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Discussion 
 
The results indicate that local returns can enhance the selectivity of epiretinal stimulation of 
RGCs, at cellular resolution, in the primate retina. This finding is broadly consistent with the 
well-established fact that local return stimulation can be used to restrict the electrical activation 
of neurons by focusing the electric field (Abramian et al., 2011; Habib et al., 2013). The primary 
novel aspect of the present findings is that increases in resolution occur over very small spatial 
scales that enhance the probability of single-cell activation. Also, the results show that the 
selectivity enhancement with local returns is systematic, in spite of variable effects on individual 
cell thresholds. Finally, the results show that cellular resolution activation can be used to 
differentially target ON and OFF cells encoding immediately adjacent or overlapping areas of 
the visual field. 
 
On a practical level, these findings suggest that a retinal prosthesis designed to operate at 
single-cell resolution could be improved by the use of local returns, to selectively target cells 
near each stimulating electrode while avoiding the activation of neighboring cells. To exploit this 
higher selectivity, an ideal device would record electrically evoked activity to determine the 
optimal current amplitude for activating the target cell above threshold, while remaining below 
threshold for the non-target cell(s). Also, it would be important for such a device to identify the 
degree to which passing axons are activated, a major issue for existing epiretinal devices 
(Nanduri, 2011; Weitz et al., 2015), but one that is likely to be manageable in a subset of cells if 
the device is able to record and calibrate stimulation current levels (Grosberg et al., 2017). In 
the present study, only somatic activation was evaluated. This was accomplished by using 
electrodes that recorded unambiguous somatic spikes, and that also produced activation curves 
less steep than those normally observed with axonal activation. A thorough examination of axon 
activation would require further experiments. 
 
The cellular resolution of the increases in selectivity with local returns was revealed by the fact 
that a target cell could be more effectively activated relative to a non-target cell encoding an 
immediately neighboring or overlapping location in the visual field (Fig. 4). Thus, local returns 
can effectively enhance the highest possible visual resolution. Furthermore, local returns 
permitted activation of an ON cell more effectively than an immediately adjacent or overlapping 
OFF cell, or vice-versa. This is significant because the indiscriminate activation of ON and OFF 
cells encoding the same location in the visual field is a salient example of how poor selectivity 
can cause conflicting visual information to be transmitted to the brain (see Goetz and Palanker, 
2016). 
 
The substantial variability of the effects of local returns across cell pairs and retinas could have 
several origins. One factor is the more restricted electric field in the depth dimension of the 
retina with local returns (Flores et al., 2016), the effects of which may depend on features that 
are difficult to measure and different in different retinas, such as the thickness of the inner 
limiting membrane and axon fiber layer, and the degree to which the retina is pressed against 
the electrode array. Another factor is the non-radially-symmetric electric field produced by the 
six surrounding electrodes forming the local return, both within the ring of six electrodes, and 
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outside it, which would vary with the locations of the target and non-target cells relative to the 
electrodes. A third contributing factor is errors in estimating the position of RGCs relative to the 
electrodes. Given that these factors are difficult to estimate, and were not estimated in the 
current work, their contributions to variability across cell pairs and retinas are unknown. 
Furthermore, it remains unclear whether these factors could produce the weaker improvements 
in selectivity for far non-target cells, compared to intermediate non-target cells. Although all of 
these factors deserve further examination, the overall trend across the experimental variables 
examined was that local returns enhanced selectivity significantly. 
 
The majority of cells examined in this study were ON and OFF parasol cells, two of the major 
RGC types in the primate retina, comprising ~16% of the RGC population (see Dacey, 2004 for 
review). A few ON midget cells were also examined; these cells comprise ~25% of all RGCs. 
Analysis focused primarily on parasol cells because their large spikes were easier to sort 
reliably in the presence of electrical artifacts. For a more comprehensive view of how local 
returns can impact selectivity of RGC stimulation, it may be necessary to more thoroughly 
explore the properties of cell types other than parasol cells, which would require further 
experimentation. An additional challenge is that manually spike sorting voltage traces recorded 
after electrical stimulation is arduous and time-consuming (see Jepson et al., 2012; Grosberg et 
al., 2017). One potential solution would be the development of algorithms to automatically sort 
spikes in these data, an effort that is underway (see Mena et al., 2017).  
 
The electric field in the region near the stimulating electrode is predicted to be inhomogeneous 
in the present experiments, because the local return consisted of six individual electrodes 
surrounding the stimulating electrode, rather than a uniform ring. This inhomogeneity could 
make it more difficult to activate cells in certain regions near the stimulating electrode. The 
results obtained from the four retinal preparations generally support this possibility:	although 
intermediate distance cells usually had higher local return thresholds, there were exceptions. It 
is possible that a surrounding return ring electrode would be more effective. However, the 
simple triangular lattice electrode arrangement has the advantage of flexibility: in a clinical 
device, such an arrangement could be used to provide a higher density of possible stimulation 
locations, while at the same time allowing some of the advantages of local return stimulation. 
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