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Abstract 

Decisions must often be made in the face of uncertain evidence. It has been proposed that 

the brain utilizes its neuromodulatory brainstem systems to broadcast uncertainty signals 

across the brain, thereby triggering changes in global brain state and neural plasticity. 

Recent animal work indicates that task-evoked responses in neuromodulatory systems 

signal two computational variables, at different times during perceptual decisions: decision 

confidence (i.e., the complement of uncertainty) before feedback and prediction errors (i.e., 

deviations from expected reward) after feedback. Neuromodulatory systems also regulate 

central arousal state. We here monitored pupil diameter, a marker of central arousal state, 

while human subjects performed a challenging perceptual choice task with delayed 

monetary reward. We quantified evoked pupil responses during decision formation and after 

reward feedback. During both intervals, decision difficulty and accuracy had interacting 

effects on pupil responses. This interaction reflected decision uncertainty prior to feedback 

and prediction error after feedback. Critically, the pattern of pupil responses during both 

intervals was in line with a model that uses the decision-maker’s graded belief in choice 

accuracy to anticipate rewards and compute prediction errors. We conclude that pupil-linked 

arousal systems are modulated by internal belief states, in line with recent insights into 

dopamine signaling. 
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Introduction 
Many decisions are made in the face of uncertainty about the state of the environment. A 

body of evidence indicates that decision-makers use internal uncertainty signals for 

adjusting subsequent choice behavior on the short-term (Kepecs et al., 2008; Meyniel et al., 

2015; Urai et al., 2017), and deviations between expected and experienced rewards for 

learning (Montague et al., 2004; Schultz, 2005). The brain might utilize its diffusely-

projecting neuromodulatory systems to broadcast such computational variables to circuits 

implementing inference and action selection (Schultz, 2002; Montague et al., 2004; Aston-

Jones and Cohen, 2005; Yu and Dayan, 2005; Glimcher, 2011), where the neuromodulators 

might induce changes in the state of brain networks (Aston-Jones and Cohen, 2005; 

McGinley et al., 2015b) and enable synaptic plasticity (Bear and Singer, 1986; Roelfsema 

and Holtmaat, 2018).  

Recent animal work indicates that dopaminergic midbrain neurons in particular signal 

two variables at different moments during a challenging perceptual decision (Lak et al., 

2017): (i) decision confidence before feedback (i.e., the complement of uncertainty, which 

corresponds to reward expectation) and (ii) prediction error (i.e., the difference between 

expected and experienced reward) after receiving feedback. Critically, the prediction error 

signals depend on confidence (Lak et al., 2017), the agent’s belief in the correctness of the 

choice made (see Model Predictions below, (Pouget et al., 2016)). Belief states have been 

ignored in traditional reinforcement learning models (Sutton and Barto, 1998), but 

incorporated in more recent ones (Dayan and Daw, 2008). 

Neuromodulatory signals also govern the arousal state of the cerebral cortex, which 

is closely linked to non-luminance mediated changes in pupil diameter (Murphy et al., 2014a; 

McGinley et al., 2015a; Reimer et al., 2016; de Gee et al., 2017). Pupil responses evoked by 

decision tasks or micro-stimulation have commonly been associated with the noradrenergic 

locus coeruleus (Varazzani et al., 2015; Joshi et al., 2016; Reimer et al., 2016; de Gee et al., 

2017; Liu et al., 2017). But recent work in humans also points to a contribution of 

dopaminergic midbrain nuclei (de Gee et al., 2017) as well as of decision uncertainty (Urai et 

al., 2017) to evoked pupil responses in perceptual choice tasks.  

 Here, we quantified pupil responses during an analogous perceptual choice task as 

used in recent monkey work on dopamine neurons (Lak et al., 2017), and we compared the 

pupil responses before and after reward feedback to predictions derived from alternative 

computational models of the internal variables encoded in the brain. Our goal was to (i) 

replicate the previously found scaling of pupil responses with decision uncertainty before 
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feedback (Urai et al., 2017) and (ii) test for the same scaling of pupil responses after 

feedback as observed for dopamine neurons (Lak et al., 2017).  

 

Results 
We monitored pupil diameter in 15 human participants performing an up vs. down random 

dot motion discrimination task, followed by delayed reward feedback (Figure 1). The random 

dot motion task has been widely used in the neurophysiology of perceptual decision-making 

(Gold and Shadlen, 2007; Siegel et al., 2011). Importantly, our version of the task entailed 

long and variable delays between decision formation and feedback, enabling us to obtain 

independent estimates of the pupil responses evoked by both of these events. We titrated 

the difficulty of the decision (by varying the evidence strength, or motion coherence, see 

Methods), so that observers performed at 70% correct in 2/3 of the trials in one condition 

(‘Hard’) and at 85% correct in 1/3 of the trials in the other condition (‘Easy’). Correct vs. error 

feedback was presented after choice and converted into monetary reward, based on the 

average performance level across a block (25 trials), as follows: 100% correct yielded 10 

Euros, 75% yielded 5 Euros, chance level (50% correct) yielded 0 Euros. The total reward 

earned (in Euros) was presented on the screen to participants at the end of each block.  

