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Abstract

Motivation: Due to the nature of experimental annotation, most protein function prediction methods
operate at the protein-level, where functions are assigned to full-length proteins based on overall similarities.
However, most proteins function by interacting with other proteins or molecules, and many functional
associations should be limited to specific regions rather than the entire protein length. Most domain-centric
function prediction methods depend on accurate domain family assignments to infer relationships between
domains and functions, with regions that are unassigned to a known domain-family left out of functional
evaluation. Given the abundance of residue-level annotations currently available, we present a function pre-
diction methodology that automatically infers function labels of specific protein regions using protein-level
annotations and multiple types of region-specific features.
Results: We apply this method to local features obtained from InterPro, UniProtKB and amino acid
sequences and show that this method improves both the accuracy and region-specificity of protein function
transfer and prediction by testing on both human and yeast proteomes. We compare region-level predictive
performance of our method against that of a whole-protein baseline method using a held-out dataset of
proteins with structurally-verified binding sites and also compare protein-level temporal holdout predictive
performances to expand the variety and specificity of GO terms we could evaluate. Our results can also
serve as a starting point to categorize GO terms into site-specific and whole-protein terms and select
prediction methods for different classes of GO terms.
Availability: The code is freely available at: https://github.com/ek1203/region_spec_func_pred

1. Introduction

Proteins are involved in nearly every cellular pro-
cess and function, including cell organization, bio-
chemical catalysis, signaling and transport. The ex-
ponentially large number of possible sequence com-
binations enables proteins to exhibit the necessary
diverse sequential, structural and functional prop-
erties required by the cell. Protein function is of-
ten defined or modified by specific interactions with
other molecules, therefore knowing what, where
and how proteins interact is important in eluci-
dating the cellular machinery of life [1]. Proteins
can be multifunctional by having completely differ-
ent functions in different contexts ("moonlighting
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proteins" like crystallins [44, 24]), by binding to
multiple substrates and catalyzing multiple reac-
tions ("promiscuous proteins" [23, 30]) or by hav-
ing combinations of domains in different sequential
orders [5]. Comprehensive experimental character-
ization of protein function is thus a laborious, ex-
pensive and time-consuming process, which is es-
pecially true for proteins found in non-model and
multicellular organisms.

With the advent of the Gene Ontology (GO)
project [4], computational prediction of protein
function has become more viable and it is an on-
going quest to improve the number and quality of
predictions. Many different approaches have been
proposed over decades [26, 57, 33, 37, 54, 40, 56, 49,
12, 13] and reviewed extensively [9, 48, 34, 8, 31].

Although not an all-encompassing evaluation, re-
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sults from large-scale Critical Assessment of protein
Function Annotation (CAFA) experiments [45, 27]
and related blind tests like MouseFunc [42] offer im-
portant insights into the performances of state-of-
the-art computational protein function prediction
methods.

The underlying principle of protein function pre-
diction is the transfer of function from a known pro-
tein to a query protein based on shared features.
Such features include protein sequence, structure
and pairwise associations from high-throughput ex-
perimental data like protein-protein interaction and
gene co-expression. BLAST [3], for example, is one
of the most widely used sequence-based tools and is
regularly used as a benchmark to evaluate the per-
formances of more complex methods. Due to the
nature of experimental annotation (and the preva-
lence of genetics as a means of connecting genes to
functions), most protein function prediction meth-
ods operate at the whole-protein level (i.e. func-
tions are transferred directly between whole-chain
proteins). However, the majority of proteins are
composed of one or more structural and functional
units called domains [20], which can function in-
dependently or in combination with other domains
("supra-domains" [59]).

Ideally, functions wholly encapsulated within
such regions should be confined and uncoupled from
other regions of the protein in a region-specific an-
notation scheme. This is especially true for GO
terms in the Molecular Function (MF) branch of the
ontology. Currently, a few such annotated domain-
centric resources exist through a combination of
manual and automated curation (e.g. Pfam [18],
SUPERFAMILY [22], CATH-GENE3D [55], meta-
database InterPro [17]), allowing functions to be
transferred to novel proteins assigned with known
and annotated domain families. Other domain-
centric methods have also been described previ-
ously [53, 19, 36, 16, 47, 14, 13] to automatically as-
sociate functions directly to domain families before
integrating them for protein function prediction.

These resources are generally very sparse as they
require a fine balance between sufficient coverage
of the domain space and the applicability of the
annotations to all proteins matching the given do-
main signature [10]. This is especially problem-
atic for large and diverse families, and hinders the
mapping of specific GO terms. Another common
weakness of these domain-centric approaches is that
they depend entirely on predicted domain family
assignments, which not only differ based on differ-

ent classification and identification schemes, but are
also constantly changing and updating [51]. Ad-
ditionally, these predicted assignments only cover
about a third of the total residues in the proteomes.
For example, even though approximately 55% of
yeast and 68% of human protein sequences (UniPro-
tKB [6] reference proteomes release 2017_10) have
at least one ’DOMAIN’ entry type assigned (Inter-
Pro database [17] release 65.0, Oct 2017), less than
32% and 38% of total residues in each proteome, re-
spectively, are actually covered by the assignments.
This can be due to the fact that the majority of
domain families identified are structured domains.
Intrinsically disordered regions, which are prevalent
in eukaryotic genomes and have been established to
actively participate in diverse protein functions [58],
are excluded entirely from functional evaluation. In
addition, the treatment of domains as binary fea-
tures of proteins prevent the transfer of function
from annotated to unannotated domain families,
which can have shared functions as well.

