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Abstract 
Both the intrinsic regulatory network and spatial environment are contributors of cellular 
identity and result in cell state variations. However, their individual contributions remain 
poorly understood. Here we present a systematic approach to integrate both 
sequencing- and imaging-based single-cell transcriptomic profiles, thereby combining 
whole-transcriptomic and spatial information from these assays. We applied this 
approach to dissect the cell-type and spatial domain associated heterogeneity within the 
mouse visual cortex region. Our analysis identified distinct spatially associated 
signatures within glutamatergic and astrocyte cell compartments, indicating strong 
interactions between cells and their spatial environment. Using these signatures as a 
guide to analyze single cell RNAseq data, we identified previously unknown, but 
spatially associated subpopulations. As such, our integrated approach provides a 
powerful tool for dissecting the roles of intrinsic regulatory networks and spatial 
environment in the maintenance of cellular states. 
 
 

Introduction 
Human and other multicellular organisms are composed of diverse cell types characterized by 
distinct gene expression patterns. Within each cell type, there is also considerable 
heterogeneity. The source of cellular heterogeneity remains poorly understood, but it is 
commonly thought to be modulated by the balance between intrinsic regulatory networks and 
extrinsic cellular microenvironment1–5. Recently, the rapid development of single-cell 
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technologies has enabled accurate and simultaneous measurements of cell position and gene 
expression6–9, thus providing an excellent opportunity to systematically characterize cellular 
heterogeneity. However, the relative contribution of intrinsic and extrinsic factors in mediating 
cell-state variation remains poorly understood.  
Currently, there are two major, complementary approaches for single-cell transcriptomic 
profiling. The first is single-cell RNA sequencing (scRNAseq)6,8,10–15. By combining single-cell 
isolation, library amplification, and massively parallel sequencing, scRNAseq provides the most 
comprehensive view of transcriptomes. The second approach is single-molecule fluorescence in 
situ hybridization (smFISH)7,16–20, which can be used to detect mRNA transcripts with high 
sensitivity while maintaining the spatial content. With sequential rounds of smFISH imaging, it is 
now feasible to profile the expression level of hundreds of genes for each cell in tissues. Each 
technology features a distinct set of advantages and limitations. The sequential smFISH 
technology carries the advantage of measuring the transcriptome with high accuracy in its 
native spatial environment, but current implementations profile only a few hundred genes, 
whereas scRNAseq provides whole-transcriptome estimation but requires cells to be removed 
from their spatial environment, resulting in a loss of spatial information19,21. 
It is clear that an integrative analysis framework, involving scRNAseq and sequential smFISH, 
would bring together the benefits of both technologies to better characterize both cell type and 
spatially dependent variations. To this end, we developed a computational approach that 
contains two major components: First, the scRNAseq data is used as a guide to accurately 
determine the cell-types corresponding to the cells profiled by sequential smFISH. Second, 
distinct spatial domain patterns are systematically detected from sequential smFISH data. 
These spatial patterns are then in turn used to dissect the environment-associated variation in a 
scRNAseq dataset. 
This integrated approach has enabled us to systematically dissect the respective contribution of 
cell type and spatially dependent factors in mediating cell-state variation (Fig. 1a), which has 
eluded previous studies. Most existing studies focused on identifying cell-type differences, but, 
as shown below in our analysis of the mouse visual cortex region, cell-type differences 
represent only one component in cell-state variation (schematically represented as the cell 
intrinsic dimension in Fig. 1a), whereas the spatial environment plays a significant role in 
mediating gene activities, probably through cell-cell interactions (represented as the spatial 
dimension in Fig. 1a) and signaling. As each technology has its own strengths and weaknesses, 
the integrated approach presented here provides a powerful model framework and broadly 
applicable to analyze diverse tissues from various model systems. 

Results 
Mapping scRNAseq cell-types on seqFISH data 
Given that scRNAseq, as a whole transcriptomic approach, can provide signatures for a diverse 
set of cell types, we took advantage of the whole-transcriptomic information obtained from 
scRNAseq data and developed a supervised cell-type mapping approach by integrating 
seqFISH and scRNAseq data (Fig. 1b). Our goal differs from previous studies22–26, where 
scRNAseq data were mapped onto conventional ISH images to predict cell locations. Of note, 
ISH images are not quantitative, multiplexed or single-cell resolution. In a seqFISH experiment, 
transcripts from hundreds of genes are detected directly in individual cells in their native spatial 
environment at single molecule resolution. 
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Our strategy is to use scRNAseq data to capture the large cell type differences and then further 
investigate spatial patterning within each major cell types. We analyzed a published scRNAseq 
dataset targeting the mouse visual cortex regions27. Eight major cell types: GABAergic, 
glutamatergic, astrocytes, 3 oligodendrocyte groups, microglia, and endothelial cells were 
identified from scRNAseq analysis27. To estimate the minimal number of genes that is required 
for accurate cell-type mapping, we randomly selected a subset from the list of differentially 
expressed (DE) genes across these cell types, and applied a multiclass support vector machine 
(SVM)28,29 model using only the expression levels of these genes. The performance was 
evaluated by cross-validation. By using only 40 genes, we can already achieve an average level 
of 89% mapping accuracy. Not surprisingly, increasing the number of genes leads to better 
performance (92% for 60 genes, and 96% for 80 genes). Therefore, there is significant 
redundancy in transcriptomic profiles which can be compressed into fewer than 100 genes.  
We then investigated a seqFISH dataset for the mouse visual cortex area19. A 1 mm by 1 mm 