 
Figure 1. Perceptual choice task with delayed reward. Random dot kinematograms (RDK) were presented in 

one half of the visual field during each block of trials (counterbalanced). Random motion (0% coherence) was 

presented throughout all intervals except for the ‘motion stimulus’ interval, during which the RDKs to be 

discriminated were shown, prompted by an auditory cue (250 ms). Motion coherence of the stimulus varied from 

trial to trial, yielding a Hard and an Easy condition. A change from an open to a closed rectangle in the fixation 

region (constant luminance) prompted subjects’ choice (‘response interval’). After a variable delay (3.5-11.5 s) 

following the choice, feedback was presented that was coupled to a monetary reward (see main text). The white 

circle surrounding RDKs is for illustration only and was not present during the experiment.  
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Model predictions 

We used a model based on statistical decision theory to generate qualitative predictions for 

the behavior of internal signals that might drive pupil-linked arousal during our task. For 

different intervals of the trial, these encoded either decision confidence (pre-feedback 

interval, (Pouget et al., 2016; Sanders et al., 2016)) or prediction errors (post-feedback 

interval, (Lak et al., 2017)), each as a function of correctness and stimulus difficulty (see 

Methods for details). The model assumed that observers categorize the motion direction 

based on a noisy decision variable (DV), which depended on the strength (Hard vs. Easy) 

and identity (Up vs. Down) of the stimulus as well as on internal noise. The model choice 

was governed by the difference between DV and a criterion, which was set to zero (i.e., no 

bias towards one over the other choice). Decision confidence, defined as the probability that 

a choice was correct given the evidence (Pouget et al., 2016), was a monotonic function of 

DV (Kepecs et al., 2008), which could be computed in the pre-feedback interval. Prediction 

error was computed as the difference between the probability of being correct (i.e., 

confidence) and the reward-linked feedback, which could be computed after observing the 

decision outcome (i.e., post-feedback interval). Because choice accuracy was coupled to a 

fixed monetary reward in our experiment (see above), confidence was the probability of 

obtaining the reward, in other words, reward expectation. Because the observer’s internal 

belief state about the state of the outside world (encoded in DV) determined both reward 

expectation and reward prediction error we refer to this model as ‘Belief State Model’ in the 

following.  

Previous work has shown that pupil responses preceding feedback and RTs followed 

the decision variable in the direction of uncertainty (Urai et al., 2017), which is the 

complement of decision confidence (with the lowest pupil dilation for the easiest, correct 

choices). Figure 3 shows the model predictions for decision uncertainty during the pre-

feedback interval (Figure 3a) and for the complement of prediction error during the post-

feedback interval (1-confidence and 1-prediction error, respectively).  

The predictions of the Belief State Model contrast with those of an alternative model, 

in which reward expectation did not depend on the noisy internal belief (i.e., DV), but only on 

the strength and identity of the external stimulus (see Methods for details). This alternative 

model, referred to as ‘Stimulus State Model’ in the following, yielded predictions that 

matched those of traditional reinforcement learning models; by contrast, the predictions of 

the Belief State Model were in line with those of a reinforcement learning model based on a 

partially observable Markov decision process (POMDP) (Lak et al., 2017). Since the two 

models differed in whether confidence and prediction errors were determined by only the 
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external stimulus (Stimulus State Model) or by the external stimulus as well as internal noise 

(Belief State Model), they made distinct predictions for the scaling of pre-feedback decision 

uncertainty (the complement of confidence) and post-feedback prediction errors with 

evidence strength on correct and error trials (Figure 2, compare both rows).  

 

 
Figure 2. Alternative predictions for internal signals during pre- and post-feedback intervals of the task. 

(a-c) Belief State Model predictions. (d-f) Stimulus State Model predictions. (a, d) Decision uncertainty 

(complement of confidence) as function of motion coherence during pre-feedback interval. (b, e) Prediction error 

as function of motion coherence during post-feedback interval. (c, f) Interaction term computed as (Easy Error - 

Easy Correct) - (Hard Error - Hard Correct). See main text for model details. 

 

 Previous work on perceptual choice has shown that reaction time (RT), like pupil 

dilation, scales qualitatively in line with the Belief State Model predictions for decision 

uncertainty (Sanders et al., 2016; Urai et al., 2017; Braun et al., 2018). The same was 

evident in the present data: There was a main effect of accuracy, F(1,14) = 51.57, p < 0.001, 

and difficulty, F(1,14) = 19.53, p < 0.001, as well as an interaction effect of both, F(1,14) = 

34.95, p < 0.001, on RT (see Supplementary Fig. S1, compare with Figure 2a), in line with 

the Belief State Model. This indicates that, in our current data, a graded, noisy DV similar to 

the one postulated by the Belief State Model was encoded and used for the decision 

process. We next tested which of the two models was more in line with the responses of 
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pupil-linked arousal systems. We analyzed pupil responses as a function of motion 

coherence and choice correctness for the two critical intervals of the trial: the phase of 

reward anticipation before feedback, as in previous work (Urai et al., 2017), and critically, the 

phase of reward prediction error signaling after feedback. 

 

Sustained pupil response modulations during pre- and post-feedback intervals 

The pupil responded in a sustained fashion during both intervals: after the onset of the 

coherent motion (i.e., pre-feedback) and post-feedback (Figure 3a, blue and purple lines). 

