri

Radial skewness Slm =
1

Mlm

∑
i∈Tlm

(Ri−R̄lm)3[√
1

Mlm

∑
i∈Tlm

(Ri−R̄lm)2
]3

Radial mean-
median distance

|R̄lm − R̂lm|

Radial SD
√

var[Rlm]

Results

MCMC on simulated data

The HPW model sampler was extensively tested on sim-
ulated data. Figs. 2 and 3 show an MCMC run on the
simulated trajectory of Fig. 1A. The parameter posteriors
are consistent with the true (i.e. simulation) values, Fig. 2.

When confined, the inferred centre closely tracks the sim-
ulated centre (Fig. 3A,B), and every confinement event is
accurately inferred (Fig. 3C). The inferred model parameters
are independent of the algorithm parameter Dest (Fig. S5);
although the informative priors on ptrap, pesc mean these
parameters are typically underestimated. Performance was
also robust to changes in trajectory length and number of
events (Fig. S6, Fig. S7). Estimation of D, DC , κ, z, and
switching rates were robust to the time series subsampling
rate (Fig. S8, Fig. S9), in particular most events were still
detected even with a 10 fold subsampling (Fig. S9).
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Figure 2: Posterior parameter distributions of the HPW
model for a simulated trajectory. (A) Posterior distri-
bution for D (blue) and DC (red), with simulation values
indicated (circles), (B) Posterior for κ and simulation value
(circle), (C) Posterior for pesc (blue) and ptrap (red), with
simulation values (circles). Trajectory as Fig. 1. MCMC pri-
ors as Note S1. Corresponding MCMC runs shown in Fig.
S4. Data based on pooling of 5 independent chains of 2000
steps with a 1000 step burn in. MCMC priors as Note S1.

MCMC on 20 nm AuNP/CTxB/GM1 on glass trajectories

An example of the model fit is shown in Fig. 4 on the
segmented trajectory shown in Fig. 4E. Fig. 5 shows the
associated parameter posterior estimates. Particle state (con-
fined or free diffusion) is well determined, with state prob-
abilities near 0 or 1, Fig. 4C. The parameter estimates for
D and κ are tight (low relative standard deviation), while
the diffusion coefficient of the centre is very low, DC =
0.010 ± 0.0009 µm2 s−1 (mean ± SD) compared to D =
0.52 ± 0.017 µm2 s−1, indicating near complete immobil-
isation of the well. The inferred position of the well cen-
tre is also practically stationary in both coordinates during
periods of confinement consistent with immobilisation, Fig.
4A,B. As an independent measure of changes in mobility,
we estimated the effective local diffusion coefficient (Fig.
4D), which demonstrates a clear shift at around 0.5 s (i.e.
the first inferred switch point). By colour coding the tra-
jectory according to the probability of being confined per
frame, Fig. 4E, we can extract periods of confinement with
non-Gaussian occupation profiles (Fig. 4F-H). In this trajec-
tory we observed that one confinement zone is visited twice,
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Figure 3: Hidden state inference for the HPW model for
a simulated trajectory. (A-B) Mean inferred position of the
harmonic potential centre in x and y directions (black), and
simulated (true) centre (red). Coloured line at the top rep-
resents particle state: free diffusion (blue) and confinement
(yellow). (C) Inferred confinement probability (black line)
and simulated (true) confinement state (yellow area). (D) tra-
jectory coloured by mean inferred confinement state, from
π(zi|X) = 0 (blue, free) to π(zi|X) = 1 (yellow, confined).
Colorbar length 0.1 µm. MCMC as Fig. 2.

Fig. S11, and that the repeat confinements had remark-
ably similar occupation profiles, Fig. 4G-H. The probabil-
ity per frame of switching is reasonably well inferred (Fig.
5C) despite the small number of events. The probability of
escape from a confinement zone is smaller than the proba-
bility of trapping, reflecting the short periods of time that the
AuNP/CTxB/GM1 complex is undergoing free diffusion.

