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ABSTRACT 

 

Background: Temporal incidence patterns provide a crucial window into the dynamics of 

emerging infectious diseases, yet their utility is limited by the spatially aggregated form in which 

they are often presented. Weekly incidence data from the 2015-2016 Zika epidemic were 

available only at the national level for most countries in the Americas. One exception was 

Colombia, where data at departmental and municipal scales were made publicly available in 

real time, providing an opportunity to assess the degree to which national-level data are 

reflective of temporal patterns at local levels. 

 

Methods: To characterize differences in epidemic trajectories, our analysis centered on 

classifying proportional cumulative incidence curves according to six features at three levels of 

spatial aggregation. This analysis used the partitioning around medoids algorithm to assign 

departments and municipalities to groups based on these six characteristics. Examination of the 

features that differentiated these groups and exploration of their temporal and spatial patterns 

were performed. Simulations from a stochastic transmission model provided data that were 

used to assess the extent to which groups identified by the classification algorithm could be 

associated with differences in underlying drivers of transmission. 
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Results: The timing of departmental-level epidemic peaks varied by three months, and 

departmental-level estimates of the time-varying reproduction number, R(t), showed patterns 

that were distinct from a national-level estimate. The classification algorithm identified moderate 

support for two to three clusters at the departmental level and somewhat stronger support for 

this at the municipal level. Variability in epidemic duration, the length of the tail of the epidemic, 

and the consistency of cumulative incidence data with a cumulative normal distribution function 

made the greatest contributions to distinctions across these groups. Applying the classification 

algorithm to simulated data showed that municipalities with basic reproduction number, R0, 

greater than 1 were consistently associated with a particular group. Municipalities with R0 < 1 

displayed more diverse patterns, although in this case that may be due to simplifications of how 

the model represented spatial interaction among municipalities. 

 

Conclusions: The diversity of temporal incidence patterns at local scales uncovered by this 

analysis underscores the value of spatially disaggregated data and the importance of locally 

tailored strategies for responding to emerging infectious diseases. 

 

Keywords: Colombia; data analytics; emerging infectious disease; epidemic; forecasting; 

mathematical modeling; spatial analysis; surveillance data; time series; Zika 

 

 

BACKGROUND 

 

Time series have been used for many years to make inferences about processes that shape the 

dynamics of a wide range of systems [1]. This long history has resulted in appreciation of a 

number of common challenges for time series analysis [2]. One such challenge is disentangling 

the effects of multiple interacting forces, which can include both extrinsic forces, such as 

weather, and intrinsic forces, such as immune-mediated feedbacks [3,4]. An even more 

fundamental challenge lies in defining the time series in the first place, especially with respect to 

space [5]. The question is, at what spatial scale should epidemiological data be aggregated for 

time series analysis? 

 

In practice, the spatial scale at which data are aggregated to form a time series is more often 

dictated by the scale at which data are available than by the scale that is optimal for inference or 

prediction. For example, during the recent invasions of chikungunya virus (CHIKV) and then 

Zika virus (ZIKV) across the Americas, the Pan American Health Organization published weekly 

case reports aggregated nationally. Despite an abundance of evidence that chikungunya and 

dengue viruses – another virus transmitted by Aedes aegypti mosquitoes – are characterized by 

spatially focal transmission [6,7], applications ranging from estimation of time-varying 

reproduction numbers [8] to forecasting [9] have utilized data aggregated at national scales for 

countries as vast and spatially heterogeneous as Brazil and Mexico. 

 

One exception to the public availability of data only at coarse, highly aggregated scales is 

Colombia, where routine surveillance of Zika was reported on a weekly basis for each of the 

country’s 1,123 municipalities during the 2015-2016 epidemic [10]. Although these case reports 
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are underestimates of the true extent of transmission of many infectious diseases, particularly 

those with high proportions of asymptomatic infections, they still provide a uniquely valuable 

resource given the paucity of publicly available data at similar scales in other countries [11]. 

Such data are particularly valuable for Zika, given that a range of spatial scales are relevant for 

activities related to its prevention and control. On the one hand, vector control activities are 

planned and budgeted on multiple administrative levels but must be targeted on a very local 

level. On the other hand, communications, surveillance, and possible vaccination programs are 

generally planned and implemented only on larger administrative scales. 