The pupil response remained elevated during feedback anticipation, long after decision 

processing (maximum of 3 s, 0.75 s stimulus duration plus response deadline of 2.25 s, see 

Figure 1). Upon feedback presentation, the pupil initially constricted due to the presentation 

of the visual feedback stimulus (see Supplementary Fig. S2) and then dilated again to a 

sustained level for the remainder of the post-feedback interval. Please note that we 

subtracted the pupil diameter during the pre-feedback period from the feedback-locked 

responses (see Methods), so as to specifically quantify the feedback-evoked response.  

For comparison, we measured, in the same participants (separate experimental 

blocks), pupil responses evoked during a simple auditory detection task (button press to 

salient tone), which did not entail prolonged decision processing and feedback anticipation 

(see Methods). The resulting response, termed ‘impulse response function’ (IRF) for 

simplicity, was more transient than those measured during the main experiment: the IRF 

returned back to the pre-stimulus baseline level after 3 s (Figure 3a, compare IRF with the 

blue line). Thus, the sustained elevations of pupil diameter observed beyond that time in the 

main experiment reflected top-down, cognitive modulations in pupil-linked arousal due to 

decision processing and reward anticipation (for the responses locked to the onset of the 

motion stimulus), or due to reward processing (for the feedback-locked responses). We used 

a ‘sustained’ time window from 3 to 6 s (gray shaded area in Figure 3a) to extract the 

amplitude of these cognitive modulations of the pupil response shown in Figure 3e-r (see 

below). 

 

Interacting effects of decision difficulty and accuracy on evoked pupil responses  

The sustained pupil responses during both the intervals, pre- and post-feedback, scaled in 

line with the predictions from the Belief State Model, not the Stimulus State Model (compare 

Figure 3d-f with Figure 2a-c). First, pupil responses during both intervals were overall larger 

on error than correct trials (Figure 3b-c). The Stimulus State Model did not predict any 

difference between the two categories during the pre-feedback interval, because this model 
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was only informed by external stimulus information (RDK or feedback), not by noisy internal 

states. The larger pupil responses during errors in the pre-feedback interval were in line 

previous results, and with the idea that the central arousal level during this interval is 

modulated by decision uncertainty (Urai et al., 2017).  

 

 
Figure 3. Pupil responses before and after feedback reflect observers’ belief state. (a) Pupil responses 

locked to the motion stimulus onset cue (blue) and feedback (purple). Shown for comparison is the pupil ‘impulse 

response’ measured in the same participants when pushing a button after hearing a salient noise (IRF, see main 

text). Grey shading, sustained time window (3-6 s), in which IRF returned to baseline used for (e), (f). (b) Evoked 

pupil responses for Correct and Error trials in pre-feedback interval. Black bar, correct vs. error, p < 0.05 (cluster-

based permutation test). (c) Evoked pupil responses for Correct and Error trials in post-feedback interval. Black 

bar, correct vs. error, p < 0.05 (cluster-based permutation test). (d) Interaction term (Easy Error - Easy Correct) - 

(Hard Error - Hard Correct) for cue-locked (blue, coinciding with onset of motion stimulus) and feedback-locked 

(purple) responses. Horizontal bars, p < 0.05 (cluster-based permutation test): blue, cue-locked response against 

0; purple, feedback-locked response against 0; black, difference in interaction between both responses. (e), (f) 

Mean response (in sustained time window) during both intervals, as function of difficulty and accuracy. Error 

bars, standard error of the mean (N = 15). *p < 0.05, **p < 0.01, ***p < 0.001. 

 

Second, the sustained pupil responses during both intervals exhibited a pattern of 

interactions between decision difficulty and accuracy as predicted by the Belief State Model 

but not the Stimulus State Model (compare Figure 3d to Figure 2c and Figure 2f). Hereby, 

the interaction was defined as (Easy Error - Easy Correct) - (Hard Error - Hard Correct). 

Specifically, the Belief State Model predicted a significant interaction of opposite sign for 
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both intervals (Figure 2c, compare blue and purple dots). That same pattern was evident in 

the time course of the interaction term in the pupil response: During both intervals, the 

interaction terms were significant, with opposite signs: positive during the pre-feedback 

interval and negative during the post-feedback interval (Figure 3d, blue and purple bars). 

Consequently, the interaction terms were significantly different from one another throughout 

the entire part of the sustained pupil response (Figure 3d, black bar). All three effects 

reached statistical significance before 3 s, which was before the shortest interval (3.5 s) to 

the feedback (for the pre-feedback interval) or the next trial (for the post-feedback interval) 

used in our experiment (Figure 1). Further, the continued interaction effects for both cue- 

and feedback-locked responses after 3 s were not due to contamination by the responses to 

the next event (feedback or next trial’s cue) on trials with short delays, because the 

interaction terms were of opposite sign for both responses; thus, contamination would have 

led to cancellation of the interaction effects present in Figure 3d. 

Finally, also the full pattern of sustained pupil responses for the Hard vs. Easy and 

Correct vs. Error conditions in both trial intervals (Figure 3e-f) resembled the pattern 

predicted by the Belief State Model (Figure 2a,b). In that sustained window, there was a 

trend towards an interaction between difficulty and accuracy during the pre-feedback interval 

(Figure 3e, F(1,14) = 3.97, p = 0.066; post hoc comparisons: Hard Error vs. Hard Correct, p 

= 0.009; Easy Error vs. Easy Correct, p = 0.005; Hard Error vs. Easy Error, p = 0.057; Hard 

Correct vs. Easy Correct, p = 0.518) and a significant interaction during the post-feedback 

phase (Figure 3f, F(1,14) = 8.01, p = 0.013; Hard Error vs. Hard Correct, p = 0.001; Easy 

Error vs. Easy Correct, p = 0.572; Hard Error vs. Easy Error, p = 0.076; Hard Correct vs. 