Applying our MCMC algorithm to the 66 trajecto-
ries we obtain parameter estimates across the popula-
tion, Fig. S12. The mean value of D over all trajecto-
ries was 1.15 ± 0.106 µm2 s−1 (mean ± SEM, popula-
tion SD 0.86 µm2 s−1); MSD analysis (using the @msd-
analyzer package (34)) gave a smaller estimate, 0.0525 ±
0.017 µm2 s−1 (mean ± SEM). This difference reflects the
fact that MSD doesn’t account for confinement, which is the
dominant state, whereas our diffusion coefficient estimate
does. Our Bayesian analysis provides estimates of param-
eter confidence per trajectory which are in fact substan-
tially smaller than the spread between trajectories, Fig. S13;
specifically the ratio of the population variances of D and κ
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Figure 4: Hidden state inference for the HPW model
applied to a 20nm AuNP/CTxB/GM1 trajectory. (A-B)
Mean inferred position of the harmonic potential well centre
C (x, y components) and upper coloured bar representing
π(z|X), (colour scale goes from π(zi|X) = 0 (blue, free)
to π(zi|X) = 1 (yellow, confined)). (C) Inferred mean con-
finement state, (D) moving average of local maximum like-
lihood diffusion coefficient estimate, window size 100 (sub-
sampled frames), (E) trajectory coloured by mean inferred
confinement state, colorbar length 0.1 µm. (F-H) Density
coloured 2D spatial histograms of confinement events. The
two events in (G) and (H) are spatially co-located. Data
based on pooling of 10 independent chains. MCMC priors
and convergence criteria as Note S1.

are 257 and 59 times larger than the average trajectory pos-
terior variances respectively. This indicates the presence of
system variability, giving rise to trajectory heterogeneity. To
understand its cause, we investigate whether heterogeneity is
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Figure 5: Posterior parameters of the HPW model applied
to a 20nm AuNP/CTxB/GM1 trajectory. (A) Posterior
distributions for D (blue) and DC (red). (B) Posterior for
κ. (C) Posteriors for pesc and ptrap. Distributions consist of
samples pooled from 12 independent runs. Corresponding
MCMC chains shown in Fig. S10. Trajectory and MCMC
runs as Fig. 4.

manifest in the confinement events of individual trajectories,
specifically the size, shape and lifetime of these events.

Lifetime and shape analysis of confinement events

The mean confinement state lifetime (as defined in Methods)
is 0.024 s, but there is a large variation in event lifetimes
across trajectories (Fig. 6A-B), and significant heterogene-
ity across trajectories (p = 0.02, Kruskal-Wallis test, 1779
events across 60 trajectories). The lifetimes of free diffusion
events, mean 0.002 s, did not show significant heterogene-
ity across trajectories, (p = 0.86, Kruskal-Wallis test on 60
trajectories, 1770 events). Further, we examined if the pop-
ulation of lifetimes across trajectories conform to an expo-
nential waiting time model, i.e. whether switching between
states obey first order kinetics. A Q-Q plot demonstrates that
there is a distinct deviation from an exponential distribution
fit (mean event time µ = 0.024s), specifically there are a
far higher proportion of longer trapping events, indicative of
heterogeneity. A mixture of 2 exponentials is a better fit, Fig.
6D, suggesting that the confinement events derive from a het-
erogeneous population with at least two components with
short and long average lifetimes. The minor population of
long lifetime events are dispersed over trajectories, Fig. 6B,
in particular trajectories are not split into two groups with
long and short mean confinement times. In contrast the free
diffusion state lifetimes closely follow a mono-exponential
distribution, Fig. 6E-F.