 

Our goal in this study was to utilize this unique data set on the ZIKV invasion of Colombia to 

perform a case study on the characteristics of temporal incidence patterns at different spatial 

scales in the context of an emerging infectious disease. To do so, we took a three-part 

approach. First, we performed a descriptive analysis of time series of weekly case reports at 

three distinct scales in Colombia: national, departmental, and municipal. Second, we performed 

a classification analysis of proportional cumulative incidence curves at departmental and 

municipal scales to identify distinct patterns of temporal dynamics at each of these scales. 

Third, we repeated the classification analysis for data simulated with a mechanistic model for 

ZIKV transmission in Colombia to determine the extent to which distinct statistical patterns in 

temporal incidence may reflect distinct driving processes. 

 

METHODS 

 

Data 

 

The weekly number of Zika cases, by municipality, was reconstructed using two data sources. 

The main data source was a website [12] of the Colombian National Institute of Health (Instituto 

Nacional de Salud, INS) where the official weekly reports on the cumulative number of 

suspected and confirmed Zika cases for each municipality were published beginning in early 

2016. While the peak of the Colombian epidemic occurred in 2016, a significant number of 

cases were reported during 2015. To capture this initial portion of the epidemic, we used an 

additional data source, also available on the INS website. Unfortunately, the number of cases 

reported in the latter data source seemed to consistently underreport the total number of cases 

reported by the INS at the national scale. For example, while the official data source reports a 

cumulative number of 11,712 cases by the end of 2015, this secondary source only reports 

3,875 cases for this same period. Therefore, to reconstruct the 2015 portion of the epidemic 

while accounting for the better known total number of cases, we multiplied the weekly 2015 data 

by a correction factor. This correction factor was calculated as the ratio between the cumulative 

number of cases reported by each municipality up to the first week of 2016 according to the 

official source and the alternative source. 

 

For the simulation model, we used two data sources. First, we obtained gridded population data 

across Colombia for 2015 at a resolution of 3 arc seconds (~93 m) from WorldPop [13]. We 

summed these raster data at the municipal level as defined by GIS shapefiles from the National 

Geographical Information System of Colombia [14]. Second, we based estimates of R0 on a set 
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of ZIKV epidemic size projections for Latin America made early in the epidemic using 

relationships between environmental variables and transmission metrics [15]. To obtain a single 

value of R0 for each municipality, we took a weighted sum of the R0 raster at 5 km x 5 km 

resolution weighted by a population raster aggregated to that scale. We calibrated these R0 

estimates to observed dynamics in Colombia by scaling municipal values of R0 from [15] by a 

constant (2.72) such that the value for Girardot matched an estimate of 4.61 derived from an 

analysis of temporal incidence patterns there [16]. 

 

Descriptive analysis of weekly case reports 

 

We performed two preliminary analyses of differences in weekly case report patterns at different 

scales of spatial aggregation. First, we generated a barplot of national case reports color-coded 

by which of 32 departments those national cases arose from. Likewise, for each of those 

departments, we generated a barplot of departmental case reports color-coded by which of its 

municipalities those departmental cases arose from. Second, we made estimates of the time-

varying effective reproduction number, R(t), for each time series. Following Ferguson et al. [8], 

we used the EstimateR function from the EpiEstim library [17] in R to estimate R(t) for each time 

series based on the method introduced by Cori et al. [18]. 

 

Classification analysis of cumulative incidence curves 

 

We focused our analysis on cumulative, rather than raw, incidence because of the extreme 

variability in raw incidence patterns in this data set. With raw incidence, time series with a small 

number of cases appear extremely jagged, and temporal patterns can be difficult to extract. 

With proportional cumulative incidence, vastly different temporal patterns are more readily 

comparable, because they all begin at 0 and end at 1 but arrive there by different paths. Others 

[19] have criticized the use of cumulative incidence data from epidemics, although these 

criticisms mostly pertain to parameter estimation and forecasting, neither of which we do here. 

Rather, our goal was to perform a descriptive analysis of diversity in the temporal patterns of an 

epidemic as viewed from many different perspectives spatially. 

 

The cumulative incidence curves that we examined were proportional such that they all reached 

1 at the time the last case was reported in a given area. Mathematically, for weekly reported 

Zika incidence Ii,t in location i in week t, we calculated proportional cumulative incidence as 

 

𝐶𝑖,𝑡 =
∑ 𝐼𝑖,𝜏𝜏≤𝑡

∑ 𝐼𝑖,𝜏𝜏
.      (1) 

 
We excluded areas from our analysis that reported no Zika cases. 
 