Therefore, we find it pertinent to decompose pro-
teins into regions containing and not containing do-
main family assignments, and then build a method
that can transfer protein labels at the region level
explicitly (including regions not covered by tra-
ditional domain assignments). For example, in-
stead of representing "BAI1-associated protein 2-
like protein 1" (BAIAP2L1, UniProtKB accession:
Q9UHR4) as a 511 residue protein with two do-
mains, an IMD/I-BAR domain (residues 1 to 249)
and an SH3 domain (residues 339 to 402), we will
represent this protein as four regions, with regions
1 and 3 containing the well-annotated domains do-
mains and the remaining regions 2 (residues 250
to 338) and 4 (residues 403 to 511) containing
(prior to prediction) no assigned domain fami-
lies. These unassigned regions will still contain se-
quence information (and sequence derived features)
and other site-specific feature annotations, such as
post-translational modifications and F-actin bind-
ing sites, from databases with manual curation like
UniProtKB [6] that can provide functional clues
(features).

Here, we detail our approach to generating pro-
tein regions using curated site-specific features and
to localizing known protein function labels to these
regions automatically based on related approaches
to structured sentiment analysis [32]. We evalu-
ate the prediction accuracy of our region-specific
framework for a variety of GO terms at both region-
and protein-levels for yeast and human proteomes
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Figure 1: Diagram of processing pipeline using protein
Glucose-repressible alcohol dehydrogenase transcriptional
effector (P31384) as an example.
Features assigned to the protein sequence are grouped by
feature types labeled on the right and assignments from
different databases for the same type are shown on separate
rows. Region boundaries are delineated by vertical lines based
on consensus domain assignments from different databases (3
in this case) and different feature annotations from InterPro
and UniProtKB within each region are parsed into the 4 major
feature types shown in the table at the bottom.

and describe performance improvements over using
a whole-protein baseline model. Our results show
that many GO terms benefit from applying this
region-specific framework and that different types
of GO terms should be treated differently in func-
tion prediction pipelines depending on their extent
of functional localization.

2. Methods

The general process outline of our method is to:
(1) split protein sequences into potential functional
regions based on the presence and absence of do-
main and protein family assignments, (2) encode
the regions as separate feature vectors based on
data sources summarized in Table 1, and (3) train
model to infer region function labels from known
protein labels. This is summarized in Figure 1.

2.1. Generating region boundaries

The first step in this approach is to split the
protein sequences into potential functional regions.
To do that, we processed the amino acid sequences
with InterProScan [28] and used the feature anno-
tations to build consensus region boundaries. Inter-
Pro entry types used include Domain, Family, Ho-
mologous superfamily and select unintegrated sig-

natures from InterPro [17], Signal peptide, Trans-
membrane and Non-transmembrane from PHO-
BIUS [29], and Disorder from MobiDB-lite [41]. All
Repeats and Sites annotations are excluded during
this process. Aside from Signal peptide, which is in-
cluded whenever available, initial region boundaries
are assigned exclusively by types in the following
order of precedence: Domain, Family and Homol-
ogous superfamily, Unintegrated signatures, Trans-
membrane, Non-transmembrane and Disorder.

Unassigned terminal regions less than 18
residues in length (selected based on signal length
distributions [7]) are merged with immediate neigh-
boring regions to remove excessive numbers of short
peptides without losing potential targeting and re-
tention signal peptides, while longer terminal re-
gions are retained as separate regions. Inter-
domain regions less than 20 residues in length
(selected based on linker length distribution [11])
are also discarded to remove the majority of linker
regions.

2.2. Data representation and feature generation
Each protein/region is represented as a fixed-

length vector in four different feature spaces en-
coded with the data types listed below.

1. K -mers - a collection of consecutive, overlap-
ping, k -residue long sub-sequences of the se-
quence of the region itself. For example, a
sequence of ’ABCDE’ will result in 3-mers of
’ABC’, ’BCD’ and ’CDE’. The length of 3 was
tested to get a compromise between captur-
ing sufficient protein fold information and hav-
ing a feature vector that is not too large to
deal with. In addition, the primary sequence
was encoded using a reduced amino acid al-
phabet (SDM12 as described and compared
in [43]), where similar amino acids are clus-
tered together to give 12 groups instead of the
initial 20. This was done to increase sensitiv-
ity to regions with structural similarity, which
can be more important for some functions than
sequence identity.

2. Keywords - a vocabulary of individual
words parsed from descriptions of features
assigned from UniProtKB, InterPro entries,
original member databases and DisProt.
For example, a region assigned with feature
’WD repeat-containing’ will contain keywords
’WD’, ’repeat’ and ’containing’, allowing the
region to have a non-zero similarity score
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when compared to another that is assigned
with ’WD repeat’ (i.e. ’WD’ and ’repeat’). In
addition, this allows us to aggregate features
from the different databases into a homoge-
neous feature space.

For further comparisons, the InterPro entry
IDs and signature IDs assigned to the regions
are used directly as they require no further pro-
cessing.

3. InterPro entry IDs - a collection of unique
IDs (which can map to protein families, do-
main families, repeats, sites), assigned to the
regions by InterPro.

4. Signature IDs from InterPro member
databases - a collection of unique IDs (which
can map to protein families, domain families,
repeats, sites), assigned to the regions by
the member databases of InterPro. This
also includes unintegrated entries like signal
peptide and transmembrane topology predic-
tions from tools like Phobius [29] through
InterProScan [17].