contiguous area of the mouse visual cortex was imaged with 4 barcoded rounds of hybridization 
to decode 100 unique transcripts followed by 5 rounds of non-combinatorial hybridization to 
quantify 25 highly expressed genes (Supplementary Table 1). These rounds of imaging were 
preceded by imaging of the DAPI stain in the region and followed by imaging of the Nissl stain in 
the region. The images were aligned and transcripts decoded as described in Shah et al. 2016. 
Transcripts were assigned to cells which were segmented based on Nissl and DAPI staining. 
Using this technology, we were able to quantify the expression levels of these 125 genes with 
high accuracy in a total of 1597 cells. 
After computing differentially expressed genes across the 8 major cell types in Tasic et al, we 
selected the top 43 (P<1e-20) of these 125 genes for cell-type classification. These genes 
contain both highly expressed (>50 copies per cell) and lowly expressed genes (<10 copies per 
cell). Cross-validation analysis shows that, using these 43 genes as input, the SVM model 
accurately mapped 90.1% of the cells in the scRNAseq data to the correct cell-type. Therefore, 
we proceeded by using these 43 genes (Supplementary Table 2) to map cell-types in the 
seqFISH data. 
As a first step, we preprocessed the seqFISH data by using a multi-image regression algorithm 
in order to reduce potential technical biases due to non-uniform imaging intensity variation 
(Methods). We further adopted a quantile normalization30 approach to calibrate the scaling and 
distribution differences between scRNAseq and seqFISH experiments. For most genes, the 
quantile-quantile (q-q) plot normalization curve is strikingly linear (Supplementary Fig. 1), 
suggesting a high degree of agreement between the two datasets despite technological 
differences. Then, the SVM classification model was applied to the bias-corrected, quantile-
normalized seqFISH data to assign cell types. Of note, we found that better performance may 
be achieved by further calibrating model parameters to accommodate platform differences. The 
results of multiclass SVM are calibrated across models31 and converted to probabilities. The 
results showed the exclusion of 5.5% cells that cannot be confidently mapped to a single cell-
type (with 0.5 or less probability). Among the mapped cells, 54% are glutamatergic neurons, 
37% are GABAergic neurons, 4.8% are astrocytes, and other glial cell types and endothelial 
cells make up the remaining 4.2% of cells (Fig. 1c). 
To validate our predictions, we first checked the expression of known marker genes and 
compared the average gene expression profiles between scRNAseq and seqFISH data. Indeed, 
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this comparison shows a high degree of similarity (Fig. 1c). Notably, marker genes have 
expected high expression in the matched cell types, such as Gja1 and Mfge8 in astrocytes, 
Laptm5 and Abca9 in microglia, Cldn5 in endothelial cells, Tbr1 and Gda in glutamatergic 
neurons, and Slc5a7 and Sox2 in GABA-ergic neurons. The majority of cell types have a high 
Pearson correlation (>0.8) between matched cell types’ average expression profile; even for the 
rare cell-type microglia, the correlation remains reasonably high (0.75) (Fig. 1d). We are also 
able to distinguish early maturing oligodendrocytes in the seqFISH data based on Itpr2 
expression (Fig. 1c, OPC column) as previously reported by Zeisel et al15. Inhibitory GABA-
ergic neurons and excitatory glutamatergic neurons exhibit strong anti-correlation to each other 
(Fig. 1d). 
As an additional validation, we examined the Nissl and DAPI staining images which are known 
to have distinct patterns between astrocytes and neuronal cell types. As Nissl is a neuronal 
stain and DAPI stains DNA, astrocytes are typically associated with DAPI but not Nissl, whereas 
neurons are stained for both. Our cell-type mapping results highly agree with these patterns. 
Over 89% of predicted astrocytes exhibit strong DAPI staining but weak or no Nissl staining 
across cortex columns (Supplementary Notes, Supplementary Table 3). Taken together, 
these analyses indicate that the majority of cells were mapped to the correct cell types. 
By combining cell type predictions from scRNAseq and positional information from seqFISH, we 
were able to construct a single-cell resolution landscape of cell type spatial distribution (Fig. 1e). 
As expected, this landscape is very complex, with different cell types intermixed with each other 
(Fig. 1e). On the other hand, it is clear that there remains significant heterogeneity within each 
cell-type. 
 
A systematic approach to identify multicellular niche from spatial genomics data 
Microenvironment in tissues can contribute to heterogeneity in addition to cell type specific 
expression patterns. To systematically dissect the contributions of microenvironments on gene 
expression variation, we developed a novel hidden-Markov random field (HMRF) approach32 to 
unbiasedly inform the organizational structure of the visual cortex. An overview of this approach 
is illustrated in Fig. 2a. The basic assumption is that the visual cortex can be divided into 
domains with coherent gene expression patterns. A domain may be formed by a cluster of cells 
from the same cell-type, but it may also consist of multiple cell-types. In the latter scenario, the 
expression patterns of cell-type specific genes may not be spatially coherent, but environment-
associated genes would express in spatial domains. HMRF enables the detection of spatial 
domains by systematically comparing the gene signature of each cell with its surroundings to 
search for coherent patterns. Briefly, we computationally constructed an undirected graph to 
represent the spatial relationship among the cells, connecting any pair of cells that are 
immediate neighbors (Fig 2a, b). Each cell is represented as a node in this graph. The domain 
state of each cell is influenced by two sources (Fig 2b): 1) its gene expression pattern, and 2) 
the domain states of neighboring cells. The total contribution of neighboring cells can be 
mathematically represented as a continuous energy field, and the optimal solution is identified 
by searching for the equilibrium of the field (see Methods, Supplementary Note X for 
mathematical details). Next we applied our HMRF model to analyze the 1597-cell mouse visual 
cortex seqFISH dataset. The expression of the 125 genes ranges from being highly scattered to 
spatially organized. To enhance spatial domain detection, we defined a spatial coherence score, 
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and selected the top 80 genes for HMRF analysis (see Methods). As an additional filter, we 
further removed 11 genes that are highly specific to a single cell type, resulting 69 genes 
(Supplementary Table 4) for spatial domain identification. We found this additional filtering step 
improves the resolution while preserving the overall spatial pattern (Supplementary Fig 2).   
 
