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ABSTRACT 

Time series data provide a crucial window into ecological dynamics, yet their utility is often 

limited by the spatially aggregated form in which they are presented. When working with time 

series data, violating the implicit assumption of homogeneous dynamics below the scale of 

aggregation could bias inferences about underlying processes. We tested this assumption in the 

context of the 2015-2016 Zika epidemic in Colombia, where time series of weekly case reports 

were available at national, departmental, and municipal scales. First, we performed a descriptive 

analysis, which showed that the timing of departmental-level epidemic peaks varied by three 

months and that departmental-level estimates of the time-varying reproduction number, R(t), 

showed patterns that were distinct from a national-level estimate. Second, we applied a 

classification algorithm to six features of cumulative incidence curves, which showed that 

variability in epidemic duration, the length of the epidemic tail, and consistency with a normal 

distribution function made the greatest contributions to distinguishing groups. Third, we applied 

this classification algorithm to data simulated with a stochastic transmission model, which 

showed that group assignments were consistent with simulated differences in the basic 

reproduction number, R0. This result, along with associations between spatial drivers of 

transmission and group assignments based on observed data, suggests that the classification 

algorithm is capable of detecting differences in temporal patterns that are associated with 

differences in underlying ecological drivers. Overall, this diversity of temporal patterns at local 

scales underscores the value of spatially disaggregated time series data. 
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INTRODUCTION 

Time series have been used for many years to make inferences about processes that shape the 

dynamics of a wide range of ecological systems (Turchin & Taylor 1992). This long history has 

resulted in appreciation of a number of common challenges for time series analysis (Hastings 

2010). One such challenge is disentangling the effects of multiple interacting forces, which can 

include both extrinsic forces, such as weather, and intrinsic forces, such as density-dependent 

feedbacks (Bjørnstad & Grenfell 2001; Koelle & Pascual 2004). An even more fundamental 

challenge lies in defining the time series in the first place, especially with respect to space (Levin 

1992). The question is, at what spatial scale should ecological data be aggregated for time series 

analysis? 

In practice, the spatial scale at which data are aggregated to form a time series is more 

often dictated by the scale at which data are available than by the scale that is optimal for 

inference or prediction. For example, during the recent invasions of chikungunya virus (CHIKV) 

and then Zika virus (ZIKV) across the Americas, the Pan American Health Organization 

published weekly case reports aggregated nationally. Despite an abundance of evidence that 

chikungunya and dengue viruses – another virus transmitted by Aedes aegypti mosquitoes – are 

characterized by spatially focal transmission (Salje et al. 2016, 2017), applications ranging from 

estimation of time-varying reproduction numbers (Ferguson et al. 2016) to forecasting (Escobar 

et al. 2016, Del Valle et al. 2018) have utilized data aggregated at national scales for countries as 

vast and spatially heterogeneous as Brazil and Mexico. 

Unlike most other countries in the Americas, routine surveillance of Zika in Colombia 

was reported on a weekly basis in each of its 1,123 municipalities during the 2015-2016 

epidemic (INS 2017). Although such case reports are underestimates of the true extent of 

transmission of many infectious diseases, particularly those with high proportions of 

asymptomatic infections, they still provide a uniquely valuable resource given the paucity of 

publicly available data at similar scales in most countries (Chretien et al. 2016). Such data are 

particularly valuable for Zika, given that a range of spatial scales are relevant for activities 

related to its prevention and control. On the one hand, vector control activities are planned and 

budgeted on multiple administrative levels but must be targeted on a very local level. On the 

other hand, communications, surveillance, and possible vaccination programs are generally 

planned and implemented only on larger administrative scales. 

Our goal in this study was to utilize this unique data set on the ZIKV invasion of 

Colombia to perform a case study on the characteristics of temporal patterns at different spatial 

scales in the context of an emerging infectious disease. To do so, we took a three-part approach. 

First, we performed a descriptive analysis of time series of weekly case reports at three distinct 

scales in Colombia: national, departmental, and municipal. Second, we performed a 

classification analysis of proportional cumulative incidence curves at departmental and 

municipal scales to identify distinct patterns of temporal dynamics at each of these scales. Third, 

we repeated the classification analysis for data simulated with a mechanistic model of ZIKV 

transmission to determine the extent to which distinct temporal patterns may reflect distinct 

ecological drivers. All data and code used in this study are available at 

https://github.com/TAlexPerkins/TimeSeriesSpatialScale. 
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METHODS 

Data 

The focal point of our analysis was a collection of municipal-level time series of weekly Zika 

case reports at the municipal level in Colombia spanning August 2015 through September 2016. 

The primary source of these data was the Colombian National Institute of Health (Instituto 

Nacional de Salud, INS), which made official weekly reports of the cumulative numbers of 

suspected and confirmed Zika cases available in real time during the epidemic (Boletín 2018). 