As a basis for classifying cumulative incidence curves, we defined six features of these curves 

that we hypothesized represent dimensions in which curves from different areas vary (Table 1). 

We defined four of these features in reference to cumulative normal density curves, �̂�𝑖(𝑡), that 

we fitted to each Ci,t. This involved estimating mean and standard deviation parameters of �̂�𝑖(𝑡) 

for each Ci,t on the basis of least squares using the optim function in R. We chose these 
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features because they provided a way to quantify the duration of local epidemics (small 𝐹𝑆𝐷, 

short 𝐹𝛥𝑡 = short epidemic), to capture whether epidemics appeared strongly locally driven (low 

𝐹𝑅2, large 𝐹0= sporadic transmission fueled by importation), and to characterize shapes that 

deviated substantially from those predicted by simple epidemic models (𝐹5% and 𝐹95% near zero 

= “SIR-like” epidemic). Although these idealized scenarios motivated the selection of these 

features, the fact that all six features were calculated for each Ci,t meant that we were able to 

capture a wide range of patterns in between these extremes. 

 

Symbol Definition 

𝐹𝑆𝐷 Standard deviation of �̂�𝑖(𝑡) 

𝐹𝑅2 R2 between Ci,t and �̂�𝑖(𝑡) 

𝐹5% Difference between the 5% quantile of Ci,t and the 5% quantile of �̂�𝑖(𝑡)  

𝐹95% Difference between the 95% quantile of Ci,t and the 95% quantile of �̂�𝑖(𝑡)  

𝐹𝛥𝑡 Weeks between first and last non-zero Ci,t 

𝐹0 Weeks with Ci,t = 0 between first and last non-zero Ci,t 

Table 1. Features of proportional cumulative incidence curves used for classification analysis. 

 

We explored variation in Ci,t at both departmental and municipal scales. To describe how 

variation in Ci,t curves at these scales was distributed across the six-dimensional feature space, 

we performed a partitioning around medoids (PAM) clustering analysis [20] on scaled values of 

the features using the pam function in the cluster library [21] in R. This algorithm identifies 

medoids of k groups that minimize the sum of distances between each medoid and all group 

members. We performed this analysis for values of k ranging 2-10 and compared groupings for 

different values of k on the basis of their average silhouette values. A silhouette value describes 

how much more dissimilar a point is from points in the next most similar group compared to 

points in its own group [22]. An ideal classification would be indicated by silhouette values for 

data points in all groupings close to 1. Silhouette values nearer to or below 0 indicate that points 

do not cluster particularly well with the group to which they are assigned. 

 

Simulation of epidemic curves to elucidate driving processes 

 

To aid in the interpretation of the classification analysis of observed patterns of temporal 

incidence, we performed an identical analysis of simulated patterns of temporal incidence. The 

value of doing so is that it provides an opportunity to determine the extent to which groups 

identified by the classification analysis might reflect meaningful differences among those groups 

in terms of transmission processes and their drivers. In other words, we viewed this exercise as 

a form of validation of the overall approach of performing a classification analysis on the 

features of proportional cumulative incidence patterns listed in Table 1. 
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We simulated a data set comparable to the observed data using an R implementation of the 

ZIKV transmission model described by Ferguson et al. [8] parameterized to match the 

municipal-level R0 values described at the end of the previous section. The model by Ferguson 

et al. had a number of attractive features, including plausible values of a number of parameters 

common to ZIKV transmission models, realistic accounting of the timing of transmission-relevant 

processes in mosquitoes and humans, seasonal variation in transmission, and the ability to 

capture multiple forms of stochasticity associated with transmission and surveillance. In brief, 

the model assumes that humans transition from a susceptible compartment into a recovered 

and immune compartment following a period of incubation and infectiousness and that 

mosquitoes become infectious and remain so following bites of infectious humans and a 

seasonally variable incubation period. Mosquito population density is also seasonally variable, 

driven by seasonal variation in larval carrying capacity and adult mortality. A full description of 

the model can be found in the paper by Ferguson et al. [8]. 

