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Abstract

In real life, behavior is influenced by dynamically changing contextual factors

and is rarely limited to simple tasks and binary choices. For a meaningful

interpretation of brain dynamics underlying more natural cognitive processing

in active humans, ecologically valid test scenarios are essential. To understand

whether brain dynamics in restricted artificial lab settings reflect the neural

activity in complex natural environments, we systematically tested the event-

related P300 in both settings. We developed an integrative approach comprising

an initial P300-study in a highly controlled laboratory set-up and a subsequent

validation within a realistic driving scenario. Using a simulated dialog with a

speech-based input system, increased P300 amplitudes reflected processing of

infrequent and incorrect auditory feedback events in both the laboratory setting

and the real world setup. Environmental noise and movement-related activity in

the car driving scenario led to higher data rejection rates but revealed no e↵ect

on signal-to-noise ratio in theta and alpha frequency band or the amplitudes of

the event-related P300. Our results demonstrate the possibility to investigate

cognitive functions like context updating in highly adverse driving scenarios and

encourage the consideration of more realistic task settings in prospective brain

imaging approaches.
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1. Introduction

To improve our understanding of human cognition and the underlying brain

dynamic processes in real life situations, ecological task settings are needed that

allow complex and realistic behaviors (Engel et al., 2013). On-road driving sce-

narios are such an example of an ecological task setting in which, in contrast

to simulated driving, incorrect behavior can have drastic consequences. While

laboratory studies allow controlled investigations of specific cognitive and be-

havioral processes, it is not clear whether these phenomena can be observed

in real life conditions. This is especially the case for behaviors that involve

active movements of participants which provide sensory feedback that itself in-

fluences brain dynamics and cognition (e.g. Gramann, 2013). However, the

application of established brain imaging methods like electroencephalography

(EEG) in more natural task settings are hindered by artefacts induced by ac-

tive behavior. Non-brain activity like muscle and eye movements, or electric

and mechanical artifacts can severely impact the signal quality on the sensor

level. However, advances in mobile amplifier systems and developments in data

analyses approaches can overcome these problems. The recently developed Mo-

bile Brain-Body Imaging (MoBI) approach (e.g. Makeig et al., 2009; Gramann

et al., 2011, 2014) overcomes the restrictions of traditional imaging modalities

by using ambulatory EEG or NIRS devices combined with motion capture and

other data streams that allow active behavior (e.g. Gwin et al., 2010; Jung-

nickel & Gramann, 2016; Banaei et al., 2017). MoBI studies demonstrate that

brain activity can be distinguished from environmental and behavioral artifacts,

opening up new possibilities for more realistic test and acquisition scenarios out-

side restricted laboratory set-ups. Driving a car is one such realistic scenario

that is highly relevant for a large part of the population but represents a hostile

recording environment for EEG recordings. Driving takes place in non-shielded

environments with electronic equipment surrounding the driver and the task

requires complex behaviors, including movement of the eyes, the head, as well

as the arms and shoulders, that are typically restricted in standard laboratory
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settings to avoid movement-related artifacts from distorting the signal of inter-

est. Analyzing human brain dynamics in a real driving scenario can thus be

considered a stress test for comparison of EEG parameters, e.g. event-related

potentials (ERP), obtained during real-world driving with parameters estab-

lished in traditional laboratory settings including car simulators. If established

parameters like the event-related P300 component can be replicated in real

driving scenarios, EEG-data can be used to improve our understanding of how

drivers process information while controlling a vehicle in a realistic environment.

Providing direct access to the driver’s neuronal responses during di↵erent driv-

ing process phases, EEG might serve the development and evaluation of user

centered designs for technical assistance systems in the safety-critical driving

environment (e.g. Brouwer et al., 2017).