The hypothesized advantage of using InterPro en-
try IDs is that the feature set would be concise and
curated, whereas the advantage of using the under-
lying Signature IDs is that the feature set would
be more sensitive to functional differences. This
is due to the fact that different databases use dif-
ferent models and methods to classify and iden-
tify the assigned features, so not all regions con-
taining the same InterPro IDs will be matched to
the same set of signature IDs. For example, the
"C2 domain" (IPR000008) groups four contributing
signatures and is assigned to both "Fer-1-like pro-
tein 5" (A0AVI2) and "Extended synaptotagmin-
3" (A0FGR9) proteins. However, only three out
of the four signatures matched "Fer-1-like protein
5", while all four signatures matched "Extended
synaptotagmin-3".

The resulting frequency matrices for the features
are then transformed into TF-IDF weights [50]
(a well-established technique in Natural Language
Processing) to upweight features that occur in fewer
proteins and downweight features that occur in
many. The dimensions of the different feature types
for yeast and human are shown in Suppl. Table
S1 and a visual example of the differing pairwise
similarity scores (cosine similarity) for a set of 500
regions can be viewed in Suppl. Figure S1.

2.3. Our region-specific cost function
To transfer known protein labels to the respective

functional regions, we have extended an approach
called Group-Instance Cost Function (GICF) [32],
initially applied to sentiment analysis of sentences
within larger document and user hierarchies. Ap-
plied to protein function prediction, these prior
works are analogous to identifying positive and neg-
ative labels (for a given GO term) for regions within
proteins, given only known labels of whole proteins.

This method involves minimizing a cost function
that penalizes differences in predicted region scores
based on their pairwise feature similarities and also
differences between predicted protein scores (ag-
gregated from the constituent region scores) with
known protein labels. Additional model compo-
nents are introduced here to account for differences
between predicted region scores with known domain
labels (from manually curated databases) and to re-
duce over-fitting to training data (additional regu-
larization terms have been added).

All together, our cost function consists of 4 terms,
each of which enforces the following constraints re-
spectively: (1) regions with similar features should
have similar predicted scores, (2) predicted region
scores should aggregate to give the correct protein
scores when evaluated against known protein la-
bels - positive or negative (protein-level constraint),
(3) predicted region scores should agree with any
known domain-level labels - only positive due to the
sparsity (region-level constraints), (4) model should

Table 1: Data sources

Data type Version
Protein set UniProtKB Reference Pro-

teomes release 2017_10

GO annotations
(protein)

UniProt-GOA release 145
(2015-06) and 171 (2017-10)
[non-IEA only 1]

GO annotations
(domain/region)

external2go (2015-07-25
and 2017-11-14), inferred
from binding sites (NBench
and BioLiP)

InterPro features InterProScan 5.26-65.0

UniProt features UniProtKB/Swiss-Prot Re-
lease 2017_10

DisProt features DisProt 7 release 0.5
1Annotations from all evidence codes except ’Inferred from Elec-
tronic Annotation’.
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not be overfitted to the training set, which is a stan-
dard procedure in machine learning but was miss-
ing from the original cost function (regularization
term).

For each GO term, an independent θ is estimated
from the following cost function:

J(θ) =
1

N2
r

Nr∑
i=1

Nr∑
j=1

κ(xi, xj)∆(ŷi, ŷj)+
w1

Np

Np∑
k=1

∆(Ŷk, Yk)

+
w2

Nr+

∑
i⊂r+

∆(ŷi, yi) + λ ‖θ‖ 22 (1)

where:

• yi ∈ {0, 1} is the known label for region i,

• Yk ∈ {0, 1} is the known label for protein k,

• Ŷk = max(ŷi⊂rk) ∈ [0, 1] is the predicted score
for protein k, obtained by getting the maxi-
mum predicted score of its containing regions
rk,

• Nr is the total number of regions, Nr+ is the
number of positively annotated regions and r+
is the subset of positively annotated regions
across all proteins,

• Np is the total number of proteins,

• κ(xi, xj) ∈ [0, 1] is the similarity score between
regions xi and xj , calculated using the cosine
similarity of the feature vectors,

• ∆ is the square loss function, which is the
square of the difference between the variables,
and

• wn and λ are the trained weights to balance
the contributions of the different terms.

The cost function is based on the output of the
following logistic regression model:

ŷi =
1

1 + e−θT xi
(2)

where:

• xi is the input feature vector for region i,

• θ is the weight vector of the different contribut-
ing features, and

• ŷi ∈ [0, 1] is the predicted score for region i.

The choice of logistic regression is due to the bi-
nary nature of individual labels (a given protein has

the function or it does not) and the resulting prob-
abilistic output that is useful for ranking the pre-
dictions. The seed (initial) θ was generated for each
GO term by fitting a logistic regression model using
protein-level features and known protein labels of
the same training set. We used minibatch stochas-
tic gradient descent with momentum to train the
model. Values of all the hyperparameters are de-
tailed in Suppl. Section 3.