 

To apply this model to Colombia, we used municipal-level human population sizes derived from 

WorldPop [13] and adjusted seasonally averaged mosquito densities such that seasonally 

averaged values of R0 matched our municipal-level R0 estimates. Another departure from the 

original model that we made was to remove explicit spatial coupling, given the complexity of 

doing so realistically for all 1,122 municipalities in Colombia. Instead, we simulated imported 

infections (i.e., infections acquired outside a given municipality) to occur at a daily per capita 

rate that was proportional to a normal probability density function fitted to the temporal pattern of 

national-scale incidence (timing of national-scale incidence: mean = 32.57 weeks after the first 

reported case, standard deviation = 8.85 weeks). This time-varying importation function was 

scaled by a value of 1.55 x 10-3, which along with an assumed reporting rate of 11.5% [23] 

allowed us to approximately match the national total of 85,353 suspected Zika cases. Also, 

given that our interest was in short-term dynamics rather than long-term dynamics as in [8], we 

removed human age stratification from the model. 

 

RESULTS 

 

Descriptive analysis of weekly case reports 

 

As a whole, the temporal incidence pattern at the national level was consistent with a typical 

epidemic trajectory, marked by an increase over approximately five months, a peak around the 

beginning of February 2016, and a steady decline thereafter over a period of approximately 

eight months (Fig. 1A). Under a standard set of assumptions about epidemic dynamics, this 

incidence pattern can be used to estimate the temporal trajectory of the effective reproduction 

number, R(t) [18]. Applying this technique at the national level yielded estimates of R(t) that 

began high (range: 1.5-3.5 for the first four months) and gradually declined below 1 by the time 

the epidemic concluded (Fig. 1A), all of which is consistent with standard expectations for an 

epidemic of an immunizing pathogen in an immunologically naive host population. 
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Figure 1. Weekly Zika case reports at the national level (A) and for each of the four 

departments with the largest case report totals (B: Valle del Cauca; C: Norte de Santander; D: 

Santander; E: Tolima). Colors match across A and B-E, with the addition of yellow in A that 

includes all departments other than those in B-E. Time-varying estimates of the effective 

reproduction number, R(t), are shown in each panel. 

 

Examination of temporal incidence patterns for each of the four largest departments in terms of 

total incidence (Valle del Cauca, Norte de Santander, Santander, Tolima) showed that patterns 

at the departmental level were quite different than those at the national level. First, the timing of 

peak incidence in the departments in Fig. 1B-1E varied by around three months. Second, the 

shapes of the incidence patterns in these departments varied, with Valle del Cauca and 

Santander (Fig. 1B & 1D) showing high incidence sustained over a period of several months 

and Norte de Santander and Tolima (Fig. 1C & 1E) showing sharper peaks trailed by relatively 

low incidence for several months after. 

 

This high degree of variability in temporal incidence patterns had substantial impacts on 

estimates of R(t). At the national level, R(t) estimates never exceeded 3.5, whereas in 

Santander R(t) was estimated to exceed 5 (Fig. 1D) and in Valle del Cauca it was estimated to 

exceed 10 (Fig. 1B), due in both cases to more rapid increases in incidence at the departmental 

level than the national level. In Norte de Santander, R(t) appeared to twice fall well below 1 but 

then quickly rise back above this critical threshold value (Fig. 1C). 

 

Examination of temporal incidence patterns at the municipal scale revealed even more 

variability in temporal incidence patterns than at the department level. In the department of 

Norte de Santander (Fig. 1C), for example, it was clear that one municipality dominated the 

departmental pattern (Fig. 2A). The municipalities with the second and third highest incidence 

both experienced short, unimodal patterns of incidence during the first two months, but 

incidence patterns thereafter were mostly low and erratic (Fig. 2B & 2C). Other municipalities in 
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the department had only low, erratic incidence with no sign of a distinct epidemic (e.g., Fig. 1D). 

With the exception of the first few weeks of transmission, estimates of R(t) at the municipal level 

were characterized by erratic fluctuations and much larger uncertainty than was apparent at the 

departmental or national level (Fig. 2). 

 

 
Figure 2. Weekly Zika case reports at the departmental level for Norte de Santander (A) and for 

each of the four municipalities with the largest case report totals (B: Cucuta; C: Villa del Rosario; 

D: Los Patios; E: Ocaña). Colors match across A and B-E, with the addition of yellow in A that 

includes all municipalities other than those in B-E. Time-varying estimates of the effective 

reproduction number, R(t), are shown in each panel. 