So far, only a few studies have recorded and analyzed brain activity in real-

life driving tasks and the majority of these studies focus on workload measures

(Kohlmorgen et al., 2007) or vigilance (e.g. Kecklund & Åkerstedt, 1993; Pa-

padelis et al., 2007; Schmidt et al., 2009; Simon et al., 2011; Sonnleitner et al.,

2014). Haufe et al. (2014) present results from a driving study for an auto-

mated braking assistance system using EEG and EMG data demonstrating the

potential use of event-related potentials (ERP) to enhance automated driving

technology. Because the focus of the study by Haufe and colleagues was on

the replication of classification results from an earlier driving simulator study

(Haufe et al., 2011), no quantitative analyses of ERP components were pro-

vided. Zhang et al. (2015) executed a combined simulator and real car study

to develop a brain-computer interface (BCI) for detecting error-related EEG-

activity. Despite a clear focus on classification accuracies and a small sample size

for the real car experiment, the ERP results revealed comparable patterns for

both acquisition scenarios, even though these were not specifically addressed in

the discussion. Krol and colleagues (2017) investigated a BCI approach during

interaction with an automated cruise control system in a real driving scenario.

The authors demonstrate high classification accuracies for unexpected events

during cruise control. However, as the focus was on classification and not repli-
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cation of specific EEG features, no general conclusion can be drawn from this

study about the replicability of established EEG parameters.

As no previous study has provided a detailed analysis of event related poten-

tials during real life driving, it is still an open question whether systematic ERP-

analysis is possible with data recorded in real driving scenarios and whether the

results can be compared with those from traditional laboratory EEG record-

ings. We addressed this question by comparing the event-related P300 recorded

during a dual-task driving scenario in a highly controlled laboratory setup and

during an on-road driving task. The dual task scenario consisted of an inter-

action of the driver with a speech input device, resembling a common on-road

secondary task. ERPs with onset of incorrect feedback from the speech input de-

vice were analyzed with a focus on the event-related P300 component, a positive

deflection in the ERP that represents a well-established parameter for analyzing

cognitive functions like attention and memory, substantiated by results from ex-

tensive laboratory assessments with numerous and heterogeneous groups of per-

sons (Sutton et al., 1965, for reviews see Picton et al., 1992; Fabiani et al., 1987;

Polich, 2007). Increased P300 amplitudes can be observed for infrequent targets

in a stream of frequent stimuli (e.g. in the so-called “oddball-paradigm”). It

has been argued that the reversed relationship of stimulus probability and P300

amplitudes indexes the amount of working memory updating that is necessary

for the processing of the preceding stimulus (Donchin et al., 1978; Donchin &

Coles, 1988) and that the P300 mediates between stimulus and response pro-

cesses (Verleger et al., 2005). The P300 was expected to reflect processing of

infrequent erroneous auditory feedback events in both recording environments

with adequate data preprocessing in the real driving setup. Specifically, higher

P300 amplitudes were expected for rare incorrect feedback events compared to

correct feedback trials. In addition, the baseline EEG power spectra from both

recordings were analyzed to examine possible tonic di↵erences and to distinguish

them from phasic event-related e↵ects.

4

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2018. ; https://doi.org/10.1101/275396doi: bioRxiv preprint 

https://doi.org/10.1101/275396
http://creativecommons.org/licenses/by-nd/4.0/


2. Study 1: Laboratory setup

2.1. Method

Participants

Eighteen participants volunteered for the first study. Three data sets had

to be discarded due to extensive artifacts in the EEG data. The analyzed

sample included 15 healthy adults (10 female, 20-35 years of age, mean 28

years). All volunteers were right handed as assessed by a German adaptation of

Edinburgh handedness inventory (Oldfield, 1971) and none reported a history

of neurological problems. All participants gave written informed consent and

all procedures were in accordance with the principles laid out in the Declaration

of Helsinki.