We next analysed confinement event shape using the
spatial statistics defined in Table 1. The mean confinement
radius over all trajectories is 18 nm, comparable to the size
of the AuNP, although estimator inflation is likely to be
present (35). The mean radial skewness is 0.88; for com-
parison a 2D Gaussian distribution gives a radial displace-
ment (from the mean) that is Rayleigh distributed with skew
2
√
π(π−3)

(4−π)3/2
≈ 0.63. Mean confinement radius and radial

Figure 6: Confinement event lifetimes are not exponen-
tially distributed. A) Histogram of all confinement lifetimes
(n=1959 events). B) Scatterplot of confinement lifetimes
against trajectories ordered by mean confinement lifetimes.
(C-F) Q-Q plots of state lifetimes against exponential fits.
C) Confinement events against the exponential distribution
(µ = 0.024 s, R2 = 0), D) confinement events against sam-
ples (n = 104) from mixture of 2 exponentials (µ1 = 0.004
s, µ2 = 0.1 s, weights 0.80 and 0.20 respectively, R2 =
0.98). E) Free diffusion lifetimes (2011 events) against the
exponential distribution (µ = 0.002 s, R2 = 0.98), F) free
diffusion lifetimes against samples (n = 104) from mix-
ture of 2 exponentials (µ1 = 0.002 s, µ2 = 0.01 s, weights
0.99 and 0.01 respectively, R2 = 0.98). Red line is extrap-
olated linear fit to the first and third quantiles. Plots A-F
include all confinement events except those which contained
the trajectories’ first or last timepoint.

skewness show a wide distribution of values across confine-
ment events (Fig. 7A,B), with significant (one-way ANOVA:
mean confinement radius p = 1.2 × 10−6, radial skewness
p = 9.1× 10−4; 271 events grouped by 66 trajectories) het-
erogeneity across trajectories, Fig. 7C,D . Confinement event
spatial histograms for all 66 20 nm AuNP/CTxB/GM1 tra-
jectories, ordered by the average within-trajectory mean con-
finement radius (Fig. S14), and average radial skewness (Fig.
S15) demonstrate the wide variety of confinement shapes.
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The observed heterogeneity in confinement time, size
and (previously reported (4)) shape raises two key questions:

1. Does the shape of confinement events determine their
lifetime?

2. Does heterogeneity predominately arise from a mech-
anism operating at individual confinement sites (local
environment dependent), or at the level of trajectories
(AuNP/CTxB/GM1 nanoparticle dependent)?

Figure 7: Shape statistics for confinement events in 20nm
AuNP/CTxB/GM1 trajectories. (A-B) Histograms over
confinement events. (C-D) Spatial statistics for all confine-
ment events, ordered by the average within trajectory statis-
tic. Plots include all confinement events of at least 0.01s,
with events revisiting a previous trapping zone removed
(giving 271 events). (E-F) Scatterplots against trajectories
ordered by average within trajectory value of the statistic.

To probe the relationship between confinement event shape
and lifetime (question 1), we examined their correlation.
We found no correlation between confinement state lifetime
and mean confinement radius (Table S1, Fig. 7E), and a
weak (but significant) negative correlation between lifetime
and radial skewness, (Table S1, Fig. 7F). This suggests that
the mixed-exponential nature of the binding lifetime is only

weakly related to the shape of the binding event, i.e. these
arise from different physical mechanisms.

Regarding question 2, the heterogeneity analysis above
(see also Fig 7C,D) indicates that confinement events are sta-
tistically more similar within trajectories than across trajec-
tories. Additionally, the ratio of the mean variance within tra-
jectories to the variance across all events is 0.6 for both mean
confinement radius and radial skewness, Table S2. To deter-
mine which confinement statistic is most strongly conserved
within trajectories, we clustered events by each confine-
ment statistic and quantified the similarity of events within
single trajectories, Figure 8. Confinement size is the most
conserved, followed by confinement lifetime when exclud-
ing events revisiting a previous confinement zone, Figure
8A. Incorporating revisiting events dramatically improves
the conservation of confinement size and shape statistics rel-
ative to lifetime, Figure 8B; this suggests that, whilst shape
is conserved, confinement time is variable between events at
the same location. This shape conservation at the same site
is evident from the confinement event spatial histograms for
long events, Figure 9. Of note, the mean-median distance
statistic failed to show significant heterogeneity across tra-
jectories, p=0.06, one-way ANOVA, reflecting its lack of
conservation when excluding events revisiting a previous
confinement zone, Figure 8A, but was as conserved as life-
time when all events were included, Figure 8B. Thus, in
answer to question 2, heterogeneity arises at both the trajec-
tory and confinement site level, with different effects on con-
finement lifetime and shape. This suggest that nanoparticle
confinement events are described by 2 degrees of freedom.