 

Classification analysis of cumulative incidence curves 

 

At the departmental level, there was only modest clustering overall, with the highest average 

silhouette value corresponding to two groups (0.256), a slightly lower value for three groups 

(0.254), and falling no lower than 0.201 for up to ten groups (Fig. S1). 𝐹𝑆𝐷 and 𝐹95% were the 

features that were most important for distinguishing two groups (Fig. S2), and 𝐹𝛥𝑡 contributed 

further to distinguishing three groups (Fig. S3). Differences in 𝐹𝑆𝐷 were associated with a 

difference of approximately two months in the time elapsed between the attainment of 5% and 

80% of cumulative incidence (Fig. 3, left: blue longer than red), and differences in 𝐹95% were 

associated with a difference of approximately two months in the time elapsed between the 

attainment of 80% and 99% of cumulative incidence, but for different groups (Fig. 3, left: red 

longer than blue). Overall, this meant that the time elapsed between attainment of 5% and 99% 

of cumulative incidence for both groups was similar, but with one group experiencing epidemics 

that were fast initially but slow to finish and another group experiencing epidemics that were 

slower initially but finished more quickly. These patterns were clearest for the curves associated 

with the medoid of each group (Fig. 3) but were generally apparent for the curves associated 

with the groups as a whole (Fig. 4). Spatially, groups tended to cluster along northern, central, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/276006doi: bioRxiv preprint 

https://doi.org/10.1101/276006
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

and southern strata (Fig. 5, left), with incidence-weighted cartographs showing that the epidemic 

was mostly dominated by distinct northern and central strata (Fig. 5, top right). 

 

 
Figure 3. Proportional cumulative incidence curves at the departmental level with two 

(left) or three (right) groups. Only one representative curve is shown for each group, with that 

curve being chosen on the basis of being associated with the medoid of its group. 
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Figure 4. Proportional cumulative incidence curves at the departmental level with two 

(top) or three (bottom) groups. Within each row, groups are distinguished by color. 

 

 
Figure 5. Cartograms at the departmental level weighted by area (left), population 

(center), and incidence (right). Department assignments to two (top) and three (bottom) 

groups are indicated by color, with transparency inversely proportional to silhouette value. The 

one department (Bogotá) with zero incidence is indicated in black and given a weight equivalent 

to 1/5 of a case to allow for its inclusion in the right column. 

 

There was somewhat stronger clustering at the municipal level, with the highest average 

silhouette value corresponding to three groups (0.352), somewhat lower values for five and six 

groups (0.334, 0.326), and no lower than 0.297 for up to ten groups (Fig. S4). 𝐹𝛥𝑡 and 𝐹𝑆𝐷 were 

the features that were most important in distinguishing two groups (Fig. S5), 𝐹95% made 

additional contributions to distinguishing three groups (Fig. S6), and 𝐹𝑅2 contributed to 
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distinguishing four groups (Fig. S7). Proportional cumulative incidence curves for the group with 

short 𝐹𝛥𝑡 and small 𝐹𝑆𝐷 were the most visually distinct group and remained relatively consistent 

regardless of the number of groups (Fig. 6). Some differences among the other groups were 

also apparent in the proportional cumulative incidence curves, with some having a long tail (Fig. 

6, middle: green) or two discrete jumps (Fig. 6, middle: blue). The timing of discrete jumps 

varied across municipalities, but curves within a group otherwise resembled the curve 

associated with the medoid for that group (Fig. 7). Spatially, departments generally consisted of 

a mixture of municipalities from different groups, and the prominence of some groups in the 

cartograms varied depending on whether the cartograms were weighted by area, population, or 

incidence (Fig. 8). The cartograms weighted by population showed that a sizeable portion of the 

population lives in cities that had no reported cases, such as Medellín and Bogotá (Fig. 8, black 

in the center column). Among municipalities that did have reported cases, the cartograms 

weighted by incidence showed that a relatively large proportion of reported cases came from 

municipal-level epidemics characterized by large 𝐹𝛥𝑡 and 𝐹𝑆𝐷 (Fig. 8, right column). 

 

 
Figure 6. Proportional cumulative incidence curves at the municipal level with two (left), 

three (middle), or four (right) groups. Only one representative curve is shown for each group, 

with that curve being chosen on the basis of being associated with the medoid of its group. 
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Figure 7. proportional cumulative incidence curves at the municipal level with two (top), 

three (middle), or four (bottom) groups. Within each row, groups are distinguished by color. 
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Figure 8. Cartograms at the municipal level weighted by area (left), population (center), 

and incidence (right). Municipality assignments to two (top), three (middle), and four (bottom) 

groups are indicated by color, with transparency inversely proportional to silhouette value. 