2.4. Modes of evaluation

2.4.1. Region-level evaluation
Due to their sparsity of domain-level annotations

and the lack of region-level annotations, there is
a lack of gold standard datasets that we can use
as a benchmark to effectively evaluate many of
the GO terms at the region-specific level. How-
ever, to show that this approach can success-
fully localize GO term labels to the correct re-
gions, we decided to use pairs of binding site an-
notations from the following databases to eval-
uate their respective ligand binding GO terms:
NBench [38], as a source of nucleic acid binding sites
for "DNA binding" (GO:0003677) and "RNA bind-
ing" (GO:0003723), and BioLiP [60], as a source
of magnesium and zinc ion binding sites for "mag-
nesium ion binding" (GO:0000287) and "zinc ion
binding" (GO:0008270). Both databases are semi-
manually curated from protein structures extracted
from the Protein Data Bank and evaluating them in
pairs provide convenient sets of negative examples.
However, as most proteins do not have structural
data for the entire protein length, only regions with
at least 80% structural coverage were considered in
the evaluation. These selected regions (and their
parent proteins) were removed from the training set
and used only in the validation and test sets.

For model training, protein-level annotations
were obtained from UniProt-GOA and domain-level
annotations were obtained from external2GO (see
Table 1). Known domain-level annotations were
propagated up to the parent proteins for consis-
tency. For validation and testing, a combination
of region-level annotations from external2GO and
regions containing binding sites were used. Regions
from all validation/test proteins are pooled together
and evaluated as one set for each GO term using
Fmax, which is the maximum value of the F1 score
- harmonic mean of precision and recall. Precision
and recall was deemed more appropriate than other
evaluation metrics due to the highly skewed class
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distributions and the F1 score gives us a single value
with a convenient threshold.

Due to the very small sample size, the robustness
of the rankings was assessed by 100 rounds of ran-
dom sampling using 50% of the targets as valida-
tion (for model selection) and the remaining 50%
as test sets. The method is then compared with
a whole-protein baseline method (see section 2.4.3)
using two-tailed Wilcoxon signed rank test. The de-
tails of the region-level datasets are found in Suppl.
Section 2.1.

2.4.2. Protein-level evaluation
We expanded the number of MF-GO terms tested

by conducting a separate protein-level evaluation
using a temporal holdout method. Non-IEA (In-
ferred from Electronic Annotation) annotations at
two time-points were used to train and validate/test
the model respectively. This ensures a more ’realis-
tic’ approach compared to cross-validation as only
proteins with older annotations are used for train-
ing, while proteins that gained new annotations are
used for validation and testing, allowing for a fully
blind test. This also allows us to test if localiz-
ing GO term labels to their respective regions can
indeed improve overall function prediction at the
protein level and if so, for which GO terms. The
predicted protein scores are obtained by getting the
maximum predicted score of its containing regions.
The details of the protein-level temporal holdout
datasets are found in Suppl. Section 2.2.

2.4.3. Whole-protein baseline method
Logistic regression (implemented using source

code from [46]) was used as the baseline method
for comparison against our method. It is trained di-
rectly on features from whole proteins (i.e. features
from all regions plus those that span multiple re-
gions) with no regularization (λ = 0) and the same
set of protein-level annotations, with no knowledge
of region boundaries at all. The estimated θbase
was also used as the seed input θ to our cost func-
tion. This would give us an estimate of how well the
predictions would do without the constraints of the
region-specific framework. As the feature vectors
are the same dimensions for regions and proteins,
the θbase trained on whole proteins can be used to
predict for both regions and proteins directly, al-
lowing us to compare the scores predicted at the
region- and protein-level.

(a) DNA (GO:0003677) and RNA (GO:0003723)
binding GO terms

(b) MG (GO:0000287) and ZN (GO:0008270) binding
GO terms
Figure 2: Performance comparisons of region-level
predictions using the whole-protein baseline model (orange)
versus our region-specific model (purple) for (i) yeast and
(ii) human proteomes.
KEY = Keywords, KMER = K-mers, IPR = InterPro IDs, SIG
= Signature IDs.
Upper panels: Box plots showing the first quartile (Q1), me-
dian, third quartile (Q3) and outliers of maximum F measure
scores (Fmax) generated over 100 rounds of evaluations.
Bottom panels: Differences between the median Fmax scores
between methods corresponding to the pair of box plots directly
above. Positive values indicate that the region-specific method
outperforms the baseline and vice versa for negative values. All
differences are significant to .05 level based on test statistics
from two-tailed Wilcoxon signed rank test.

3. Results and Discussion

Here, we show the ability of our method to local-
ize binding labels to specific regions within proteins
by comparing the predictions directly to binding
sites extracted from protein-ligand structures. We
also show that the added region-specific framework
can lead to improvements in protein-level function
predictions for a majority of Molecular Function
GO terms that we tested in the section after.

3.1. Region-specific localization of binding terms
Here we detail tests of our method over a subset

of GO terms can be tied directly to protein sequence
via structure, focusing on cases where protein struc-
ture analysis provides many unambiguous localiza-
tions to many proteins with residue-level resolution.

Results from the region-level evaluation for yeast
and human are shown in Figure 2. In each plot,
the upper panels show box plots of Fmax scores
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generated over 100 rounds of evaluations for the
whole-protein baseline and region-specific methods,
while the bottom panels show the differences in
median Fmax between the two methods for each
feature type. All of the differences are significant
to .05 level based on test statistics from two-tailed
Wilcoxon signed rank test. This head-to-head com-
parison allows us to eliminate the differences in raw
performances based on lack of informative features
or annotations, allowing us to focus entirely on
the effectiveness of using this region-specific frame-
work for this particular set of feature types and
GO terms. The main difference between the models
(aside from the region-specific constraints) is that
the whole-protein baseline model uses a combina-
tion of all the features found within the regions plus
additional protein-level features that span multiple
regions, like protein families.