Analysis of 40 nm AuNP/CTxB/GM1 trajectories on mica

As a control, we analysed 18 trajectories of 40 nm
AuNP/CTxB/GM1 diffusing in SLBs on a mica substrate.
The previous analysis demonstrated that no confinement
for this treatment was present (4). We applied our HPW
model MCMC algorithm to this data and detected no con-
finement events (Fig. S16) - the posterior confinement prob-
ability was < 0.01 for all time, in all trajectories. The mean
D was 1.2048 ± 0.09 µm2 s−1 (mean ± SEM), compara-
ble to 20 nm AuNP/CTxB/GM1 on glass trajectories (1.15
± 0.20 µm2 s−1). The mean MSD-derived (with @msdana-
lyzer (34)) D was 0.87 ± 0.12 µm2 s−1. These values are in
closer agreement than for the 20 nm AuNP/CTxB/GM1 on
glass dataset, which is expected due to the lack of confine-
ment. However, we again observed trajectory heterogene-
ity in the diffusion coefficients with a ratio of population
variance to mean trajectory variance of 123, indicative of
individual AuNP dependent diffusion coefficients.
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Figure 8: Clustering of confinement event statistics Indi-
vidual confinement events were clustered (k-means++ algo-
rithm (36) with squared Euclidean distance metric) based on
event statistics. For each trajectory, l, the Shannon diversity
index,Hl =

∑Nclusters
j=1 pj log pj , was calculated (pj is the pro-

portion of the events in trajectory l that appeared in cluster
j). The sum of the Shannon diversity index over all trajecto-
ries is then a measure of the dissimilarity of events within tra-
jectories (the lower the Shannon index the higher the similar-
ity). The event statistics (shown in the legend) are defined in
Table 1. For each choice of Nclusters, 50 separate clusterings
were performed (since the k-means++ algorithm stochas-
tically assigns initial values for cluster centroids). and the
sum of the Shannon diversity index was averaged over these
clusterings. A) Clustering of events obtained as described
in “confinement event profiling” in the main text, except
with events containing the first or last timepoints excluded
(214 events total). B) Same as (A), except with events which
revisited a previous confinement zone included.

Discussion

We developed a Bayesian algorithm to infer a HPW confine-
ment HMM, and used it to partition SPT trajectories into
periods of free diffusion and confinement. When applied
to experimental AuNP/CTxB/GM1 trajectories we detected
clear periods of confinement and free diffusion, Fig. 4. It
was previously proposed that confinement event shape het-
erogeneity (Gaussian versus non-Gaussian confinement) in
this dataset was due to transient multivalent binding of the
tag (4). Our analysis of confinement events attained using the
HPW model revealed the following heterogeneity trends:

• Confinement size and shape are conserved within tra-
jectories (Fig. 7C,D), and repeat events at the same site
show similarities (Fig. 5G,H and Fig. 9).

• Confinement event lifetimes are heterogeneous across
trajectories and comprise a mixture of at least two
Exponentials with short (4 ms) and long (100 ms) mean
lifetimes (Fig. 6C,D).

• Spatial heterogeneity and lifetime heterogeneity are
effectively uncorrelated, suggesting they arise from
different mechanisms.

Based on these observations we propose a refinement to the
transient multivalent tag binding hypothesis. Namely, the
characteristics of individual confinement events are deter-
mined by two factors: the size and geometry of the GM1
platform on the lower leaflet (determining residence times),
and the number and distribution of CTxB complexes bound
to the surface of the AuNP (determining size and shape of
confinement event), Fig 1B.