Municipalities with zero incidence are indicated in black and were given a weight equivalent to 

1/5 of a case to allow for their inclusion in the right column. 
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Simulation of epidemic curves to elucidate driving processes 

 

We focused our analysis of simulated data at the municipal level given that the simulation model 

was not equipped to simulate transmission between municipalities, which is likely important for 

recreating departmental-level patterns. Overall, our model parameterization assumed that R0 > 

1 in 34.6% of municipalities. A total of 12.6% (range: 10.4-14.1%) of municipalities had zero 

simulated cases, with 99.0% (range: 97.0-100.0%) of those having R0 < 1. 

 

Out of 100 simulated datasets, the classification algorithm selected two groups eight times, 

three groups 80 times, and five and six groups four times each. Average silhouette value was 

0.313 (range: 0.288-0.347) when there were two groups and 0.327 (range: 0.291-0.352) when 

there were three groups (see Fig. S8 for a representative silhouette plot from a randomly 

selected simulated dataset). Although this indicates a modest preference of the algorithm for 

three groups, we focused subsequent analyses on the two-group classification due to our desire 

to evaluate the correspondence between groups selected by the classification analysis and 

groups defined by R0 above or below 1. 

 

With the two-group classification, 99.1% (range: 90.3-100.0%) of municipalities with R0 > 1 were 

placed into the group characterized by larger 𝐹𝛥𝑡 and 𝐹𝑆𝐷. Of the municipalities with R0 < 1, 

74.0% (range: 36.3-80.5%) were also placed into that group, with the others placed into the 

group with smaller 𝐹𝛥𝑡 and 𝐹𝑆𝐷 (see Fig. S9 for an example from a randomly selected simulated 

dataset). When municipalities were classified into three groups, a new group characterized by 

moderately low 𝐹𝛥𝑡 and 𝐹𝑆𝐷 and negative 𝐹95% contained 18.8% (range: 0.2-36.1%) of 

municipalities with R0 > 1 and 44.7% (range: 23.0-56.5%) with R0 < 1 (see Fig. S10 for an 

example from a randomly selected simulated dataset). In the presence of this third group, 

79.9% (range: 63.4-89.7%) of municipalities with R0 > 1 and 32.1% (range: 22.8-38.8%) with R0 

< 1 were placed into the group characterized by larger 𝐹𝛥𝑡 and 𝐹𝑆𝐷.  

 

Visual inspection of five simulated datasets showed that the proportional cumulative incidence 

curves of municipalities placed in the group characterized by large 𝐹𝛥𝑡 and 𝐹𝑆𝐷 generally 

resembled the curves of municipalities with R0 > 1 (Fig. 9, red). In contrast, proportional 

cumulative incidence curves of municipalities with R0 < 1 were more diverse than those placed 

in the group characterized by low 𝐹𝛥𝑡 and 𝐹𝑆𝐷 (Fig. 9, blue). A similar pattern was apparent 

spatially, with municipalities placed in the group characterized by large 𝐹𝛥𝑡 and 𝐹𝑆𝐷 generally 

overlapping with municipalities with R0 > 1, but municipalities with R0 < 1 frequently placed in 

the group characterized by large 𝐹𝛥𝑡 and 𝐹𝑆𝐷 (Fig. 10).  
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Figure 9. proportional cumulative incidence curves at the municipal level from five 

randomly selected simulated datasets. The left two columns show two different groups 

classified by the curve classification algorithm, and the right two columns show two different 

groups defined by whether those municipalities have a R0 above or below 1. 
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Figure 10. Cartograms at the municipal level weighted by area based on model 

simulations. Each municipality’s status as having R0 > 1 (red) or R0 < 1 (blue) is indicated in 

the top left panel. In each of five simulated datasets shown in the other panels, municipality 

assignments to two groups are indicated by color, with transparency inversely proportional to 

silhouette value. Black indicates that no reported cases were simulated for that municipality. 

 

DISCUSSION 

 

Temporal incidence patterns play a vital role in inferring pathogen transmission dynamics and 

drivers thereof. By analyzing data from the 2015-2016 Zika epidemic in Colombia, we showed 

that these patterns can appear very different depending on the spatial scale at which incidence 

data are aggregated. Whereas national-level patterns appeared to follow a unimodal pattern 
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consistent with behavior of standard epidemic models, departmental-level patterns were 

somewhat more varied and municipal-level patterns were the most varied. Combining these 

observations with a formal classification of temporal incidence patterns and a model-based 

exploration of mechanisms capable of generating those patterns, we deduced that there is 

distinct variation in temporal incidence patterns subnationally and that much of that variation 

may be driven by spatial variation in local transmission potential. Spatial contiguity of areas 

classified into the same groups was observable to some extent at the departmental level but 

was generally not observed at the municipal level, suggesting that there are underlying spatial 

drivers of the variation that we observed in temporal incidence patterns. 