From these results, we can see that the perfor-
mance of our region-specific method is equivalent to
or significantly better than the whole-protein base-
line across all organisms and feature types for both
pairs of binding terms. The biggest gains in region-
level performance overall come from Keywords
and K -mers, with Keywords exhibiting the best
raw performance overall. This is not surprising
given that both features can be found in regions
without domain family assignments and are more
discriminating within regions compared to Inter-
Pro IDs and Signature IDs, allowing for greater
propagation of labels between regions. More supris-
ingly, the raw Fmax scores for K -mers are compa-
rable to those of InterPro IDs and Signature
IDs after our region-specific framework is applied,
given that K -mers are relatively simple representa-
tions of the protein sequences and have the smallest
dimensions (Suppl. Table S1).

One of the biggest advantages of K -mers fea-
tures are that they do not depend on manual, pre-
dictive or computationally expensive feature anno-
tation/extraction methods, which means that K -
mers feature vectors are guaranteed to be com-
plete and error-free representations of the under-
lying amino acid sequences. In the future, it would
be trivial to extend this method to other, per-
haps more informative, sequence-derived represen-
tations like ProtVec [15], biophysical properties of
the amino acids themselves [13], or even structure-
derived representations like contact maps and fea-
tures extracted from known structures using the
Rosetta energy function [2] to take into account
short- and long-range interactions between residues.

Signature IDs show equivalent or better per-
formance at the region-level compared to Inter-
Pro IDs, pointing to the value of unintegrated fea-
ture annotations, such as signal peptides and trans-
membrane helices, that would not be included in
purely domain-centric methods. InterPro assign-
ments are dominated by Domain and Family entry
types ( 47% and 32% in yeast, 53% and 22% in
human, respectively), and in the majority of cases,
two regions are either assigned the same InterPro
ID, and thus have a similarity score of 1, or are
assigned different InterPro IDs, and thus have a
similarity score of 0. As shown in Suppl. Figure
S1, the resulting pairwise similarity values for In-
terPro are very sparse relative to the other fea-
ture types and that sparsity has the effect of reduc-
ing the effectiveness of term 1 in the cost function
(equation 1), which encourages propagation of la-
bels between regions.

However, the differences in performance between
the two feature types are not large and the substan-
tial increase in feature dimension, and thus com-
putational resources required, must be considered.
One solution to this problem would be to reduce the
dimensions using an autoencoder, an approach that
we are also considering as a way to integrate the dif-
ferent feature types into a single, low-dimensional
feature space.

3.1.1. Structural examples of improved label local-
ization

Here we leverage the very large diversity of RNA
and DNA binding proteins with known structures
to investigate the performance and resolution of our
method. We include cases where sequences lack well
annotated domains or where DNA/RNA binding is
mediated by additional un-annotated regions (re-
gions not associated with an annotated domain).
Figures 3a and 3b show two examples of how DNA
and RNA binding GO terms are localized to spe-
cific regions within the protein using only Key-
words. Structures on the left are colored according
to predictions made by the whole-protein baseline
method, while structures on the right are colored
according to predictions made by the region-specific
method. Predictions were made at the respective
Fmax thresholds of each method obtained using the
test regions shown in Suppl. Table S2. Shades of
green and gray represent positively and negatively
labeled regions, respectively, and bound DNA and
RNA molecules are shown in black and red, respec-
tively.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 2, 2018. ; https://doi.org/10.1101/275487doi: bioRxiv preprint 

https://doi.org/10.1101/275487
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3a shows the crystal structure of part
of the "regulatory protein GAL4" (P04386) from
yeast. It is composed of two homodimeric chains,
one of which is shown here for clarity. Each chain
contains a DNA binding and a dimerization region
(numbered from N- to C-terminus). Here, we can
see that both the DNA binding and dimerization
regions are predicted by the whole-protein baseline
method to have the DNA binding GO term (both
parts colored in green). On the other hand, our
region-specific method has correctly removed the
DNA binding prediction at the dimerization region
below (gray), successfully localizing the GO term
only to the direct DNA binding region.

We also looked more closely at the cytoplasmic
"Aspartate–tRNA ligase" (P04802), a protein with
a high quality RNA-protein experimental structure.
Figure 3b shows an RNA binding protein containing
four regions (numbered from N- to C-terminus), two
of which are associated with known domain fami-
lies (regions 2 and 4). This protein RNA-complex
is from yeast and is also a homodimer with only
protein regions forming the protein interface. As
before, only one protein chain in this homodimer is
shown for clarity. In this case, the whole-protein
baseline method (run individually on each region)
predicted only regions 2 and 3 to be in contact with
RNA, whereas our region-specific method correctly
attributed RNA binding to all three regions from 2
to 4. The remaining distal region 1 remains unla-
beled, in accordance with lack of protein-RNA con-
tacts observed for this region in the crystal struc-
ture.

3.2. Expanded functional evaluation at protein level
After the initial proof of concept, which showed

that our region-specific method can successfully lo-
calize binding GO term labels to specific regions, we
extended the analysis to include GO terms from a
larger number of functional categories by evaluat-
ing the predictions at the protein level. In these
results, we show the differences in median Fmax
performances of our method relative to the whole-
protein baseline model using the same training, val-
idation and test sets. Figures detailing the individ-
ual raw performances for each feature and GO term
can be found in the Suppl. section 4.