These dependencies are consistent with CTxBs remain-
ing attached to the surface via GM1s throughout the entire
trajectory (Fig. 10); this is supported by the high affinity
of the CTxB/GM1 bond with a dissociation rate in SLBs
of (2.8 ± 0.1) × 10−4 s−1, giving a mean binding life-
time of 3.6× 104 s (37). We propose that differences in the
geometry of bound CTxB on the surface of the nanopar-
ticle causes trajectory-conserved variation in the observed
confinement as follows: tightly packed (or single) CTxBs
have more freedom to “wobble” (Fig. 10B), and broadly
spaced, multiple (bound) CTxBs having less freedom (Fig.
10C), giving a large, respectively small confinement radius
for binding events. Additionally, non-Gaussian confinement
events occur when there is a second (or potentially multi-
ple) CTxB/GM1 attachment that is not immobilised, which
restricts movement to a rotation or non-uniform “wobbling”
around the immobilised binding site (Fig. 10D). These
hypotheses are consistent with the fact that there are around
25 CTxB per 20 nm AuNP (4) - it is expected that there will
be variability in both their number and spatial distribution.
We observe a strong correlation of the diffusion coefficient
with the mean confinement radius (r = 0.61, Fig. 11 A),
but not with the confinement event lifetime (r = 0.27,
Fig. 11 B). This is consistent with the hypothesis that with
more attachments the AuNP experiences higher drag, whilst
the mean confinement radius decreases because of stronger
geometric constraints. Our analysis thus suggests that varia-
tion in the number and spatial configuration of bound CTxB
contributes to the nature of the AuNP interaction with the
upper leaflet of the bilayer, thereby giving each individual
AuNP/CTxB/GM1 complex a confinement signature (Fig. 8,
Fig. S14 and Fig. S15), and diffusion coefficient - the latter
also being evident in the confinement-free 40 nm AuNP data.

The characteristics of the lower leaflet GM1 platform
contribute a confinement site dependence, with conservation
of shape and size upon revisiting the same site (Figs. 8, 9).
On the other hand, confinement lifetime at the same site is
variable. The GM1 in the lower leaflet are immobilised by
hydroxyl pinning sites on the glass surface, with these sites
having an estimated size of <10 nm (4). However, aggrega-
tion of GM1 with domain sizes of 15-60 nm in supported
lipid bilayers has been observed in AFM experiments (38).
Large sites consist of more aggregated GM1 in the lower
leaflet. Our mean confinement radius is 18 nm, which would
comprise both AuNP/GM1/CTxB nanoparticle degrees of
freedom around the binding site, and displacements of the
GM1 platforms between the leaflets. This suggests that either
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Figure 9: Spatial conservation of confinement events revisiting the same site. Each column shows particle position
histograms for two spatially co-located confinement events, and one event at a different location in the same trajectory.
The spatially co-located confinement events are distinct - i.e. the particle moved away from the trapping zone between the
displayed events. Each plot has side length 0.1 µm.

pinning sites are small, or no relative movement is possi-
ble. Larger pinning sites may trap multiple CTxB molecules
on the AuNP, leading to more Gaussian behaviour as rota-
tional degrees of freedom are lost and possibly longer (on
average) trapping times. This could be the cause of the neg-
ative correlation between non-Gaussian confinement shape
and event lifetime (the lower the radial skewness statistic,
the longer the typical confinement time, Fig. 7F). However,
the double exponential mixture distribution of confinement
lifetimes cannot be explained by these mechanisms. Mean
lifetime does not partition by trajectories - long event life-
times being distributed throughout the trajectories, Fig. 6B
- suggesting a random process is responsible. The simplest
explanation is that binding of the AuNP/CTxB/GM1 at the
pinning sites is heterogeneous, e.g. there could be a multi-
step binding sequence with the second (long lifetime) step
proceeding in only a fraction of the binding events. We note
that the 6 trajectories that remain confined throughout are
a third population, since even on the long lifetime distribu-
tion, observing binding events of 1s or longer is negligible
(probability 4.5× 10−5).