Experimental design and procedure

Participants were seated in front of a 19 00 screen for visual stimulus pre-

sentation with their index fingers positioned on the marked ctrl-buttons on a

standard keyboard on a table in front of them. Auditory feedback was presented

through speakers placed at either side of the screen. A pool of common Ger-

man first names with at least two syllables served as the stimulus material. All

names were digitized as auditory feedback cues with Natural Reading Software

(Natural Reading Software, Vancouver, BC Canada) and used for a simulated

dialog between the driver and a technical speech based input system.

Each trial started with a black and grey flashing display for 800 ms, followed

by a greyscreen for 200 ms. Three randomly chosen names from a pool of 145

forenames were presented consecutively in black letters on a grey background

for 2000 ms each. In parallel, the same names were read aloud in their digitized

version by a synthesized female voice. Participants were asked to remember

all three names and then speak out loud the name of the numerical position

that was randomly displayed at the end of the trial (e.g. “two” indicating to

repeat the second name). A subsequent response interval lasted for 5000ms

followed by an auditory repetition of the participant’s response. In 80% of
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all cases the auditory feedback matched the stated name (eg. “Ella”), while

in 20% of all cases, only the last syllable (eg. “la”) was replayed. Correct

and incorrect feedback trials were randomly presented in each trial sequence.

Participants were required to wait for a tone after another 1000 ms to categorize

the feedback. Correct repetitions had to be confirmed by a button press with

the right index finger on the right ctrl-key and incorrect repetitions had to be

indicated by pressing the left crtl-key using the left index finger (Fig. 1).

Figure 1: The stimulus sequence of a trial. The time interval considered for ERP-analysis is

framed in red.

The task protocol followed a Wizard of Oz procedure where people believed

to interact with a technical system even though operations were at least partially

controlled by a human operator (cf. Dahlbäck et al., 1993). In the present

case, the participants’ spoken responses were not categorized by an automated

speech recognition system but by the experimental program to give a fixed error

rate in the auditory feedback. Subsequent interviews revealed that none of the

participants recognized the manipulation. The study consisted of six blocks of

50 trials each. The entire procedure took 2.5 h on average.

EEG-recording and pre-processing

EEG-data were recorded continuously from 64 active electrodes (Brainprod-

ucts GmbH, Gilching, Germany), mounted in an elastic cap according to the

extended international 10-20 system (Chatrian et al., 1985 ), with the exception

of positions PO10 and PO9, which were placed below the left and right eye

respectively to measure electroocular activity. The data were digitized with a

sampling rate of 1000 Hz. Prior to data recordings, impedances were brought
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below 5 k⌦. O↵-line preprocessing and data analysis were performed in Matlab

2015 (MATLAB, The MathWorks Inc., Natick, MA, USA), using Eeglab-based

routines (Delorme & Makeig, 2004). The data were filtered with a 0.1 to 100

Hz band pass filter and the sampling rate was subsequently reduced to 500Hz.

Artefact contaminated channels (M = 11, SD = 3.5) were removed using auto-

matic rejection (5 standard deviations of the mean kurtosis value or 3 standard

deviations from mean probability distribution of each single channel) and sub-

sequent manual visual inspection. Afterwards, all channels were re-referenced

to an average reference calculated by the remaining channels. At this point,

two copies were made of each data set. The first set was filtered with a 1 Hz

high pass filter and only used for independent component analysis (ICA). The

second set was filtered with a 40 Hz low pass filter and used for any further

analysis. Spatially static and maximally temporally independent components

(ICs) were calculated for each participant on the first set using adaptive mix-

ture independent component analysis algorithm (AMICA, Palmer et al., 2008).

The resulting ICs weighs were mapped on the 40 Hz low pass filtered sets for

the ERP analysis. ICs representing eye movements were categorized for each

participant (M = 3, SD = 0.6) by means of scalp maps and activation time

courses. Eye movement activity was removed from the recordings by removing

ocular ICs and subsequent back-projection to the sensor level.