HMRF modeling of the visual cortex region revealed 9 spatial domains (Fig. 2c). These 
domains have distinct spatial patterns; some display a layered organization that resembles the 
anatomical structure33. For example, four of the domains are located on the outer layers of the 
cortex therefore labeled as O1, O2, O3, and O4, respectively (Fig. 2c). The locations of these 
layers roughly correspond to the well-characterized L1, L6, and external capsule (EC) layers, 
respectively. Four domains are located on the inside of the cortex therefore labeled as I1a, I1b, 
I2, and I3, respectively (Fig. 2c). These domains roughly correspond to the L2-5 layers. These 
inner domains are less pronounced than the outer domains, which is consistent with previous 
anatomical analysis. Finally, one domain is sporadically distributed across in the inner layers of 
the cortex, therefore labeled as IS (Fig 2c). Of note, such domain-like patterns are not visible in 
the cell-type localization pattern (Fig 1e). Consistent with these results, t-SNE plot using these 
69 genes identified clustering patterns similar to the domain annotations but differ greatly from 
the cell-type annotations (Supplementary Fig. 3). These results strongly suggest HMRF 
provides complementary information to cell type annotations.  
 
By overlaying cell type annotations, we see that each domain generally consists of a mixture of 
GABA-ergic, glutamatergic neurons and astrocytes interacting in each environment (e.g. domain 
I1a in Supplementary Fig. 4). The decomposition of mouse visual cortex into spatial domains 
suggests that a spatial gene expression program is shared across cells in proximity. Differential 
gene expression analysis identified distinct signatures, which we term as the general domain 
signatures, associated with each spatial domain (Fig. 2d, Supplementary Figs. 5, 6, 7). For 
example, genes Calb1, Cpne5, Nov are preferentially expressed in inner domains (I1a, I1b), 
whereas genes Serpinb11, Capn13 are highly enriched in outer domains (O1, O2). Different 
outer domains can be further distinguished by additional markers, such as Mmgt1 (O3), Aldh3b2 
(O1), and Fam69c (O2). Importantly, these spatial gene signatures transcend multiple cell types 
therefore are distinct from cell-type specific signatures (Supplementary Figs 6, 7). The spatial 
marker genes are highly consistent with their spatial expression in Allen Brain Atlas33 ISH 
images, such as Calb1, Cpne5, Nov (see Supplementary Fig. 8). Other markers such as Nell1, 
Aldh3b2, Gdf5 have layer-specific expressions that are consistent with Zeisel et al15 
(Supplementary Fig. 8). We summarized the gene signature of each domain as a metagene, 
defined as the average expression of the subset of genes that are specifically associated with 
the domain. This provides an “analog” representation of the spatial domain information as an 
additional diagnostic (Supplementary Fig. 9). Taken together, these analyses strongly suggest 
that our model for analyzing seqFISH data is able to detect functionally and transcriptionally 
distinct spatial environments. 
 
Integrative analysis identified cell-type, environmental interactions 
Glutamatergic neurons mediate the neuronal circuit in the visual cortex by playing a primarily 
excitatory function. It is also well-known that the behavior of different glutamatergic neurons can 
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be very different27,34. By combining cell-type mapping and spatial domain identification, we set 
out to dissect the source of heterogeneity within glutamatergic cells. First, nearly all 
glutamatergic cells express cell-type specific markers such as Gda and Tbr1 (Fig 3a top). In 
addition to demonstrating cell type identity, there exists substantial heterogeneity within 
glutamatergic cells in a spatially dependent manner. As glutamatergic cells are spread across 
all 9 domains, each subset expresses a different gene signature in accordance to domain 
annotation (Fig. 3a middle, bottom). First, the general domain signatures in Fig 2d, aggregated 
as metagenes, can separate glutamatergic cells into domains (Fig 3a middle). Secondly, 
beyond the general signature, an additional set of gene signatures are differentially expressed 
between glutamatergic cells in different domains (Fig. 3a bottom). To distinguish these genes 
from the general domain signatures which are cell-type transcending, we refer to these genes 
as the glutamatergic restricted signatures. For example, Mmp8 expression is restricted to 
domain O2 (Fig 3a bottom), whereas Hoxb8 expression is specific to O3, and Nfkb2 to IS (Fig 
3a bottom). Collectively, the domain-specific signatures map out the spatial patterns of 
expression within glutamatergic cells, demonstrating their power to differentiate subgroups of 
this neuron class (Supplementary Figs. 9, 10, 11).  
 