Easy Correct, p = 0.123).  

In sum, in this perceptual choice task, sustained pupil responses during both reward 

anticipation (pre-feedback) as well as after reward experience (post-feedback) were 

qualitatively in line with the predictions from a model of reward expectation and prediction 

errors model, in which the computation of these internal variables depended on internal 

belief states.  

Our current results replicate the earlier finding from a similar perceptual choice task 

(Urai et al., 2017), that pre-feedback pupil responses in perceptual choice scale with 

decision uncertainty as postulated by the Belief State Model. Our previous study focused on 

the pre-feedback responses and did not specifically assess the feedback-locked pupil 

responses (pupil measures were corrected with the same pre-trial baseline for the entire trial 

(Urai et al., 2017)). Further, feedback was not coupled to monetary reward in that study. We 

here re-analyzed the post-feedback responses in the data from that previous study in the 
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same way as those of the current one (see Supplementary Fig. S3). As in our current data, 

post-feedback responses were larger after incorrect than correct feedback (Supplementary 

Fig. S3 a). However, the uncertainty-dependent scaling of post-feedback responses differed 

between the data from our previous study (Supplementary Fig. S3 b, c) and those from the 

current study (Figure 3 c, d). One possible explanation for this difference, to be tested in 

follow-up work, might be that the prospect of receiving performance-dependent monetary 

reward is in fact crucial for the recruitment of pupil-linked arousal systems by uncertainty-

dependent prediction errors. 

 

Discussion 
It has long been known that the pupil dilates systematically during the performance of 

cognitive tasks, a phenomenon referred to as task-evoked pupil response (Hess and Polt, 

1960, 1964; Beatty and Kahneman, 1966; Hakerem and Sutton, 1966; Kahneman and 

Beatty, 1966; Kahneman et al., 1967; Simpson and Hale, 1969; Beatty, 1982). The current 

study shows that pupil dilation indicates decision uncertainty and reward prediction error 

during perceptual decision-making. Comparisons with qualitative model predictions showed 

that pupil responses during outcome anticipation and after reward feedback were modulated 

by decision-makers’ (noise-corrupted) internal belief states that also governed their choices. 

Thus, the brain’s arousal system, and specifically the neuromodulatory brainstem centers 

associated with pupil responses (Varazzani et al., 2015; Joshi et al., 2016; Reimer et al., 

2016; de Gee et al., 2017; Liu et al., 2017), are systematically recruited by high-level 

computational variables. This insight is in line with theoretical accounts of neuromodulatory 

function (Aston-Jones and Cohen, 2005; Yu and Dayan, 2005), as well as with recent results 

from dopamine neurons in monkey (Lak et al., 2017). Specifically, our results, as those from 

dopamine neurons (Lak et al., 2017), are consistent with a reinforcement learning model 

(POMDP) that incorporates graded belief states in the computation of the prediction error 

signals that drive learning (Dayan and Daw, 2008; Lak et al., 2017). 

 A number of previous studies have related non-luminance mediated pupil responses 

to decision-making, uncertainty, and performance monitoring (Preuschoff et al., 2011; 

Wessel et al., 2011; Nassar et al., 2012; O’Reilly et al., 2013; de Gee et al., 2014; Lempert 

et al., 2015; de Berker et al., 2016), but our current results move beyond their findings in 

important ways. First, with the exception of (Urai et al., 2017), previous studies linking 

uncertainty to pupil dynamics (Preuschoff et al., 2011; Nassar et al., 2012; O’Reilly et al., 

2013; de Berker et al., 2016) have used tasks in which uncertainty originated from the 

agent’s environment. By contrast, in our task, decision uncertainty largely depended on the 
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observers’ internal ‘noise’. Importantly, the internal noise led to the qualitatively distinct 

predictions of both computational models for the internal variables decision uncertainty and 

reward prediction error (Figure 2), which drove arousal during both intervals of our task 

(Figure 3). Second, our earlier work, which we replicated here, also found decision 

uncertainty to be reflected in pupil responses prior to feedback (Urai et al., 2017). Critically, 

however, we here discovered that, during perceptual decision-making in the context of 

monetary reward, post-feedback pupil dilation reflects belief-modulated prediction error 

signals. While an observers’ uncertainty about the accuracy of their choice can also be read 

out from behavioral markers such as RT (Sanders et al., 2016; Urai et al., 2017; Braun et al., 

2018), no overt behavioral response is available to infer the internal variables instantiated in 

the brain in response to feedback experience. Thus, the insight that the post-feedback pupil 

dilation reports a key signal driving learning in the face of state uncertainty (Dayan and Daw, 

2008) paves the way for future studies using this autonomous marker for tracking such 

learning signals in the brain. 