All resulting data sets were segmented to 1800 ms epochs, starting 300 ms

before the onset of the auditory feedback. For each participant, epochs were au-

tomatically discarded if amplitudes exceeded +/�80 µV or if the measured prob-

ability of a trial exceeded a criterion of 6 standard deviations of the mean calcu-

lated probability distribution on a single channel level or 3 standard deviations

for all channels. In total, 2604 correct feedback trials (M = 174, SD = 29.9)

and 656 incorrect feedback trials (M = 44, SD = 6.1) were considered for the

analysis.
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Data analysis

Averaged correct and incorrect feedback amplitudes were analyzed relative

to a 300 ms pre-stimulus baseline (300�0 ms before feedback onset). The P300

time windows and electrode sites (Fz, Cz, Pz) for analysis were selected based

on the literature and visual inspection of the grand averages. A 100 ms -time

window around the most positive peak at parietal electrode site Pz (738� 838

ms after stimulus onset) was chosen for P300-analysis. Mean P300 amplitudes

were assessed by 2x3 repeated measures of variance (ANOVA) with the factors

feedback type (correct vs. incorrect) and electrode site (Fz, Cz, Pz). Degrees of

freedom were adjusted by means of the Greenhouse-Geisser method in case of

deviations from sphericicity. Post-hoc t-Tests were calculated for each condition

at each electrode to evaluate di↵erences in the topographical distribution of

the measured activations and tested against correspondent Bonferroni-corrected

alpha levels.

2.2. Results

Stimulus-locked ERP-waveforms for incorrect and correct feedback are shown

in Figure 2. ANOVA results for the main P300 peak time window revealed sig-

nificant main e↵ects for feedback type, F (1, 14) = 59.93, p < .001, ⌘2p = .81

and electrode site, F (1.24, 17.29) = 22.11, p < .001, ⌘2p = .61. Mean P300 am-

plitudes were significantly higher for incorrect (M = 2.21, SD = 1.05) as com-

pared to correct feedback (M = 0.07, SD = 0.96). Activity for both feedback

conditions increased from frontal electrode site Fz (M = �0.99, SD = 2.23)

towards more posterior sites Cz (M = 1.45, SD = 1.23) with most prominent

amplitudes at Pz (M = 2.97, SD = 0.91).

A significant electrode x feedback type interaction F (2, 28) = 14.65, p <

.001, ⌘2p = .51 reflected amplitude di↵erences between correct feedback trials

with lower values at Fz (M = �0.96, SD = 2.06) compared to Cz (M =

0.53, SD = 1.44) and compared to Pz (M = 1.29, SD = 0.62). Incorrect feed-

back trials resulted in reduced activity at Fz (M = �0.71, SD = 3.01) compared

to Cz (M = 3.17, SD = 1.70) and Pz (M = 4.85, SD = 1.5). Furthermore,
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Figure 2: Topographic plots for four time windows (top) and ERP traces (bottom) for incorrect

and correct feedback trials in Study 1. The time windows used for the upper plots are

highlighted in grey in the ERP traces.

incorrect feedback elicited larger amplitudes than correct feedback at Cz and

Pz but not a frontal site Fz.

2.3. Discussion study 1

For the laboratory study we used a well-controlled experimental setup to es-

tablish a baseline for the experimental manipulation in the subsequent driving

task. The analysis focused on the sensitivity of the P300 as an index for the

processing of improbable events. As expected, the task manipulation elicited

di↵erences in event-related brain activity with increased P300 amplitudes for the

infrequent incorrect feedback trials. The analysis revealed a posterior distribu-

tion with most pronounced di↵erences between correct and incorrect feedback

trials over parietal sites. This activation was absent in trials containing correct

feedback information. Similarly, several studies have shown the P300 amplitude

to be sensitive to stimulus probability and relevance (for a review see Polich &

Herbst, 2000). In our case, the P300 appears to reflect enhanced processing costs
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for the categorization of the less frequent and unintended erroneous feedback