By visual inspection, we observed remarkable morphological switches near the boundary 
between different domains at multiple regions (the three groups of cells in panel L6a, L6b, EC of 
Fig 3b), including change of circularity and cell orientations, and accompanied by metagene 
expression switches (Supplementary Fig 11). To systematically compare the morphological 
differences between different domains, we extracted quantitative information of 15 different 
morphological features per cell based on the Nissl staining images, and compared the statistical 
distributions across different domains. Indeed, we found a number of features display strong 
domain associations, including circularity in O4 (P<6.1e-12), width in I1b (P<1.6e-14), angle in 
O3 (P<6.7e-18), minimum feret diameter in I1a (P<3.0e-11) (Supplementary Fig 12). Of note, 
these differences cannot be identified by using cell-type mapping alone (Fig 3b). Thus, within 
neuronal cell types, such as glutamatergic or GABA-ergic neurons, there remains significant 
morphological differences across domains, suggesting that spatial positions accounts for a large 
part of morphologies in these cells, consistent with known morphological diversity in the cortex. 
Overall, these analyses strongly suggest that spatial domain variation plays an important role in 
mediating cellular heterogeneity. 
 
Using HMRF domain information to reanalyze scRNAseq data 
ScRNAseq data does not contain spatial information. However, using domain signatures 
derived from seqFISH as a guide, we were able to infer spatial locations from scRNAseq data.  
In order to dissect the contribution of environmental factors to transcriptomic heterogeneity, we 
focused on glutamatergic cells, and combined the general domain signatures with the additional 
set of markers that are glutamatergic restrictive. Using these expanded domain signatures 
(Supplementary Table 5) summarized as metagenes, we were able to uncover a hidden 
structure within the glutamatergic cells (Fig 4a, b). Strikingly, the glutamatergic cells can be 
partitioned into nine different clusters based on the expanded domain signatures, which were 
highly consistent with seqFISH data analysis (Fig 4a, b). As such, these clusters were labeled 
according to their enriched metagene signatures (Fig 4a). 
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We compared the inferred domain annotations with the original sites of dissection in Tasic et al.  
Several domains match the corresponding layer structure very well (Fig 4c). For example, 
cluster 1 (annotated as domain I1a based on metagene analysis) significantly overlaps with L1-
L2/3 (P<2.3e-6). Cluster 2 (annotated as domain O2) overlaps with L6b (P<4.8e-9), and cluster 
9 (annotated as domain I3) significantly overlaps with L6a dissection label (P<1.0e-8). On the 
other hand, clusters 3, 4, and 5 (annotated as domains O4, I2, and IS) do not correspond to 
specific layers.  
 
Using the whole transcriptomes from scRNAseq, we searched for additional domain specific 
gene signature based on co-expression analysis. Our analysis identified a number of genes that 
were not assayed by seqFISH, including Tubb2a (I1a), Ndrg3 (O4). We examined the 
corresponding ISH images in the Allen Brain Atlas, and found that the inferred spatial patterns 
agree well with the imaging data (Supplementary Fig. 13). We further conducted gene set 
enrichment analysis based on the inferred domain-specific markers, and identified a number of 
functional biological processes that are enriched in specific domains (Fig 4d).  
 
An important question is whether the distinction between the subpopulations identified through 
our integrative analysis simply reflects subtype differences which can be identified through 
scRNAseq analysis alone. To address this question, we systematically compared the domain 
and subtype annotations using a number of approaches, including the underlying gene 
signatures, the grouping of cells based on domain or cell subtype annotations, and tSNE-based 
visualizations (Supplementary Figs 14,15). Based on these comparison, our conclusion is two-
fold. On on hand, we observed a non-negligible association between the two sets of 
annotations, such as at L6b_Serpinb11, L2/3_Ptgs2, L6a_Sla (Supplementary Fig 14). For 
example, several domain-specific markers are also markers of specific cell subtypes, such as 
Serpinb11, Cpne5, and Sema3e (Supplementary Fig 16a). On the other hand, it is also clear 
that the overall structure of domain- and subtype- annotations are very different. For example, 
cells inferred to be located in domains O1, IS, O4 spread across multiple subtypes 
(Supplementary Figs 14, 16b). Conversely, neither L5a_Batf3 nor L5a_Hsd11b1 subtype is 
associated with any specific domain (Supplementary Fig 14). Taken together, these analyses 
strongly indicated the domain patterns are distinct from, and therefore complementary to, cell 
subtype annotations. Thus, integrating seqFISH data analysis provides new insights into 
scRNAseq data. 
 
HMRF analysis reveals region-specific variation among astrocytes 
Next, we investigated the environment effect on astrocytes, which are also known to have 
substantial heterogeneity20,35. Our cell type mapping identified 47 astrocytes in the seqFISH 
data. These cells all expressed key astrocyte markers (Fig 5, box 1) but were spread across 5 
different spatial domains (O1, O2, O3, I1a, and I3) (Fig. 5). Of note, a number of astrocyte 
markers20 (Supplementary Fig. 17) are only expressed in specific domains (Fig. 5). As an 
example, Acta2, Col5a1, and Sox2 are strongly associated with domain I1a, while their 
expression levels are greatly reduced in domains O1 and O2.  On the other hand, the 
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expression levels of Clec5a and Ankle1 are high in domains O2 and O1 but much lower in other 
domains. The spatially dependent variations may underline important functional differences.  
 