Previous work on neuromodulatory systems as well as non-luminance mediated pupil 

dynamics has commonly used the dichotomy of (i) slow variations in baseline arousal state 

and (ii) rapid (so-called ‘phasic’) evoked responses (Aston-Jones and Cohen, 2005; de Gee 

et al., 2014; Murphy et al., 2014b; McGinley et al., 2015b). Our current results indicate that 

this dichotomy is oversimplified, by only referring to the extreme points on a natural 

continuum of arousal dynamics during active behavior. Our results show that uncertainty 

around the time of decision formation as well as the subsequent reward experience both 

boost pupil-linked arousal levels in a sustained fashion: Pupils remain dilated for much 

longer than what would be expected from a brief arousal transient (Figure 3, compare all 

time courses with IRF). Even in our comparably slow experimental design, these sustained 

dilations lasted until long after the next experimental event. This implies that the sustained 

evoked arousal component we characterized here contributes significantly to trial-to-trial 

variations in baseline pupil diameter, which have commonly been treated as ‘spontaneous’ 

fluctuations. Similarly, neuromodulatory neurons in the brainstem, also exhibit dynamics on 

multiple timescales (Fiorillo et al., 2003; Schultz, 2007). 

 Recent measurements in rodents, monkeys, and humans have shown that rapid 

pupil dilations reflect responses of the noradrenergic locus coeruleus (Joshi et al., 2016; 

Reimer et al., 2016; de Gee et al., 2017). However, in all studies, activity in other brainstem 

systems was also associated with pupil dilations. The behavior of pupil dilations measured in 

the current experiment matched the functional characteristics of dopamine neurons (Lak et 

al., 2017) remarkably closely, albeit with opposite sign. It is tempting to speculate that task-
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evoked pupil responses also track, at least indirectly, the activity of the dopaminergic 

system. Another alternative is that other brainstem systems driving pupil dilations, such as 

the basal forebrain or superior colliculus (Joshi et al., 2016; Reimer et al., 2016; de Gee et 

al., 2017), exhibit the same belief-state modulated prediction error signals as the dopamine 

neurons characterized by (Lak et al., 2017). 

Several other lines of evidence also point to an association between dopaminergic 

activity and non-luminance mediated pupil dilations. First, the locus coeruleus and 

dopaminergic midbrain nuclei are (directly and indirectly) interconnected (Weinshenker and 

Schroeder, 2007; Sara, 2009). In particular, both receive top-down input from the same 

prefrontal cortical regions (Sara, 2009), which might endow them with information about 

high-level computational variables such as belief states. Second, task-evoked fMRI 

responses of the locus coeruleus and substantia nigra are functionally coupled, even after 

accounting for correlations with other brainstem nuclei ((de Gee et al., 2017), their Figure 

8G). Third, both neuromodulatory systems are implicated in reward processing 

(Weinshenker and Schroeder, 2007; Varazzani et al., 2015). Fourth, rewards exhibit smaller 

effects on pupil dilation in individuals with Parkinson's disease than in age-matched controls, 

a difference that can be modulated by dopaminergic agonists (Manohar and Husain, 2015). 

Finally, task-evoked pupil responses during decision formation correlate with fMRI 

responses in dopaminergic nuclei, again after accounting for correlations with other 

brainstem nuclei ((de Gee et al., 2017), their Figure 8H). Future invasive studies should 

establish this putative link between pupil diameter and the dopamine system. 

In sum, our current study shows that internal belief states are an important factor 

modulating evoked responses of pupil-linked arousal systems during perceptual decision-

making, during both feedback anticipation as well as after reward feedback. Our results are 

in line with new reinforcement learning models incorporating such belief states, as well as 

with the responses of dopamine neurons measured in monkey during an analogous task. 

Our results thus establish that pupil diameter is a non-invasive readout of an important 

learning signal in the brain that can be exploited by future animal and human studies. 

Finally, our results also add to the emerging idea that task-evoked responses in pupil 

diameter track responses not only of the noradrenergic system, but also of the dopaminergic 

system. 

 

Methods 
An independent analysis of these data for the predictive power of pupil dilation locked to 

motor response, for perceptual sensitivity and decision criterion has been published 
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previously (de Gee et al., 2017). The analyses presented in the current paper are 

conceptually and methodologically distinct, in that they focus on the relationship between 

Belief State Model predictions and pupil dilation, in particular locked to presentation of 

reward feedback. 

 

Participants 

Fifteen healthy subjects with normal or corrected-to-normal vision participated in the study (6 

women, aged 27 ± 4 years, range 23-37). The experiment was approved by the Ethical 

Committee of the Department of Psychology at the University of Amsterdam. All subjects 

gave written informed consent. Two subjects were authors. Subjects were financially 

compensated with 10 Euros per hour in the behavioral lab and 15 Euros per hour for MRI 

scanning. In addition to this standard compensation, subjects earned money based on their 

task performance: 0-10 Euros linearly spaced from 50-100% accuracy per experimental 

session (i.e. 50% correct = 0 Euros, 75% = 5 Euros, 100% = 10 Euros). At the end of each 

block of trials, subjects were informed about their average performance accuracy and 

corresponding monetary award. Earnings were averaged across all blocks at the end of 

each session.  

 

Behavioral task and procedure 

Subjects performed a two-alternative forced choice (2AFC) motion discrimination task while 

pupil dilation was measured (Figure 1). Motion coherence varied from trial to trial, so that 

observers performed at 70% correct in 2/3 of trials (‘hard’) and at 85% correct in 1/3 of trials 

(‘easy’). After a variable delay (3.5-11.5 s) following the choice on each trial, we presented 

feedback that was coupled to a monetary reward (see ‘Participants’).  