events. This is in line with interpretations of the functionality of the P300 that

claim that the P300 reflects the context updating within the evaluation process

of new events (Donchin & Coles, 1988). In the present tasks, participants ex-

pected to hear a repeat of their own speech input. Consequently, the large P300

for incorrect fragmented feedback most likely displayed the memory update after

the mismatch between the anticipated and received feedback. Moreover, as the

less often incorrect feedback required a di↵erent manual button press, deviating

response requirements might also be depicted by these changes (Verleger et al.,

2005). The results from Study 1, confirmed our approach for investigating P300

activity for rare and deviant auditory feedback. Consequently, the procedure

was applied in the following in-car recordings.

3. Study 2: Driving setup

Study 2 was conducted in a realistic driving setting to test whether human

brain dynamics reflective of deviance detection can be recorded while partici-

pants actively drive a car. The same task as in the laboratory recordings was

used to allow a direct comparison. Data processing procedures were guided by

laboratory study routines reported in section 2.1.

For comparison with the data recorded in Study 1, additional data analyses

were performed to answer two main questions: (1) Do changes in EEG dynamics

depend on the recording environment (lab vs. car)? (2) Is there a interaction

between recording environment and feedback type (incorrect vs. correct)? A

main e↵ect of feedback type should be observed irrespective of the recording en-

vironment if EEG-recordings in a driving car reliably measure brain dynamics.

A main e↵ect of recording environment would indicate an impact of the record-

ing environment on P300 amplitudes, possibly reflecting decreased data quality

due to in-vehicle artifact sources and movement of participants. Importantly,

the absence of an interaction e↵ect would indicate that the recording, analysis,

and interpretation of EEG data in realistic driving scenarios is feasible for this
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particular task.

3.1. Method

Participants

Seventeen participants volunteered in the second study. Data from one par-

ticipant had to be excluded from analysis due to technical problems during data

recording, and data from a second participant had to be removed due to insuf-

ficient data quality. The analyzed sample included 15 adults (10 female, 22-36

years of age, mean 28 years,). All participants held a valid driver license for at

least two years. As in Study 1, all volunteers complied with the requirements

and were tested under the same conditions. None had participated in Study 1.

Experimental design and procedure

Participants performed the same task with identical stimulus material and

time course as described in Study 1. Only set-up modifications for the in-

car realization are described here. The driving tests took place on a part of a

restricted runway (length: approx. 1.5 km) of a former military airfield in Bran-

denburg, Germany (Fig. 3). A Volkswagen Touran was provided as test vehicle

by the Department of Human-Machine Systems, TU Berlin. Audio feedback

was transmitted through portable speakers located in the front interior. Names

were presented on a 7.6 00 TFT-display, mounted on the central console. Two

buttons were added to the steering wheel, in a convenient position that allowed

for safe steering and button presses with the left and right thumb. Participants

were asked to maintain a speed of 40 km/h and the task protocol accepted

deviations of +/ � 3 km/h (monitored via Control Area Network Data). For

economic reasons and to keep up alertness, task blocks alternated with blocks

in which participants worked on an acceleration and braking task, not reported

here. Test blocks were defined by driving the 1.2 km test track twice back and

forth (= 4.8 km). The total number of completed test blocks di↵ered individ-

ually (range 12 - 14 blocks and 80 -120 trials) dependent on weather and the

participant’s individual condition.
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Figure 3: Test track from participants’ perspective (left), schematic driving course (middle)

and picture from a study session (right)