 

Conclusion 
A major goal in single-cell analysis is to systematically dissect the contributions of cell-types and 
environment on mediating cell-state variability. To achieve this goal, we presented an HMRF-
based computational approach to combine the strengths of sequencing and imaging-based 
single-cell transcriptomic profiling strategies. We showed that our method can be used to 
correctly detect spatial domains in the mouse visual cortex region. In doing so, we were able to 
identify environment-associated variations within a common cell-type. Our analysis also 
demonstrated that novel insights can be gleaned from single-cell data by an integration of 
information from complementary technologies. In particular, integrating scRNAseq data allows 
us to map cell-types more accurately than in seqFISH data analysis, whereas integrating 
seqFISH data allows us to extract spatial structure in scRNAseq data analysis. To test the 
generalizability of our method, we applied it to analyze a published spatial transcriptomic 
dataset obtained from a very different technology36. Here, spatial information was identified by 
hybridizing mRNA to a specially designed tissue-microarray containing spatial barcoding oligo-
probes. Despite the significant platform differences, our HMRF model was able to recapitulate 
the spatial domains that are consistent with the underlying anatomical structures 
(Supplementary Fig 18). In another example, we analyzed seqFISH data19 obtained from a 
different region (dentate gyrus) using different probes. Again the results are consistent with the 
anatomical structure (Supplementary Fig 19). These analyses strongly indicate our method is 
generally applicable. Future work will continue to investigate the mechanisms underlying the 
interactions between cell-type and microenvironment. 
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Methods 
SeqFISH data generation 
SeqFISH data in the mouse visual cortex region was generated as described previously (Shah 
2016). Briefly, 100 genes were encoded using a temporal barcoding method and 25 genes were 
quantified individually. To encode 100 genes, 4 rounds of hybridization were performed using 5 
distinct fluorescence channels. Out of a total possible 625 barcodes, 100 were chosen such that 
loss of signal in any given hybridization still allows accurate decoding of the spot. Every 
transcript was hybridized in every round using a given probe set. After hybridization, the signal 
was amplified using smHCR and images were taken at predefined locations in the mouse visual 
cortex. The DNA probes along with the amplification polymers were digested using DNase I 
DNAseI leaving behind a naked RNA for re-hybridization with the next probe set. A round of 
imaging with DAPI staining (which labels the DNA) was done before any RNA hybridization to 
image all nuclei in the fields and a final round of Nissl staining (which labels the cell body in 
neuronal cells) was imaged to identify cell boundaries. Cells were segmented based on DAPI 
staining, Nissl staining, and RNA point density. Once all imaging rounds were completed, these 
images were aligned using a 2D normalized cross correlation and each spot was decoded 
based on the unique color switching pattern. For the 25 genes that were labelled without any 
encoding, simple spot counting was done to identify the number of transcripts. These transcripts 
were then assigned to cells based on the location of the transcript and the segmentation masks. 
For more details regarding the seqFISH method, please refer to Shah et al. 201619. The spatial 
coordinates of the cells are provided in Supplementary Data. 
 
SeqFISH data normalization and bias correction 
The seqFISH gene expression matrix, represented by log(count + 1), was normalized by row 
and column z-scoring to remove cell-specific and gene-specific biases. Potential field imaging 
biases were estimated and removed by using a multi-image regression algorithm similar as 
previously done37. Briefly, for each gene, the imaging bias at each binned location was 
estimated by averaging the normalized gene expression levels over 8 neighboring bins within 
each field followed by averaging across all fields. The estimated bias was then modeled by 
principal component analysis (PCA). The contributions of the four most significant PCs were 
estimated by linear regression and removed from the normalized gene expression matrix 
(Supplementary Fig 20). 
 
Cell type mapping 
Single-cell RNAseq data for the mouse visual cortex were obtained from Gene Expression 
Omnibus38 (GSE71585). Cell-type information corresponding to 1723 cells was obtained from 
the original paper27 (Tasic 2016). In this analysis, we considered the 8 major cell types: 
GABAergic, glutamatergic, astrocytes, 3 oligodendrocyte groups, microglia, and endothelial 
cells. Differentially expressed genes among different cell types were identified by MAST39. 
We trained classifiers of cell types from single-cell RNAseq dataset by using the multiclass SVM 
formulation. For each cell-type, we built a classifier as follows. Let �� , � � 1, … , �, be the gene 
expression pattern for the �-th cell, and �� code for cell-type identity: �� � 1 if cell � belongs to 
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the specified cell type and -1 otherwise. We selected the linear kernel that produces two 
hyperplanes that best separates the two classes. The objective function is defined as follows 
	���	�
� �∑ ��

��
��� �  � ����/2  

������� �� 1 � �� � ���� · �� � ��, �� ! 0                      Eq.1 
Here w is the normal vector to the hyperplane used to represent margin. The squared hinge loss 