Each subject participated in one training session and four main experimental 

sessions (in the MRI scanner). During the training session, subjects’ individual threshold 

coherence levels were determined using a psychometric function fit with 7 levels, 100 trials 

per level, 0-80% coherence. The training session took 1.5 hours and each experimental 

session lasted 2 hours. During the experimental sessions, stimuli were presented on a 

31.55” MRI compatible LCD display with a spatial resolution of 1920 × 1080 pixels and a 

refresh rate of 120 Hz. 

 The individual coherence levels were validated at the beginning of each experimental 

session in practice blocks (during anatomical scans) by checking that the subject’s average 

accuracy across a block corresponded to 75% correct. During experimental blocks, greater 

motion coherence (i.e. stronger evidence strength) resulted in higher accuracy as well as 
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faster responses. Subjects’ accuracy was higher on easy trials (M = 88.06% correct, SD = 

4.26) compared to hard trials (M = 71.15% correct, SD = 3.64), p < 0.001. Subjects were 

faster to respond on easy trials (M = 1.13 s, SD = 0.13) compared to hard trials (M = 1.22 s, 

SD = 0.14), p < 0.001. 

 Task instructions were to indicate the direction of coherent dot motion (upward or 

downward) with the corresponding button press and to continuously maintain fixation in a 

central region during each task block. Subjects were furthermore instructed to withhold 

responses until the offset of the coherent motion stimulus (indicated by a visual cue). The 

mapping between perceptual choice and button press (e.g., up/down to right/left hand button 

press) was reversed within subjects after the second session (out of four) and was 

counterbalanced between subjects. Subjects used the index fingers of both hands to 

respond.  

 Each trial consisted of five phases during which random motion (0% coherence) was 

presented, with the exception of the stimulus interval: (i) the pupil baseline period (0.5-7 s); 

(ii) the stimulus interval consisting of random and coherent motion for a fixed duration of 

0.75 s; (iii) the response window (maximum duration was 2.25 s); (iv) the delay period 

preceding feedback (3.5-11.5 s, uniformly distributed across 5 levels); (v) the feedback and 

the inter-trial interval (ITI; 3.5-11.5 s, uniformly distributed across 5 levels). Stimulus onset 

coincided with a visual and auditory cue. The auditory cue was presented for 0.25 s (white 

noise or pure tone at 880 Hz, 50-50% of trials, randomly intermixed). The visual cue was a 

change in the region of fixation from an open to a closed rectangle. The return of the fixation 

region to an open rectangle indicated to subjects to give their response (the surface areas in 

pixels of the open and closed rectangles were held equal in order to assure no change in 

overall luminance). Feedback was presented visually (green/red for correct/error) for 50 

frames (0.42 s at 120 Hz). If subjects did not respond or were too fast/slow in responding, a 

yellow rectangle was presented as feedback on that trial.  

 Each block of the task began and ended with a 12-s baseline period, consisting of a 

fixation region (no dots). Each block of the task had 25 trials and lasted approximately 8 

minutes. Subjects performed between 23 and 24 blocks yielding a total of 575–600 trials per 

subject. One subject performed a total of 18 blocks (distributed over three sessions), yielding 

a total of 425 trials. Data from one session of two subjects (12 blocks in total) and 2 blocks 

of a third subject were excluded from the analyses because of poor eye-tracker data quality 

or technical error. 
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Visual stimuli 

Dot motion stimuli were presented within a central annulus that was not visible to the 

subjects (grey background, outer diameter 16.8°, inner diameter of 2.4°). The fixation region 

was in the center of the annulus and consisted of a black rectangle (0.45° length). Each 

frame consisted of 524 white dots (0.15° in diameter) within one visual hemifield (left or right; 

The hemifield remained constant during a block of trials and was counterbalanced between 

blocks. This manipulation was specific for the MRI experiment; the two hemifields were 

averaged in the current analysis). The proportion of ‘signal’ as compared with ‘noise’ dots 

defined motion coherence levels. Signal dots were randomly selected on each frame, lasted 

10 frames, and were thereafter re-plotted in random locations (reappearing on the opposite 

side when their motion extended outside of the annulus). Signal dots moved at 7.5°/s in one 

of two directions (upward or downward). Noise dots were randomly assigned to locations 

within the annulus on each frame. To prevent tracking of individual dots, independent motion 

sequences (n = 3) were interleaved (Pilly and Seitz, 2009). 

 

Eye-tracking data acquisition and preprocessing 

Pupil diameter was measured using an EyeLink 1000 Long Range Mount (SR Research, 

Osgoode, Ontario, Canada). Either the left or right pupil was tracked (via the mirror attached 

to the head coil) at 1000 Hz sample rate with an average spatial resolution of 15 to 30 min 

arc. The MRI681 compatible (non-ferromagnetic) eye tracker was placed outside the 

scanner bore. Eye position was calibrated once at the start of each scanning session.  

 Eye blinks and saccades were detected using the manufacturer’s standard 

algorithms (default settings). Further preprocessing steps were carried out using custom-

made Python software, which consisted of (i) linear interpolation around blinks (time window 

from 0.1 s before until 0.1 s after each blink), (ii) band-pass filtering (third-order Butterworth, 

passband: 0.01–6 Hz), (iii) removing responses to blink and saccade events using multiple 

linear regression (responses estimated by deconvolution) (Knapen et al., 2016), and (iv) 

converting to percent signal change with respect to the mean of the pupil time series per 

block of trials. 