 

Similar to our findings of differing dynamics at municipal and departmental scales, theoretical 

analyses of a range of ecological models have proposed that dynamics approach deterministic 

behavior as spatial scales grow larger and data become increasingly more aggregated [24]. 

Methods based on long-term dynamics have been proposed for identifying the scales at which 

behavior transitions from stochastic to deterministic in models of plant competition and predator-

prey interactions [25,26]. Epidemics, however, are inherently transient in nature [2], leaving 

open the question of how best to define characteristic spatial scales in that context. It is certainly 

the case that the data from Colombia that we examined displayed greater stochasticity at finer 

spatial scales. At the same time, the greater variability in temporal patterns that we observed at 

finer scales suggests that models that aspire to a deterministic representation of behavior at 

coarser scales must account for spatial structure at finer scales. Indeed, a recent attempt to fit a 

national-scale transmission model to national-scale time series of Zika case reports from 

Colombia showed that ignoring subnational spatial structure inhibited that model’s fit to the data 

[27]. A theoretical exploration of similar issues concluded that the scale at which spatial 

structure must be modeled explicitly is expected to vary by pathogen and geographic context, 

with less mobile pathogens requiring explicit spatial representation at finer scales [28]. 

 

Both stochasticity and spatial interaction are expected to contribute to variability in temporal 

dynamics at local scales [29]. For some municipalities, temporal incidence patterns appeared to 

be dominated by stochasticity (e.g., those with discrete jumps). For others, there were 

implications for a role of spatial interaction (e.g., those with two sharp increases or a long tail). 

Whereas our simulation model was realistic with respect to demography and the inclusion of 

spatiotemporal variability in local transmission, it made the very simplistic assumption that 

importation patterns have identical timing and magnitude in all municipalities. This may have 

caused municipalities with R0 < 1, particularly those with larger populations, to display incidence 

patterns that simply reflected the national trend used to drive importation. Analyses of 

subnational spatiotemporal dynamics in a range of contexts show that importation patterns vary 

substantially over time and as a function of regional connectivity or being positioned on an 

international border [30–33]. Future work that includes more realistic spatial interaction among 

subnational units could be helpful for resolving the hypothesis proposed here about the 

importance of spatial interaction in shaping temporal incidence patterns at each of the spatial 

scales that we considered. 
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Our finding of differences in temporal incidence patterns at different spatial scales raises 

questions about infectious disease forecasting that deserve further consideration, particularly at 

national and other highly aggregated scales. Analyses of alternative models used to forecast 

Ebola virus disease incidence in the West African epidemic showed that the accuracy of 

forecasts can be extremely sensitive to model misspecification [19]. More recent work 

addressing the predictive limits of forecasting for a number of infectious diseases has suggested 

that appropriate model structure may itself change over the course of an epidemic, with overly 

rigid model structures being constrained in their ability to accurately forecast future incidence 

patterns [34]. Our findings –specifically, that temporal incidence patterns vary across 

municipalities – suggest that appropriate model structure could vary spatially. Considering that 

improvements in weather forecasting have resulted in part from the increasingly high resolution 

of data and models [35,36], it is logical to expect that improvements in infectious disease 

forecasting will also require improvements in the spatial and temporal resolution of 

epidemiological data and models. 

 

Our analysis identified intriguing differences in temporal incidence patterns across spatial 

scales, but at the same time there are important limitations to acknowledge. First, our 

conclusions are not dependent on the magnitude of transmission, but do require that patterns in 

case report data reflect patterns in underlying transmission. With a high rate of asymptomatic 

infection and the likelihood of extensive variability in reporting rates [37], particularly at the 

municipal level, much caution is due. Second, our ability to ascribe meaning to the groups 

identified by our classification algorithm was limited by the simplicity of our simulation model, 

particularly with respect to spatial interaction. Consequently, while this analysis identified 

important relationships between scale and epidemic characteristics, it does not provide a final or 

comprehensive understanding of the spatial transmission dynamics of ZIKV in Colombia. Third, 

our model relied on a simplified description of seasonal transmission, when in fact patterns of 

seasonality are likely to vary spatially and to interact strongly with introduction timing [38]. 