The version of these data that we used in this analysis were processed in a manner that addressed 

inconsistencies between data reported at municipal and departmental scales, as described by Siraj 

et al. (2018). Specifically, to correct for the fact that the total of municipal-level data from 2015 

(3,875 cases) was less than the total of national-level data from 2015 (11,712), we imputed the 

7,837 missing cases at the municipal level for 2015 by multiplying each municipality’s weekly 

incidence in 2015 by a factor required to achieve better known cumulative totals for each 

municipality as of the first week of 2016.  

 

Descriptive analysis of weekly case reports 

We performed two preliminary analyses of differences in weekly case report patterns at different 

scales of spatial aggregation. First, we generated a bar plot of national case reports color-coded 

by which of 33 departments those national cases arose from. Likewise, for each of those 

departments, we generated a bar plot of departmental case reports color-coded by which of its 

municipalities those departmental cases arose from. Second, we made estimates of the time-

varying effective reproduction number, R(t), for each time series. Following Ferguson et al. 

(2016), we used the EstimateR function from the EpiEstim library (Cori 2013) in R to estimate 

R(t) for each time series based on the method introduced by Cori et al. (2013). In brief, this 

method is based on an assumed distribution of the serial interval (i.e., the timing between onset 

of primary and secondary cases) that can be used to estimate the number of cases in the previous 

generation that gave rise to those observed in the present generation, thereby enabling estimation 

of R(t). 

 

Classification analysis of cumulative incidence curves 

We focused our analysis on cumulative, rather than raw, incidence because of the extreme 

variability in raw incidence patterns in this data set. With raw incidence, time series with a small 

number of cases appear extremely jagged, and temporal patterns would be difficult to extract. 

With proportional cumulative incidence, vastly different temporal patterns are more readily 

comparable, because they all begin at 0 and end at 1 but arrive there by different paths. Others 

(King et al. 2015) have criticized the use of cumulative incidence data from epidemics, although 

these criticisms mostly pertain to parameter estimation and forecasting, neither of which we do 

here. Rather, our goal was to perform a descriptive analysis of diversity in the temporal patterns 

of an epidemic as viewed from different perspectives spatially. 

The cumulative incidence curves that we examined were proportional such that they all 

reached 1 at the time the last case was reported in a given area. Mathematically, for weekly 

reported Zika incidence Ii,t in location i in week t, we calculated proportional cumulative 

incidence as 

𝐶𝑖,𝑡 =
∑ 𝐼𝑖,𝜏𝜏≤𝑡

∑ 𝐼𝑖,𝜏𝜏
.      (1) 

We excluded 2/33 departments and 307/1,123 municipalities from our analysis that reported no 

Zika cases. 
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As a basis for classifying cumulative incidence curves, we defined six features of these 

curves that we hypothesized represent dimensions in which curves from different areas vary: 

1. 𝐹𝑆𝐷: Standard deviation of �̂�𝑖(𝑡); 

2. 𝐹𝑅2 : R2 between Ci,t and �̂�𝑖(𝑡); 
3. 𝐹5%: Difference between the 5% quantile of Ci,t and the 5% quantile of �̂�𝑖(𝑡); 
4. 𝐹95%: Difference between the 95% quantile of Ci,t and the 95% quantile of �̂�𝑖(𝑡); 
5. 𝐹𝛥𝑡: Weeks between first and last non-zero Ci,t; 

6. 𝐹0: Weeks with Ci,t = 0 between first and last non-zero Ci,t. 

Four of these features were defined in reference to cumulative normal density curves, �̂�𝑖(𝑡), that 

we fitted to each Ci,t. This involved estimating mean and standard deviation parameters of �̂�𝑖(𝑡) 
for each Ci,t on the basis of least squares using the optim function in R. We chose these features 

because they provided a way to quantify the duration of local epidemics (small 𝐹𝑆𝐷, short 𝐹𝛥𝑡 = 

short epidemic), to capture whether epidemics appeared strongly locally driven (low 𝐹𝑅2, large 

𝐹0= sporadic transmission fueled by importation), and to characterize shapes that deviated 

substantially from those predicted by simple epidemic models (𝐹5% and 𝐹95% near zero = “SIR-

like” epidemic). Although these idealized scenarios motivated the selection of these features, the 

fact that all six features were calculated for each Ci,t meant that we were able to capture a wide 

range of patterns in between these extremes. 

We explored variation in Ci,t at both departmental and municipal scales. To describe how 

variation in Ci,t curves at those scales was distributed across the six-dimensional feature space, 

we performed a partitioning around medoids (PAM) clustering analysis (Reynolds et al. 2006) 

on centered and scaled values of the features using the pam function in the cluster library 

(Maechler et al. 2017) in R. This algorithm identifies medoids of k groups that minimize the sum 

of distances between each medoid and all group members. We performed this analysis for values 

of k ranging 2-10 and compared groupings for different values of k on the basis of their average 

silhouette values. A silhouette value describes how much more dissimilar one point is from 

points in the next most similar group compared to points in its own group (Rousseeuw 1987). An 

ideal classification would be indicated by silhouette values for data points in all groupings close 

to 1. Silhouette values nearer to or below 0 indicate that points do not cluster well with the group 

to which they are assigned. 