 

Quantifying pre- and post-feedback pupil responses  

For each trial of the motion discrimination task, two events of interest were inspected: (i) 

pupil responses locked to the stimulus onset and (ii) pupil responses locked to the onset of 

the feedback. The mean baseline pupil diameter (the preceding 0.5 s with respect to the 

event) was subtracted from the evoked response for each event of interest on each trial. 
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 We extracted the mean pupil responses within the time window (3-6 s), defined by 

the period during which the independently measured pupil IRF returned to baseline (at the 

group level). The mean baseline pupil diameter (the preceding 0.5 s with respect to the 

event) was subtracted from the mean response within this time window for each event of 

interest on each trial. 

 

Model predictions 

On each trial, a decision variable, 𝑑𝑣#, was drawn from a normal distribution 𝑁(𝜇, 𝜎), where 𝜇 

was the sensory evidence on the current trial and 𝜎 was the internal noise. For the sensory 

evidence, 𝜇 ranged from -0.5 to 0.5, corresponding to the extremes of the motion coherence 

presented in the main experiment (where 0 = 100% random motion and 1 = 100% coherent 

motion). The internal noise, 𝜎, was estimated by fitting a probit psychometric function onto 

the combined data across all subjects (slope 𝛽 = 7.5). The standard deviation, 𝜎, of the 𝑑𝑣 

distribution is /
0
= 	0.133. The decision bound, 𝑐, was set to 0, indicating no choice bias for 

any observer.  

 For each level of evidence strength, 𝜇 = [-0.5, 0.5] in steps of 0.01, we simulated a 

normal distribution of 𝑑𝑣 with 𝜎 = 0.133 with ten thousand trials. The choice on each trial 

corresponds to the sign of 𝑑𝑣#. A choice was correct when the sign of 𝑑𝑣# was equal to the 

sign of 𝜇#.  

 We simulated two models, Belief State Model and Stimulus State Model, which 

differed in the input into the function used to compute confidence: whether the confidence is 

a function of 𝑑𝑣# or 𝜇#. Confidence was defined as 

Belief	State	Confidence = /
C
	×	 𝑓( 𝑑𝑣# − 𝑐 )C

#G/    (1) 

Stimulus	State	Confidence = /
C
	×	 𝑓( 𝜇# − 𝑐 )C

#G/     (2) 

where 𝑓 was the cumulative distribution function of the normal distribution, transforming the 

distance |𝑑𝑣 − 𝑐| or |𝜇 − 𝑐| into the probability of a correct response, for the Belief State or 

Stimulus State Model, respectively 

𝑓 𝑥 = 	 /
M
[1 + erf	( Q

R M
) ]      (3) 

Decision uncertainty was the complement of confidence 

Uncertainty = 1	 − 	𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒      (4) 

The prediction error was defined as 

Prediction	error = 1 − (𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 − 	𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)   (5) 

where 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 was 0 or 1. Note that we here defined the prediction error to follow the 

direction of uncertainty, previously shown in the pupil (Urai et al., 2017). For each trial, we 
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computed the binary choice, the level of decision uncertainty, the accuracy of the choice and 

the prediction error. For plotting, we collapsed the coherence levels across the signs of 𝜇, as 

these are symmetric for the up and down motion directions. 

 Custom Python code used to generate the model predictions can be found here: 

https://github.com/colizoli/belief_state_model. 

 

Statistical analysis 

Behavioral variables and pupil responses were averaged for each condition of interest per 

subject (N = 15). Statistical analysis of mean differences in pupil dilation of evoked 

responses was done using cluster-based permutation methods (Blair and Karniski, 1993). 

The average responses in the sustained time window were evaluated using a two-way 

ANOVA with factors: difficulty (2 levels: Hard vs. Easy) and accuracy (2 levels: Correct vs. 

Error). All post-hoc and two-way comparisons were based on non-parametric permutation 

tests (two-tailed). 

 

Control experiment 1:  Individual pupil impulse response functions 

In order to define a sustained component of pupil responses evoked by the events of interest 

during the main experiment, we independently measured subjects’ pupil responses evoked 

by simply pushing a button upon hearing a salient cue. This enabled a principled definition of 

the time window of interest in which to average pupil responses based on independent data. 

Subjects performed one block of the pupil impulse response task at the start of each 

experimental session (while anatomical scans were being acquired). Pupil responses 

evoked by a button press following an auditory cue were measured for each subject (Hoeks 

and Levelt, 1993). Pupils were tracked while subjects maintained fixation at a central region 

consisting of a black open rectangle (0.45° length) against a grey screen. No visual stimuli 

changed, ensuring constant illumination within a block. An auditory white noise stimulus 

(0.25 s) was presented at random intervals between 2 and 6 s (drawn from a uniform 

distribution). Participants were instructed to press a button with their right index finger as fast 

as possible after each auditory stimulus. One block consisted of 25 trials and lasted 2 min. 

Two subjects performed three blocks, yielding a total of 75-100 trials per subject. Each 

subject’s impulse response function (IRF) was estimated using deconvolution in order to 

remove effects of overlapping events due to the short delay interval between subsequent 

trials (Knapen et al., 2016).  