EEG recording and preprocessing

The EEG recording setup and preprocessing steps followed the protocol for

the laboratory recordings. Data were recorded with 64 active electrodes digitized

with a sampling rate of 500 Hz. Impedances were kept below 5 k⌦. All data

sets were o✏ine filtered with a high-pass filter of 0.1 Hz and a low-pass filter

of 40 Hz. Again, after automatic and visual inspection artifact contaminated

channels were discarded (M = 9, SD = 3.1) and the remaining channels were

re-referenced to an average reference. As in Study 1, two copies were made

of each accordingly preprocessed data set. The first set was filtered with a

1 Hz high pass filter and only used for independent component analysis. The

second data set was filtered with a 40 Hz low pass filter and used for any further

reported analysis. The calculated IC weigths were map on the 40 Hz low pass

filtered sets and ICs representing eye movements (M = 4, SD = 1.1) were

removed. The resulting data were back projected to the channel level. Trials

from the epoched data sets were automatically rejected if any channel contained

amplitudes that exceeded +/ � 80 µV. Slightly broader probability criterions

(6SD on single channel level and 3SD for all channels) were applied for the

automated rejection based on deviation from the mean probability distribution

to adapt to the generally more fluctuating data quality of the in-car recordings.

In sum, 1222 correct trials (M = 81, SD = 20.0) and 296 incorrect trials (M =

20, SD = 5.5) were considered for analysis.
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Data analysis

Activity at midline electrodes Fz, Cz and Pz were averaged for correct and

incorrect feedback trials and respectively calculated in relation to a 300 ms

baseline time window preceding the auditory feedback onset. For the analysis

of amplitude di↵erences the 100 ms time widow (852� 952 ms) around parietal

peak activity was specified. Mean amplitudes in the P300 time-window were

subjected to a 2x3 ANOVA with the factors feedback type (correct vs. incorrect)

and electrode site. Greenhouse-Geisser corrections were applied and Bonferroni-

corrected t-tests were calculated for post-hoc comparisons of factor levels.

Furthermore, comprehensive analysis on both data sets recorded within the

two recording environments were calculated. Di↵erences in data characteristics

in terms of trial amount for both recording environments were addressed. Tonic

di↵erences in power spectrum density (µV2/Hz) at midline electrode sites (Fz,

Cz, Pz) were analyzed for the theta band (4�7 Hz) and alpha band (8�12 Hz).

Power spectrum density estimates were calculated using Welch’s method with

windows of 256 points length, zero padded to 512 points and no overlap. Mean

density values were assessed for both frequency bands by a 2x3 ANOVA with

factors recording environment (lab, car) and electrode site (Fz, Cz, Pz). Event-

related amplitude di↵erences were assessed by a 2x2x3 mixed design ANOVA

with the between factor recording environment (laboratory vs. car) and the

within factors feedback type (correct vs. incorrect) and electrode site.

3.2. Results

3.2.1. Study 2

The analyses of mean amplitude values revealed a main e↵ect for the factor

feedback type, F (1, 14) = 31.67, p < .001, ⌘2p = .69, with higher amplitudes

for incorrect feedback (M = 2.04, SD = 1.81) compared to correct feedback

(M = �0.75, SD = 1.08). No further e↵ects were found for P300 amplitudes

(Fig. 4).
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Figure 4: Topographic plots for four time windows (top) and ERP traces (bottom) for incorrect

and correct feedback trials in Study 2. The time windows used for the upper plots are

highlighted in grey in the ERP traces.

3.2.2. Comparison

Data characteristics

In total, significantly more trials were recorded in the lab environment (3795

trials) than in the driving environment (2185 trials), t(21.16) = 14.11, p <

.001. Furthermore, the proportion of trials rejected by automated cleaning was

significantly higher, t(28)=-2.84, p=0.08, for epochs extracted from the driving

study (28.89%) compared to the lab recordings (14.11%). Therefore, more

trials were considered for analysis of the laboratory data (M = 217 trials per

person, SD = 32.61) compared to the driving study data (M = 102 trials per

person, SD = 23.30), t(28) = 11.05, p < .001.