function ∑ ��
��

���  is used here to quantify the margin of misclassification error. C is a 
regularization parameter that trades off misclassification due to overfitting against simplicity of 
the decision function. A lower C increases the ability of the model to generalize to unseen data 
at a cost of larger fitting error. For testing data, the sign of � ·  �� � � is used to predict cell type 
identity. We used the Python LinearSVC implementation, which is part of the scikit-learn 0.19 
library40, with the following parameter setting: class_weights=balanced, dual=False, 
max_iter=10000, and tol=1e-4. 
Using the SVM model formulated as above, we first tested how many genes are needed for 
accurate cell-mapping. To this end, we randomly subset 20, 40, 60, and 80 genes from the list 
of differentially expressed genes and, for each gene set, built a vanilla SVM classification model 
to map each cell in the single-cell RNAseq dataset to its corresponding cell-type. The cross-
validation accuracy was evaluated by using 4-fold cross-validation. Our results indicated that a 
high accuracy (>90%) can be obtained with 40 or more genes. 
In addition to the major cell types mentioned above, Tasic et al also identified 22 fine cell 
classes, and 49 minor cell classes. Using the same approach, we also evaluated the accuracy 
of refined cell-type mapping (Supplementary Fig 21).  We found that approximately 200 genes 
are required to achieve 85% accuracy in predicting 22 finer classes, and over 800 genes are 
needed to predict the 49 minor cell types with 75% accuracy. Therefore, we focused on the 
mapping of 8 major cell types on seqFISH given that they can be predicted accurately with 
fewer than 100 genes (ROC curves in Supplementary Fig 22).  
To map cell-types in the seqFISH data, we made a few modifications to incorporate the platform 
differences. First, since 125 genes were profiled by seqFISH, we used the top differentially 
expressed genes (p<1e-20) in the scRNAseq dataset for cell-type mapping. Based on the 
subsampling analysis described above, these 43 genes were sufficient for accurate cell-type 
mapping. Second, the scRNAseq data were z-score transformed so that the dynamic range was 
comparable with seqFISH data. Third, we used quantile normalization30 to convert seqFISH 
data so that the statistical distribution was almost identical to single-cell RNAseq data.Fourth, 
we chose the regularization parameter C to maximize the cross-platform correlation between 
the cell-type specific gene expression profiles, resulting an estimate of C=1e-6. Finally, to 
account for the possibility that certain cells cannot be unequivocally assigned to a single cell-
type, we used Platt scaling31 to convert SVM output to a probability measure and then selected 
a cutoff value of 0.5 probability to filter cells that can be confidently mapped to a single cell-type. 
97 (5%) cells did not pass this filter. 
 
Hidden Markov random field 
Hidden Markov random field (HMRF) is a graph-based model commonly used for pattern 
recognition in image data analyses32,41. In a common setting, HMRF is used to model the spatial 
distribution of a signal, such as the pixel intensities over a 2D image. The spatial structure is 
represented as a set of nodes on a regular grid, where neighboring nodes are connected to 
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each other. The spatial pattern is “hidden” in the sense that it must be indirectly estimated from 
other variables that can be directly measured. The most important assumption in HMRF is the 
Markov property, which states that the spatial constraints can be reduced to considering only 
correlation between immediate neighboring nodes. This simplifying assumption implies that the 
joint distribution can be decomposed as products of much smaller components each defined on 
a fully connected subgraph (termed cliques). As has been done previously, we decomposed the 
graph into size-2 components (or edges in the graph) that provides a convenient means to 
estimating the MRF by using pairwise energies. 
Specifically, let # � $��% be the nodes in the graph. The set of nodes and the adjacency relation 
as defined by the local neighborhood graph forms the neighborhood system &#, $'�%(. Every 
node is associated with observed signal values �� . Let  � $�� � 1, … , )% represent the set of 
possible classes of patterns. The joint probability that a node �� is associated with class  

 

 is 
specified by the following equation: 
*&��|�� , �� , ���

( � 1/, *&��|�� , �� (*&��|�� , ���
(                      Eq.2 

In the right hand side, the term  *&�� |�� , ��(models the effect of the node �� ’s own gene 
expression, whereas *&��|�� , ���

( models the effect of the neighboring cells configuration ���
. 

The combined effect of these two terms is schematically shown in Fig. 2. The latter term is 
further determined by the Gibbs distribution: 

*&��|�� , ���
( � 1/,� ��- .�/ ∑ 0��� , �����	��

1                                    Eq.3 

where 0&�� , ��( is referred to as the energy function. The exact formulation of 0&�� , ��( is 

dependent on the specific application, and it imposes the assumption of how neighboring nodes 
are interacting with each other. Here we use the special case Pott’s model. 
0&�� , �� ( � �1, �2 �� �  �� ;  4�5 0 ��6�7����.                          Eq.4 

which means that the effects of neighboring cells are additive. Essentially, *&��|�� , ���
( 

expresses the total energies as a summation of pairwise interaction energies with neighbors. 
The parameter beta reflects the strength of interactions. 
 
Application to seqFISH data 
The HMRF model described above is naturally applicable to analyze seqFISH data. Here each 
class of patterns corresponds to a spatial domain. The observed signals are gene expression 
levels measured by seqFISH data, whose distribution is modeled as a multivariate Gaussian 
random variable. The application of HMRF to seqFISH data analysis involves the following 4 
components. 1) Neighboring graph representation. 2) Gene selection. 3) Domain number 
selection, and 4) Implementation and model inference. The details of each component are 
described below. 
1. Neighborhood graph representation. An undirected graph was constructed to represent the 

spatial relationship between the cells. Each node represents a cell, and each edge connects 
a pair of neighboring cells. The neighborhood size was chosen such as on average each 
cell has five neighboring cells.   