Outlook and future work

Analysis of SPT trajectories with HMMs has advantages
over other methods for detecting confinement in single tra-
jectories. In particular, they do not rely on tuning algorithm
parameters through a comparison with Brownian motion.
Additional parameters (such as the confinement strength κ,

centre C, and switching times as inferred here) can also
be extracted, which allows for interpretation and compari-
son of confinement event characteristics across and within
trajectories. However, appropriate HMMs are necessary for
successful analysis. Specifically, models must approximate
well the behaviour of different dynamic states in the data.
For instance, confinement is often associated with a decrease
in the effective diffusion coefficient, suggesting that models
that switch diffusivities (25–30) should also be able to detect
confinement in these iSCAT particle trajectories. However,
we found that a two-state diffusion coefficient switching
HMM (30) could not segment these trajectories (data not
shown). This implies that the effective diffusion coefficient
of the AuNP/CTxB/GM1 complex doesn’t change suffi-
ciently during confinement events. The effective diffusion
coefficient under confined Brownian motion is dependent on
the temporal and spatial resolution of the data, suggesting
that the high temporal sampling rate and positional accuracy
of iSCAT data does not reduce the effective diffusion coef-
ficient during confinement. In fact, the sampling time scale
leads to displacements that are on the order of the confine-
ment radius which required us to use OU dynamics in our
MCMC algorithm. Failing to account for the effect of the
confinement frame-to-frame leads to a bias in the parameter
estimates (not shown).

We incorporated centre diffusion in our HPW model to
relax the constraint of a circular potential. The importance
of this will depend on the spatial-temporal resolution of the
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Figure 10: Schematic of AuNP/CTxB/GM1 structures
leading to Gaussian and non-Gaussian confinement pro-
files. (A) Free diffusion, (B) wide Gaussian-like confine-
ment, (C) narrow Gaussian-like confinement, (D) non-
Gaussian confinement. Insets in (B-D) are example his-
tograms of particle positions pooled over confinement events
within selected trajectories (e.g. Fig. S14, Fig. S15). Insets
have side length 0.1 µm. Schematic based on a figure in
reference (4).
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Figure 11: Correlation between D and confinement statis-
tics. (A) mean confinement radius, (B) confinement lifetime.
Plots include all confinement events of at least 0.01s.

data and whether the confinement zone is static, or has time-
dependent shape variation or drift. For instance, transient
confinement in lipid rafts - which both diffuse and have an
irregular shape - has been hypothesized.

The observation that individual AuNP/CTxB/GM1 com-
plexes have a specific spatial signature means that distin-
guishing the effects of the tag from other factors, such as
the cell membrane environment, is difficult. It follows that
homogenous tags should improve characterisation of the
membrane environment. Since the variability in the tag sig-
nature presumably arises from the random placing of CTxB

molecules on the AuNP surface, using particles with a struc-
tured surface is predicted to reduce or potentially eliminate
this problem. Virions are ideal, given their highly geometric
3D structure. Interferometric label-free tracking of virions
has been demonstrated at 3 s temporal resolution (39); thus
achieving the high spatial and temporal resolution of recent
iSCAT microscopy (such as in the data set explored here)
with viral particle tags is a distinct possibility. The reso-
lution of the tag’s signature and the length of events will
then determine the resolution of that trajectory, and thus the
length scale to which SPT can discriminate different types
of particle movement. Whether this can be taken below the
size of the tag, reminiscent of super-resolution, remains to
be ascertained.

Conclusion

We use a HMM-based analysis to partition SPT trajectories
into periods of free diffusion and confinement. Our algo-
rithm infers the switching times between these two states,
the diffusion coefficient D, and the characteristics of the
confinement events: the HPW strength κ, the position of
the HPW centre C, and the centre diffusion coefficient
DC . We demonstrate the utility of the method on simu-
lated and experimental data; on simulated data confinement
zones were accurately detected and HPW centres accurately
tracked whilst experimental trajectories were partitioned
with high confidence. The model could potentially detect
various biological phenomena such as lipid microdomains
(or “rafts”), receptor clustering, and hop diffusion.
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