Theta and alpha band power

The analysis of the power in the theta frequency band revealed a significant

main e↵ect for the factor electrode site, F (2, 56) = 40.76, p < .001, ⌘2p = .59

(Fig. 5). Higher theta frequencies were measured at frontal electrode site (Fz:
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M = 1.76, SD = 0.69) compared to the central (Cz: M = 0.98, SD = 0.44) and

the parietal site (Pz: M = 1.02, SD = 0.45). With respect to the power in the

alpha frequency range, a significant main e↵ect of electrode site was observed

F (2, 56) = 13.30, p < .001, ⌘2p = .32 due to pronounced spectral power at frontal

electrode sites (Fz: M = 1.02, SD = 0.51) and parietal electrode sites (M =

0.97, SD = 0.54) as compared to central electrode sites (M = 0.64, SD = 0.38).

No main or interaction e↵ects were found for the factor recording environment.

Lab Car

Fz Cz Pz Fz Cz Pz

0

2

4

Lab Car

Fz Cz Pz Fz Cz Pz

0

2

4

Figure 5: Mean Power density (y-axis, in µV2/Hz) in theta (4 � 7Hz, left two graphs) and

alpha band (8 � 12Hz, right two graphs) at midline electrodes (x-axis, Fz, Cz, Pz). Scatter

points indicate individual mean values for each participant at each electrode.

ERPs

The comparison analysis on both data sets revealed significant main ef-

fects for the factor feedback type, F (1, 28) = 75.60, p < .001, ⌘2p = 0.73, and

electrode site, F (1.36, 38.02) = 17.40, p < .001, ⌘2p = 0.38. Mean P300 am-

plitudes elicited by incorrect feedback (M = 2.13, SD = 1.46), were more

pronounced compared to correct feedback (M = �0.34, SD = 1.09). Activ-

ity at Fz (M = �0.59, SD = 2.16) was lower than activity recorded at Cz

(M = 1.04, SD = 1.64) and Pz (M = 2.24, SD = 1.73).

The main e↵ects were qualified by a significant interaction of the factors
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feedback type and electrode site, F (2, 56) = 7.84, p = .001, ⌘2p = 0.22, revealing

highest P300 amplitudes for correct feedback at Pz (M = 0.62, SD = 1.60) com-

pared to Fz (M = �1.09, SD = 2.03) but not to Cz (M = �0.22, SD = 1.77).

Incorrect feedback elicited lower P300 amplitudes at Fz (M = �0.07, SD =

2.84) compared to Cz (M = 2.71, SD = 2.84) and Pz (M = 3.95, SD = 2.23).

Amplitudes for incorrect feedback were larger than for correct feedback at all

three electrode sites. No significant main e↵ect or interaction e↵ect was found

for the factor recording environment.

3.3. Discussion Study 2

In Study 2, we tested whether the results from Study 1 could be replicated

when the identical task had to be accomplished during real driving. As in the

laboratory assessment, incorrect feedback elicited larger amplitudes in the P300

time window compared to correct feedback. Although ongoing parallel cognitive

and motor processes are needed to solve the driving task, di↵erences in neural

response patterns for regularities and discrepancies in auditory feedback could

be replicated.

In contrast to Study 1, no significant topographic variations in P300 ampli-

tudes were found. The di↵erence in activity patterns between the laboratory

setup and the driving task might be explained by the enhanced complexity of

the driving task. Frontal P300 activity for novel stimuli has been reported, to

be dependent on time on task and to diminish with habituation (for a review see

Friedman et al., 2001). However, less pronounced reductions in frontal activity

were found for more complex tasks (Polich & Kok, 1995; Segalowitz et al., 2001).