Figures 4a and 4b show the differences in median
Fmax of protein-level predictions over all four fea-
ture types for yeast and human, respectively. All
GO terms are grouped into the shared parental
terms (shown in blue on the top left) for clarity.

(a) DNA binding example

(b) RNA binding example
Figure 3: (a) DNA binding predictions for regulatory
protein GAL4 (P04386, PDB ID:3coq) and (b) RNA
binding predictions for aspartate–tRNA ligase, cytoplasmic
(P04802, PDB ID:1asy) from yeast based on (i) baseline
and (ii) region-specific methods using Keywords features.
Structures shown include bound DNA (black) and RNA
(red) molecules.
Coloring: Shades of green (positive) and gray (negative) repre-
sent the predicted labels for the given binding GO term at the
respective Fmax thresholds of each method.
Numbers: Number labels represent the protein regions ordered
from N- to C-terminus. Images are created with PyMOL [52].

The differences are shown as colored bars stacked
either in the positive (right) or negative (left) direc-
tion. Only differences that are significant (p-value
< 0.05 level based on two-tailed Wilcoxon signed
rank test) are shown on the plot. The numbers next
to each GO term represent the number of positive
training and testing proteins for that particular GO
term (i.e. the particular class distributions during
training and testing). As F-scores can be affected
by skewed distributions [25], these values are shown
here to provide a fuller picture when comparing
performances between GO terms, even if the GO
terms have been previously filtered to remove very
common (>300 occurrences per proteome) and very
rare (<10 occurrences per proteome) terms. The
number of training examples also include protein
annotations inferred from region-level annotations
for consistency (since those annotations were used
in the cost function during training) and so may be
greater than the initial cutoff of 300.

Aside from significant negative correlations (ρ=-
0.68, p-val=0.04, n=9) between the differences from
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baseline and the number of positive training and
testing proteins for K -mers in yeast (which is lost
when the outlier ’anion binding’ is removed), there
were no other notable correlations between the per-
formance differences and the number of positive
training or testing proteins for the other feature
types in yeast and human.

Our results here suggest that this framework can
not only localize GO terms to specific regions, but
that it also improves protein-level function predic-
tions for the majority of Molecular Function GO
terms evaluated. Furthermore, the performance rel-
ative to the whole-protein baseline model can give
us a way to characterize region-specificity of differ-
ent GO terms and thus inform us on how to treat
them during the function prediction process.

3.2.1. Characterizing region-specificity of GO
terms based on feature performance relative
to baseline

Overall, the majority of GO terms tested per-
form significantly better relative to baseline, sug-
gesting that localizing labels to specific regions
can improve protein-level predictions as well. In
our temporal holdout for yeast, 6 out of 9 MF
GO terms showed improvements with our region-
specific model for two or more features. For the
human temporal holdout, we see that 41 out of 59
MF GO terms showed improvements, demonstrat-
ing that the region-specific framework improves ac-
curacy and coverage of function prediction for more
than two thirds of molecular functions. In addition,
we can also make conclusions about the ’known’
unit of function specificity (i.e. site, domain family,
protein family) for each of the GO terms based on
how the different feature types perform relative to
baseline.

Site-specific GO terms
In both organisms tested, the majority of Bind-
ing terms show improved performance regardless
of feature type, which is not surprising consider-
ing the site-specific nature of most binding inter-
actions and the availability of binding site annota-
tions within specific regions. In cases where Inter-
Pro IDs show significant improvements, it is likely
that the predictions are assisted by region-specific
InterPro features, such as Repeats and Sites, as
they allow labels to be propagated between regions
assigned with different domain families. For in-
stance, the GO term "calcium ion transmembrane
transporter activity" (GO:0015085) is linked to "P-
type ATPase, phosphorylation site" (IPR018303),

while "oxidoreductase activity, acting on CH-OH
group of donors" (GO:0016614) is linked to con-
served sites like "Short-chain dehydrogenase/re-
ductase, conserved site" (IPR020904) and "Isoc-
itrate/isopropylmalate dehydrogenase, conserved
site" (IPR019818).

The importance of non-InterPro entry features,
like transmembrane topology and residue annota-
tions, can be seen when Signature IDs show much
greater improvements than InterPro IDs, as is the
case for many of the Transporter activity terms.

Domain-specific GO terms
For GO terms that can be mapped only to Inter-
Pro domains, the change in performance of Inter-
Pro IDs would not be significant but there could
be improvements in the other feature types as they
may contain other feature annotations that allow
for label propagation between regions. For exam-
ple, performance for GO term "transcription regu-
latory region DNA binding" (GO:0044212) in yeast
improved significantly for all feature types except
InterPro IDs, which did not show any signifi-
cant change from baseline. This label is already
automatically localized to small regions containing
domains like "Zn(2)-C6 fungal-type DNA-binding
domain" (InterPro entry: IPR001138), which was
not annotated with this GO term at the time of
training. The large improvement in K -mers per-
formance, in particular, suggests that a representa-
tion as simple as K -mers can become very infor-
mative when used within our region-specific frame-
work, especially when the GO term can be localized
to a small, sequence-specific region.

Multidomain GO terms
Significant decreases in performance relative to the
baseline across feature types could suggest that the
given GO term cannot be localized to specific re-
gions but can be assigned to features spanning mul-
tiple regions (e.g. protein families). This could
occur if specific features from multiple regions are
needed for the association or if the protein family
is composed of domains found in diverse proteins,
such that a strong association can only be made at
the level of the protein family itself.