 

CONCLUSIONS 

 

Previous analyses of Zika [8,27], as well as chikungunya [9,39], have drawn epidemiological 

inferences and made forecasts on the basis of nationally aggregated time series data. These 

efforts depend on the implicit assumption that spatially disaggregated temporal patterns are 

homogeneous and consistent with spatially aggregated temporal patterns. Our analysis showed 

that while national-level patterns may be somewhat reflective of departmental-level patterns, 

municipal-level patterns of cumulative incidence are exceedingly diverse and not well 

approximated by national-level patterns. Although our analysis was limited in its ability to explain 

the mechanisms that drove these diverse patterns, applying our classification algorithm to 

simulated data in which driving mechanisms were known showed that spatial differences in 

driving mechanisms can be associated with perceptible differences in temporal patterns. The 

initial wave of the Zika epidemic appears to have subsided, but understanding of spatial 

variation in transmission dynamics remains imperative for time-sensitive applications such as 

site selection for vaccine trials [40,41] and anticipating future epidemics [8]. 
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CHIKV = chikungunya virus, ZIKV = Zika virus 
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SUPPORTING INFORMATION 

 

Figure S1. Silhouette plots at the departmental level for groups numbering two to ten 
obtained by partitioning around medoids. Each bar corresponds to the silhouette value of a 
given department according to the group assignments indicated by different colors in each 
panel. Higher average silhouette values indicate stronger clustering.  
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Figure S2. Pairwise plots of features of proportional cumulative incidence curves, with 
colors distinguishing group assignment of the departments into one of two groups. 
Histograms show the marginal distributions of the features, and numbers in the upper right half 
indicate pairwise correlation coefficients between each pair of features. The transparency of 
each point is inversely proportional to silhouette value.  
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Figure S3. Pairwise plots of features of proportional cumulative incidence curves, with 
colors distinguishing group assignment of the departments into one of three groups. 
Histograms show the marginal distributions of the features, and numbers in the upper right half 
indicate pairwise correlation coefficients between each pair of features. The transparency of 
each point is inversely proportional to silhouette value. 
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Figure S4. Silhouette plots at the municipal level for groups numbering two to ten 
obtained by partitioning around medoids. Each bar corresponds to the silhouette value of a 
given municipality according to the group assignments indicated by different colors in each 
panel. Higher average silhouette values indicate stronger clustering.  
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Figure S5. Pairwise plots of features of proportional cumulative incidence curves, with 
colors distinguishing group assignment of the municipalities into one of two groups. 
Histograms show the marginal distributions of the features, and numbers in the upper right half 
indicate pairwise correlation coefficients between each pair of features. The transparency of 
each point is inversely proportional to silhouette value.  
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Figure S6. Pairwise plots of features of proportional cumulative incidence curves, with 
colors distinguishing group assignment of the municipalities into one of three groups. 
Histograms show the marginal distributions of the features, and numbers in the upper right half 
indicate pairwise correlation coefficients between each pair of features. The transparency of 
each point is inversely proportional to silhouette value.  
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Figure S7. Pairwise plots of features of proportional cumulative incidence curves, with 
colors distinguishing group assignment of the municipalities into one of four groups. 
Histograms show the marginal distributions of the features, and numbers in the upper right half 
indicate pairwise correlation coefficients between each pair of features. The transparency of 
each point is inversely proportional to silhouette value.  
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Figure S8. Silhouette plots at the municipal level based on a randomly selected simulated 
data set for groups numbering two to ten obtained by partitioning around medoids. Each 
bar corresponds to the silhouette value of a given municipality according to the group 
assignments indicated by different colors in each panel. Higher average silhouette values 
indicate stronger clustering.  
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Figure S9. Pairwise plots of features of proportional cumulative incidence curves based 
on a randomly selected simulated data set, with colors distinguishing group assignment 
of the municipalities into one of two groups. Histograms show the marginal distributions of 
the features, and numbers in the upper right half indicate pairwise correlation coefficients 
between each pair of features. The transparency of each point is inversely proportional to 
silhouette value.  
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Figure S10. Pairwise plots of features of proportional cumulative incidence curves based 
on a randomly selected simulated data set, with colors distinguishing group assignment 
of the municipalities into one of three groups. Histograms show the marginal distributions of 
the features, and numbers in the upper right half indicate pairwise correlation coefficients 
between each pair of features. The transparency of each point is inversely proportional to 
silhouette value. 
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