An explanation for the absence of topographic variations in the driving scenario

might be due to the fact that the driving task counteracted habituation e↵ects

in the secondary task. As the driving task required constant attention, fewer

resources might have been available for automated processes in the auditory

secondary task.
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Figure 6: ERP-traces (in µV, y-axis and time in ms, x-axis) from the laboratory (left column)

and driving (right column) studies at midline electrodes Fz (top), Cz (middle), and Pz (bot-

tom). Mean amplitude courses for correct feedback are green and for incorrect Feedback they

are red. A 95%-confidence interval for each condition is indicated by the surround envelope

in the corresponding color.
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4. General discussion

Two studies were conducted to establish an experimental protocol for sys-

tematically comparing the neural responses elicited by unexpected events within

a realistic driving setting. In the first study we tested our experimental manip-

ulation successfully by provoking the well-known P300 deflection for the pro-

cessing of infrequent but task-relevant auditory events (Sutton et al., 1965;

Katayama & Polich, 1996). In a second study, the same test was carried out in

a real driving scenario, replicating the P300 response observed in the first study.

While the results demonstrate that it is feasible to investigate the neural

dynamics underlying incorrect feedback processing in both scenarios, general

di↵erences in data quality had to be addressed for a more specific comparison.

Despite clear visual similarities in ERP traces from both acquisitions (shown in

Fig. 6), the data recorded in the car appeared to be impacted by noise. As a

real-life driving scenario is an inherent source of technical and behavioral arte-

facts, di↵erences in signal quality are not unexpected. This was confirmed by

a significantly higher number of trials subject to automated artefact rejection

due to amplitudes that exceeded a criterion of +/ � 80 µV or deviated clearly

from the mean calculated probability distribution. Moreover, the more com-

plex and time consuming preparation and acquisitions sessions in the driving

setup led to generally shorter recording times. These two factors accounted

for a significant lower number of trials for the in-car recordings. To allow a

more direct comparison, further analyses in the time and frequency domain

were computed. In both studies, di↵erences in the ERP response to correct

and to incorrect feedback events were observed, while there were no di↵erences

in P300 amplitudes in incorrect feedback conditions between the two studies.

The absent e↵ect of recording environment provided the prerequisites for the

comparison of both recordings. The missing interaction e↵ect of recording en-

vironment and feedback type meant that the P300 component associated with

the processing of infrequent and task-relevant stimuli was successfully repli-

cated under realistic driving conditions. A general impact of data quality in
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the di↵erent recording environments on the P300 deflection can be ruled out

as the tonic power spectra in both recordings were comparable and no impact

of the recording environment was observed. Once more, the feasibility of EEG

measurements beyond more or less restricted standard laboratory settings with

new application-oriented approaches is demonstrated (e.g. Gwin et al., 2010;

Debener et al., 2012; Jungnickel & Gramann, 2016).

Despite controllable environmental influences, our approach showed further-

more that the performance of an unhindered driving task had no significant in-

fluence on P300 amplitudes elicited by unexpected and infrequent events. Based

on these results, more complex dual-task paradigms with systematically varied

di�culty levels in either the primary driving task or in the secondary task can

be addressed. This will be of importance for further research in autonomous

driving and for the development of driving assistance by providing insights into

the driver’s processing of incoming information while interacting with the car

and the surrounding environment. Thus, systematic analysis on variations in

di↵erent stages of information processing could be used for more direct driver

state assessments and the design of adaptive assistance.

5. Conclusion

With two studies we were first able to replicate previous laboratory- based

work on P300 amplitudes and then to confirm a high level of ecological va-

lidity of our results in a realistic driving task setting. Our findings provide

strong evidence that complex cognitive functions like context and response up-

dating processes can be examined in a highly adverse driving environment. The

processing of infrequent and incorrect auditory feedback events was reflected by

comparable P300 patterns in both recordings. More specifically, amplitudes and

tonic EEG power spectra from both studies were not a↵ected by the recording

environment. The possibilities to provide direct insights into brain dynamics

of humans participating in a real world driving task provides compelling ar-

guments for further investigation in realistic task settings with more complex
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manipulation or on less robust potentials. A gradual transfer of the extensive

knowledge gathered from laboratory ERP reports into ecological task settings

could prospectively result in complex findings about brain dynamics of actively

behaving humans.
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