For example, the GO term "transcription fac-
tor activity, RNA polymerase II proximal promoter
sequence-specific DNA binding" (GO:0000982)
should only be annotated to sequences that contain
both the DNA binding and transcriptional activa-
tion regions [39]. Individually, DNA binding do-
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mains like "Homeobox domain" (IPR001356) and
"Zinc finger C2H2-type" (IPR013087) are not suf-
ficient for transcriptional activation and can be in-
volved in a variety of specialized functions: only
about 23% and 7% of the training proteins contain-
ing these domains are annotated with this specific
GO term.

For InterPro IDs in particular, if the associa-
tion to the region features are weak in the training
set (i.e. the fraction of proteins with those features
that are positively annotated with that GO term is
low), then term 1 of the cost function will weaken
the associations further due to high region similar-
ity to regions in negatively annotated proteins (refer
to a similar discussion in Section 3.1 on sparsity of
InterPro IDs).

In this case, it is likely that this GO term is
too specific to be assigned to individual domains
and can only be assigned strictly at the level
of the protein family, such as the "E2F family"
(IPR015633) and "p53 tumour suppressor family"
(IPR002117), where the functional specificity of
this GO term is warranted or appropriate. The
increases in performance for Keywords for these
Transcription regulator activity terms are
due to the enrichment of keywords like ’dna’ and
’homeobox’ in regions of proteins annotated in the
test set (7 out of 11 positive proteins), resulting in
greater precision and recall even with their weak
associations to the GO term itself.

4. Conclusion

Here, we have described a pipeline that takes into
account regions with unassigned domain families.
Our method is built around a cost function that
can learn the labels of these regions directly from
protein-level annotations and the features of the re-
gions themselves based on the compact biologically-
reasonable assumption that functional homology is
mediated by regions with similar (if unknown) fea-
tures.

The results from our region-level evaluation us-
ing ligand binding datasets show that our method
can successfully localize functions known to be site-
specific to their respective functional regions and
performs significantly better than the whole-protein
variant across feature types analyzed in both yeast
and human. We also evaluate the performance of
our region-specific prediction method at the whole-
protein level to determine the protein functions that

(a) Yeast

(b) Human
Figure 4: Stacked bar plots showing the differences in
performance of protein-level predictions using the best
performing region-specific model versus the whole-protein
baseline model using non-IEA annotations.
KEY = Keywords, KMER = K-mers, IPR = InterPro IDs, SIG
= Signature IDs.
GO terms are grouped into the parent categories labeled in blue
on the top left. The size of each block represents the difference
between the median Fmax scores of our method and the baseline.
Positive (right) means that our method performs better than
the baseline and vice versa for negative (left). GO terms are
sorted by the absolute sum of the differences across features.
Numbers next to each GO term = number of positive training
(also includes those inferred from region-level annotations) and
testing proteins. All differences shown are significant to at least
.05 level.

benefit from our explicit region localization and find
that, while localization improves performance for
some functions, it also decreases performance for
others.

This difference in the effect of mapping function
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to specific regions supports the notion that differ-
ent GO terms have different levels of operational
units and that they should be treated differently in
protein function prediction pipelines to take that
into account (with some functions tied to small ac-
tive/binding regions, some tied to domains, and
some that need multiple domains and regions for
proper functioning). Our results serve as a starting
point to begin categorizing GO terms into region-
specific and protein-wide sub groups to maximize
the predictive performance of protein function pre-
diction for each GO term and to provide a frame-
work for selecting correct function prediction meth-
ods for different functions.

Future work would include introducing a hier-
archy of region boundaries within a single protein
to allow for different levels of label propagation for
different GO terms, and also the use of different
feature types simultaneously to consolidate differ-
ent sources of information. One could, in principle,
use autoencoders or NNMF to integrate the differ-
ent feature types into a single, low-dimensional fea-
ture space that would be well suited to our region-
level model [21, 35]. We will also experiment with
combining our region-specific model with protein-
protein network data to incorporate known over-
arching relationships between proteins for a more
comprehensive function prediction tool.
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1 Feature representations

Table S1: Dimensions of features

Organism K -mers Keywords InterPro IDs Signature IDs

Yeast 1,728 7,423 5,847 15,451
Human 1,728 16,968 13,394 41,596

Number of unique features that are present in at least 1 protein in the given organism. For Keywords, it must be present in at

least 2 proteins to remove the majority of misspellings.

Figure S1: Distribution of pairwise cosine similarity scores between 500 regions for different
features.
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2 Train/validation/test sets

2.1 Region-level evaluation

Table S2: Number of train, validation/test regions/proteins used in the region-level vali-
dation of our method.

Regions Proteins

Ligands Count type #(train, valid/test) #(train, valid/test)

Yeast
DNA/RNA Total1 (9712, 183) (3257, 70)

DNA binding2 (134, 52) (268, 27)
RNA binding2 (179, 72) (338, 38)

MG/ZN Total1 (9316, 606) (3131, 266)
MG binding2 (42, 197) (34, 157)
ZN binding2 (133, 157) (103, 130)

Human
DNA/RNA Total1 (37878, 301) (9272, 154)

DNA binding2 (531, 138) (856, 97)
RNA binding2 (114, 98) (335, 65)

MG/ZN Total1 (35153, 2287) (8751, 1154)
MG binding2 (31, 545) (79, 459)
ZN binding2 (451, 1159) (402, 760)

1Total number of regions/proteins in set.