2. Gene selection. We selected a subset of genes whose expression patterns tend to be 
spatially coherent based on the following analysis. For each gene g, cells were divided into 
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two mutually exclusive sets:  the first set, denoted by L1, contains cells with high expression 
at the 90th percentile expression level cutoff, and the rest of the cells were denoted by L0. 
The spatial coherence of gene expression was quantified as the Silhouette coefficient42 of 
the spatial distance associated with these two cell sets. Specifically, the Silhouette 
coefficient is calculated as: 
9� � 1/|:�| ∑ &	� � ��(/	4�&	� , ��(��	��

                   Eq.5 

 
where for a given cell �� in Set L1, 	�  is defined as the average distance between �� and any 
cell in L0, and �� is defined as the average distance between and any other cell in L1. Here, 
we used the rank-normalized, exponentially transformed distance to quantify the local 
physical distance between two cells. For a pair of cells �� and ��, this distance is defined as 

7&�� , ��( � 1 � -�������,�����where is the mutual rank43 of ��  and ��  in the vectors of euclidean 

distances {Euc(si, *)} and {Euc(sj, *)}. Hence, this exponentially weighted function44 is 
designed to give more emphasis on closely located cells and penalizing far-away cells’ 
distance to a large number. p is a rank-weighting constant (0<p<1.0) set at 0.95. The 
statistical significance of 9� was evaluated by random permutation, and the genes 

associated with significant values of 9�(p-value < 0.05) were selected as spatially coherent. 

Using the above criteria, we found 80 spatially coherent genes. We further removed 11 cell 
type specific genes (MAST P<1e-20) which have average expression z-score >2. We found 
this additional filtering step is useful for improving the resolution while preserving the overall 
spatial pattern (Supplementary Fig 2). We repeated the analysis using varying degree of 
stringency for selecting spatially coherent genes (Supplementary Fig 23), varying the 
degree of excluding cell-type specific genes (Supplementary Fig 2), and varying beta 
(Supplementary Fig 24), and found that the overall patterns identified by the HMRF model 
is robust against these variations. 

3. Domain number selection. We used k-means clustering results as initialization for the HMRF 
domains. The value of k was selected based on the gap-statistics45. 

4. Implementation and model inference. The model parameters were inferred by using the 
Expectation-Maximization (EM) algorithm46. We developed a new implementation based on 
the MRITC R package47 and GraphColoring Java package48. The implementation contains 
modifications to accommodate arbitrary neighborhood graph topology. The domain 
assignment for each cell was determined by using maximum a posteriori estimation, which 
can be viewed as the equilibrium state of the energy function. See Supplementary Notes 
for implementation details. 

 
Robustness analysis of the HMRF model 
We also tested the robustness of our HMRF model against spatial perturbation. This was 
achieved by randomly exchanging the spatial locations of a subset of cells (10%, 20%, 40%, 
100%). At 100% exchanging rate, the spatial coherence is completely disrupted. Log-likelihood 
of the HMRF model was recorded and compared across scenarios. As expected, the log-
likelihood achieves maximum at a low perturbation rate and gradually decreases as the 
exchange rate increases. The difference between the perturbed and unperturbed data is highly 
statistically significant (Supplementary Fig 25).  
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Domain-specific gene signatures 
For each spatial domain, we identified a subset of genes that were significantly up-regulated in 
the domain compared to cells in other regions. Specifically, we require that the selected gene be 
both significant in one-vs-one tests (comparing it to one domain at a time, and pass significance 
threshold P<0.05 in at least 7 of 8 such tests, Welch’s t-test) and significant in one-vs-rest test 
(P<1e-5 Welch’s t-test). The use of t-test is justified as the expression z-scores are normally 
distributed (Supplementary Fig 26). Non-parametric Mann-Whitney U tests yield similar 
signatures (Supplementary Fig 27). Accordingly, we defined a metagene signature as the 
average expression level for this subset of up-regulated genes. These domain-associated 
metagene signatures (as appears in Fig 2d) transcend cell types (Supplementary Figs 6,7). 
Furthermore, we restricted this comparison to each specific cell type, and obtained an additional 
list of genes that are differentially expressed between domains. An expanded domain-metagene 
signatures was then defined based on the merged gene subsets. For glutamatergic cells, the 
expanded metagene signatures are summarized in Supplementary Table 5.  
 
Analysis of spatial structure in the single-cell RNAseq data 
In order to systematically characterize the spatial structure within a scRNAseq data, we 
summarized the gene signature associated with each spatial domain as a metagene (as 
described in the previous section). For simplicity, the overall expression of an expanded 
domain-specific metagene signature in each cell was quantified as the mean z-scored 
expression of all constituent genes in the signature. A t-SNE analysis was performed on this 
matrix using the Rtsne package with parameters pca_scale=T, perplexity=35. Cell 
subpopulations with similar metagene expression patterns were identified by K-means 
clustering analysis (K=9). We next annotated each cluster as belonging to the expression of one 
metagene. By comparing the binarized metagene expression population (Fig 4b) and the K-
means cluster annotations (Fig 4a), all of the K-means clusters were assigned as uniquely 
belonging to one metagene. 
For each subpopulation discovered from metagene clustering above, we found differentially 
expressed (DE) genes for the population (2-sample t-test, unequal variance, P<0.05). With the 
DE genes, we carried out Gene Ontology enrichment analysis (using hypergeometric test) for 
each of 9 subpopulations to construct a functional enrichment profile in Fig. 4 (hypergeometric 
test, top 500 DE genes analyzed per group, multiple hypothesis49 corrected P<0.05). Here we 
used genes expressed in glutamatergic cells as the background gene-set when doing 
enrichment analysis. 
Tasic et al also provides layer information for a glutamatergic cell subset based on the layer 
from which the cells were manually dissected using different Cre-lines. To test whether the 
extracted subpopulation based on metagenes is enriched for a certain manually dissected layer 
of cells, we also performed hypergeometric test corrected for multiple hypothesis comparing 
manual annotations of cells to our HMRF domain-based annotations. 
 