 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 3, 2018. ; https://doi.org/10.1101/275776doi: bioRxiv preprint 

https://doi.org/10.1101/275776
http://creativecommons.org/licenses/by/4.0/


 18 

Control experiment 2: Pupil responses during passive viewing of feedback signals 

Pupil responses evoked by the green and red fixation regions used in the main experiment 

were measured in a separate control experiment (see Supplementary Fig. S2; N = 15, 5 

women, aged 28.5 ± 4 years, range 23-34). Three subjects were authors, two of which 

participated in the main 2AFC task. No other subjects from this control experiment 

participated in the main 2AFC task. Pupils were tracked while subjects maintained fixation at 

a central region of the screen. Stimuli were identical to the main 2AFC task; dot motion 

consisted of only random motion (0% coherence). A trial consisted of two phases: (i) the 

baseline period preceding the onset of a color change (1-3 s, uniform distribution), and (ii) 

passive viewing of the stimuli used for feedback in the main experiment: during which the 

fixation region changed to either red or green (50-50% of trials, randomized) for 50 frames 

(0.42 s at 120 Hz). This was followed by an ITI (3-6 s, uniformly distributed). Participants 

were instructed that they did not need to respond, only to maintain fixation. A block 

consisted of 25 trials and lasted 3 min. Subjects performed eight blocks of this task in the 

behavioral lab, yielding 200 trials per subject.  
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Data availability: The pupil data and model prediction code are publically available here: 

https://github.com/colizoli/belief_state_model. All other data and materials available upon 

request. 
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Supplementary Figure S1. RT scales with decision uncertainty.  

Mean reaction times (RT) as a function of task difficulty and accuracy. Task difficulty and 

accuracy interacted. Error bars represent the standard error of the mean (N = 15). ***p < 

0.001 
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Supplementary Figure S2. Pupil responses during passive viewing of feedback 

signals. In a control experiment (N = 15, 5 women, aged 28.5±4 years, range 23-34), we 

investigated the time course of potential differences in pupil responses evoked by red as 

compared with green light, regardless of whether these colors correspond to reward 

feedback during the perceptual choice task. Three subjects were authors, two of which 

participated in the main experiment. Stimuli were identical to the main 2AFC task; dot motion 

consisted of only random motion (0% coherence). A trial consisted of a baseline period 

preceding the onset of a color change (1-3 s, uniformly distributed) the red or green dot at 

fixation, and ITI (3-6 s, uniformly distributed). Participants passively viewed the stimuli while 

maintaining fixation. Pupil responses were averaged for each condition of interest per 

subject (N = 15, 200 trials per subject). The light-mediated pupil constrictions evoked by 

visual feedback cues during main task (grey) and in passive viewing control experiment (red, 

green). Horizontal bar, difference between red- and green-evoked responses, p < 0.05 

(cluster-based permutation test, see main text). Grey shaded area, ‘sustained’ time window 

during which pupil dilation was averaged, defined by the period during which the pupil 

impulse response function returned to baseline and the shortest delay between events (3-6 

s). The results show that (i) green and red light both evoked pupil constrictions, and (ii) 

green light produced slightly larger pupil constriction than red light, in an early time window 

(0.25-2.25 s). The difference in correct vs. error trials in pupil constriction after feedback 

during the main experiment continues after this early time window (see Figure 3c). 

Furthermore, any differences obtained within error and correct conditions after feedback 

during the main experiment cannot be explained by differences between the color-evoked 

responses, as the stimulus color was the same between these comparisons. 
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Supplementary Figure S3. Feedback-locked responses from Urai et al. (2017). Re-

analysis of the data from our previously published study (Urai et al., 2017) using a similar 

visual perceptual choice task, however with a number of important differences specified in 

the following: The study used a two-interval forced choice motion coherence discrimination 

task; multiple levels of task difficulty were intermixed, here sorted into two categories 

(median split) yielding Hard and Easy conditions for comparison with the present data; delay 

intervals between decision and feedback, and the inter-trial-intervals were shorter than in the 

current study; feedback (Correct or Error) was presented by two different tones; feedback 

was not linked to any reward (participants’ financial remuneration was not contingent on 

performance).  (A) Evoked pupil responses for Correct and Error trials locked to trial-wise 

(auditory) feedback. Black bar, correct vs. error, p < 0.05 (cluster-based permutation test). 

Because feedback was not presented visually, there was no post-feedback pupil 

constriction, but dilation for all trial types. Error feedback elicited stronger dilations than 

correct feedback, as in the current data (compare with Figure 3c). (B) Pupil responses as a 

function of task difficulty and accuracy locked to feedback. The scaling with evidence 

strength was similar to pre-feedback decision uncertainty, but not to post-feedback 

prediction error, with smaller dilations for Correct Easy than Correct Hard responses 

(compare to Figure 2b). (C) The interaction term for task difficulty with two levels (Easy Error 

- Easy Correct) - (Hard Error - Hard Correct) for feedback-locked responses. Purple bar, 

feedback-locked response against 0, p < 0.05 (cluster-based permutation test). For all 

feedback-locked responses, the mean pupil diameter across the pre-feedback interval from -

0.5 s to 0 s was subtracted from the response time courses at the single-trial level. Each 

condition of interest was averaged across subjects (N = 27).  
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