2Number of positive binding regions/proteins.
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2.2 Protein-level evaluation

The protein set was divided as follows into training, validation and test sets. See Figure S2
for a visual reference.

• Training set - Proteins that had at least 1 annotation at older time-point and did
not gain new annotations by new time-point;

• Validation set - Proteins that had at least 1 annotation at older time-point and
gained new annotations by new time-point;

• Test set - Proteins that did not have annotations at older time-point but gained new
annotations by new time-point.

After the protein sets have been established, GO terms that fit the following criteria were
selected to be tested with the model:

• Have between 10 and 300 positive annotations in the training set;

• Have at least 10 positive annotations in both the validation and test sets.

These constraints were used to ensure that there is sufficient positive annotations to train
and test the model with in order to get meaningful performance reports.
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Figure S2: Schematics of temporal holdout data splitting.

Matrices: Rows represent proteins, columns represent GO terms. Small boxes: GO terms assigned to
proteins. Gray = present in the older (e.g. 2015) Gene Ontology Annotation (GOA) database. Green =

present in the newer (e.g. 2017) GOA database.

Table S3: Number of train, validation and test proteins used in the protein-level temporal
holdout validation of our method.

Yeast Human

GO terms1 #(train, valid, test) GO terms1 #(train, valid, test)

9 (3302, 1083, 250) 59 (9347, 4266, 1862)
1 Total number of MF-GO terms evaluated. Parental GO terms that also satisfy selection criteria were removed.
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3 Model hyperparameters

All hyperparameter values are shown in Table S4. We optimize the cost function (Eqn. 1 in
the main manuscript) using minibatch stochastic gradient descent (SGD) optimizer with
momentum. To prevent overfitting, we implemented early stopping by monitoring the Fmax

performance of the training set after every 50 iterations. We stop the training when the
variance of the last 50 Fmax values drops below the minimum variance threshold and after
the minimum number of iterations has been completed.

The model is trained with a batch size of at least 128, depending on the number of positive
examples for the particular GO term. This is due to the sparsity of positive annotations
and the need to have at least one positive example in each minibatch to calculate the Fmax

for the stopping criteria. We generated the minibatches using a stratified sampling strategy
to ensure that the class distribution is maintained during training as it appears to perform
slightly better overall compared to random sampling in preliminary tests.

We also decreased the learning rate based on the epoch cycle using the given exponential
decay formula to improve rate of convergence.

The range of w1, w2 and λ values used in the cost function are shown under ’Cost function’
and they were narrowed down using a grid search on the region-level evaluation dataset.

Table S4: Model hyperparameters.

Hyperparameters Values

Stochastic gradient descent

batch size max

(
128, ceiling

(
number of training examples

number of positive examples

))
max epochs 500

min iteration 500
lr 0.5

lr decay (1− 0.1)floor(
epoch

2
)

momentum 0.9
min variance 0.005

Cost function
w1 range [1e-3 1e-2 1e-1 1e0 1e1]
w2 range [1e-3 1e-2 1e-1 1e0 1e1]
λ range [1e-5 1e-4 1e-3 1e-2 1e-1]
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4 Temporal holdout performance

4.1 Yeast proteome

Figure S3: Performances of protein-level predictions on 9 Molecular Function GO terms
using K -mer and Keyword feature types for yeast proteome on test set using non-IEA an-
notations only.

(a) K -mer features

(b) Keyword features

Median Fmax scores for the baseline model and our best-performing model for each GO term tested are
shown as bar plots in the upper panel. The GO terms are sorted in ascending order of their differences,
which are shown in the panel directly below. Positive differences mean that our method performs better
than the baseline and negative differences mean the opposite.
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Figure S3: Performances of protein-level predictions on 9 Molecular Function GO terms
using InterPro and Signature feature types for yeast proteome on test set using non-IEA
annotations only.

(c) InterPro features

(d) Signature features

Median Fmax scores for the baseline model and our best-performing model for each GO term tested are
shown as bar plots in the upper panel. The GO terms are sorted in ascending order of their differences,
which are shown in the panel directly below. Positive differences mean that our method performs better
than the baseline and negative differences mean the opposite.
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4.2 Human proteome

Figure S4: Performances of protein-level predictions on 59 Molecular Function GO terms
using K -mer and Keyword feature types for human proteome on test set using non-IEA
annotations only.

(a) K -mer features

(b) Keyword features

...* = RNA Pol II transcription regulatory region seq-specific DNA binding. Median Fmax scores for the
baseline model and our best-performing model for each GO term tested are shown as bar plots in the upper
panel. The GO terms are sorted in ascending order of their differences, which are shown in the panel
directly below. Positive differences mean that our method performs better than the baseline and negative
differences mean the opposite.
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Figure S4: Performances of protein-level predictions on 59 Molecular Function GO terms
using InterPro and Signature feature types for human proteome on test set using non-IEA
annotations only.

(c) InterPro features

(d) Signature features

...* = RNA Pol II transcription regulatory region seq-specific DNA binding. Median Fmax scores for the
baseline model and our best-performing model for each GO term tested are shown as bar plots in the upper
panel. The GO terms are sorted in ascending order of their differences, which are shown in the panel directly
below. Positive differences mean that our method performs better than the baseline and negative differences
mean the opposite.
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