Visualization of spatial domain and cell type specific variations 
We created box plots to visualize the range of expression values for cells in different domains 
and for different cell types. Additionally, to see cell type transcending effect of domain signature 
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genes, for each genes, we grouped cells by (cell type, spatial domain) pair, and plotted the 
expression distribution across groups ordered by spatial domains. Groups with less than 4 cells 
are removed as these skewed the comparison. 
 
Morphological analysis 
We loaded the cell segmentations as regions of interest files (ROI) in ImageJ50, then used the 
Measure tool available in ImageJ to quantitatively measure over 15 morphological features for 
individual cells. We compared the distributions across different cell-types by using the 
Kolmogorov–Smirnov test. Statistical significance is judged by both 1) significance in at least 7 
of 8 one-vs-one tests (P<0.05 per test), and 2) significance in one-vs-rest test (P<0.0001).   
 
Code Availability 
Code is deposited at https://bitbucket.org/qzhudfci/smfishhmrf-py/. 
 
Data Availability 
Expression data, spatial coordinates, SVM predictions, HMRF domains, and expression box-
plots categorized by domains and cell types are deposited at https://spatial.rc.fas.harvard.edu. 
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Main Figure Captions 
 
Figure 1: Overall goal of the project and cell type prediction in seqFISH data. 

a. Cellular heterogeneity is driven by both cell-type (indicated by shape) and environmental 
factors (indicated by colors). ScRNAseq based studies can only detect cell-type related 
variation, because spatial information is lost.   

b. Our goal is to decompose the contributions of each factor by developing methods to 
integrate scRNAseq and seqFISH data.  

c. Prediction results evaluated by the comparison of cell-type average expression profile 
across technologies for 8 major cell types. Values represent expression z-scores. 

d. Correlation between reference and predicted cell type averages ranges from 0.75 to 
0.95. 

e. Integration of seqFISH and scRNAseq data (illustrated by b) enables cell-type mapping 
with spatial information in the adult mouse visual cortex. Each cell type is labeled by a 
different color. Cell shape information is obtained from segmentation of cells from 
images (see Methods). 

 
Figure 2. Spatial domain dissection in seqFISH data using hidden Markov random field (HMRF) 
approach.  

a. A schematic overview of the HMRF model. A neighborhood graph represents the spatial 
relationship between imaged cells (indicated by the circles) in the seqFISH data. The 
edges connect cells that are neighboring to each other. seqFISH-detected multigene 
expression profiles are used together with the graph topology to identify spatial domains.  
In contrast, k-means and other clustering methods do not utilize spatial information and 
therefore the results are expected to be less coherent (illustrated in the dashed box).   

b. An intuitive illustration of the basic principles in a HMRF model.  For a hypothetical cell 
(indicated by the question mark), its spatial domain assignment is inferred from 
combining information from gene expression (xi) and neighborhood configuration (cNi). 
The color of each node represents cell’s expression and the number inside each node is 
domain number. In this hypothetical example, combining such information results the cell 
being assigned to domain 1, instead of domain 3 (see Methods).  

c. HMRF identifies spatial domain configuration in the mouse visual cortex region. Distinct 
domains reveal a resemblance to layer organization of cortex. Naming of domains: I1a, 
I1b, I2, I3 are inner domains distributed in the inner layers. O1-O4 are outer domains. IS 
is inner scattered state. These domains are associated with cell morphological features 
such as distinct cell shape differences in outer layer domains. Cell shape information is 
obtained from segmentation of cells from images (see Methods). 

d. General domain signatures that are shared between cells within domains. 
 
Figure 3: HMRF analysis identified domain associated heterogeneity within glutamatergic cells.  

a. Three major sources of variations in glutamatergic neurons. (Top): cell type specific 
signals Gda and Tbr1. (Middle): general domain signatures as in Fig 2d, summarized 
into metagenes’ expression. (Bottom): glutamatergic restricted domain signatures, found 
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by comparing glutamatergic cells across domains and removing signatures that are 
general domain signatures.  

b. Snapshots of single cells. Each row is a snapshot of cells at the boundary of two layers. 
Each of two columns is a type of annotation: (left column) cell type, (right column) HMRF 
domains. Cell type is incapable of explaining layer-to-layer morphological variations: e.g. 
glutamatergic cells (orange) is present in all layers yet morphological differences exist 
within glutamatergic cells. HMRF domains better capture the boundary of two layers in 
each case, in that the domains can separate distinct morphologies 

 
Figure 4. Reanalysis of single-cell RNAseq data (from Tasic et al ) with domain signatures 
summarized into metagenes. 

a. t-SNE plot shows how glutamatergic cells from Tasic et al cluster according to expanded 
domain signatures aggregated as metagenes (shown in (b)). Colors indicate k-means 
clusters (k=9). Each cluster is annotated by its enriched metagene activity.  

b. Binarized metagene expression profiles for the glutamatergic cells. Red: population that 
highly expresses the metagene.  

c. Spatial clusters defined according metagenes are enriched in manual layer dissection 
annotations. Column: layer information obtained from microdissection. Row: metagene 
based cell clusters.  

d. Inferred spatial clusters of glutamatergic neurons are enriched in distinct GO biological 
processes. 

 
Figure 5: Spatially dependent astrocyte variation revealed by HMRF. 
Neighborhood cell type composition for the 47 astrocyte cells (columns). Cells are ordered by 
HMRF domain annotations. The heatmap shows single cell expression of astrocytes clustered 
by domain-specific genes. Blue-box highlights the common signatures expressed in each 
domain’s astrocyte population.  
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