 

Elucidation of driving processes 

To aid in the interpretation of the classification analysis of empirical patterns of temporal 

incidence, we performed identical analyses of simulated patterns of temporal incidence. The 

value of doing so is that it provides a form of validation of the classification analysis: i.e., 

demonstrating that it is capable of identifying groups that correspond to known differences in 

underlying ecological processes. For this analysis, we defined groups of municipalities on the 

basis of whether the simulated R0 value for a municipality was above or below 1, given the 

significance of this threshold for determining invasion outcomes. We performed classification 

analyses on 100 data sets simulated with a stochastic model of ZIKV transmission developed by 

Ferguson et al. (2016) and tailored to Colombia as described in Appendix S1. This particular 

model was chosen with the goal of simulating cumulative incidence curves at the municipality 

level that would be plausible with respect to the six features used in the classification analysis. 

As a result, the model has limitations that mean that it may not be appropriate for analyses of 

other, more complicated aspects of spatiotemporal transmission dynamics. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2018. ; https://doi.org/10.1101/276006doi: bioRxiv preprint 

https://paperpile.com/c/HacYQO/6btv
https://paperpile.com/c/HacYQO/6btv
https://paperpile.com/c/HacYQO/6btv
https://paperpile.com/c/HacYQO/OAKt
https://paperpile.com/c/HacYQO/jwGG
https://doi.org/10.1101/276006
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

Although the analysis of simulated data provides a test of the algorithm, it does not 

facilitate inference of whether there truly are differences in ecological processes underlying the 

empirical data. Doing so convincingly would require more comprehensive analyses, ideally 

involving data about variables assumed to play an intermediary role in a hypothesized causal 

pathway between environmental variables and disease incidence (Metcalf et al. 2017). To 

explore whether there might at least be perceptible associations between ecological factors and 

groups identified by the classification analysis, we performed a series of one-way analyses of 

variance at both departmental and municipal scales. Specifically, our objective was to examine 

whether mean values of relevant environmental variables differed across these groups. Variables 

that we examined included R0 values derived from Perkins et al. (2016) as described in Appendix 

S1, and seven variables compiled for municipalities and departments in Colombia by Siraj et al. 

(2018): Ae. aegypti occurrence probability, two measures of normalized difference vegetation 

index (NDVI), mean temperature, percent urban land cover, human population, and the gross cell 

product (GCP), a spatially disaggregated version of the gross domestic product economic index. 

 

RESULTS 

Descriptive analysis of weekly case reports 

As a whole, the temporal pattern at the national level was consistent with what could be 

construed as a typical epidemic trajectory, marked by an increase over approximately five 

months, a peak around the beginning of February 2016, and a steady decline thereafter over a 

period of approximately eight months (Fig. 1A). Under a standard set of assumptions about 

epidemic dynamics, this pattern can be used to estimate the temporal trajectory of the effective 

reproduction number, R(t) (Cori et al. 2013). Applying this technique at the national level 

yielded estimates of R(t) that began high (range: 1.5-3.5 for the first four months) and gradually 

declined below 1 by the time the epidemic concluded (Fig. 1A), all of which is consistent with 

standard expectations for an epidemic of an immunizing pathogen in an immunologically naive 

host population. 
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Figure 1. Weekly Zika case reports at the national level (A), for each of the four departments 

with the largest case report totals (B: Valle del Cauca; C: Norte de Santander; D: Santander; E: 

Tolima), at the departmental level for Norte de Santander (F), and for each of its four 

municipalities with the largest case report totals (G: Cucuta; H: Villa del Rosario; I: Los Patios; 

J: Ocaña). On the top row, colors match across A and B-E, with the addition of yellow in A that 

includes all departments other than those in B-E. On the bottom row, colors match across F and 

G-J, with the addition of yellow in F that includes all municipalities other than those in G-J. 

Time-varying estimates of the effective reproduction number, R(t), are shown in each panel. 

 

Examination of temporal incidence patterns for each of the four largest departments in 

terms of total incidence (Valle del Cauca, Norte de Santander, Santander, Tolima) showed that 

patterns at the departmental level were quite different than those at the national level. First, the 

timing of peak incidence in the departments in Fig. 1B-1E varied by around three months. 

Second, the shapes of the incidence patterns in those departments varied, with Valle del Cauca 

and Santander (Fig. 1B & 1D) showing high incidence sustained over a period of several months 

and Norte de Santander and Tolima (Fig. 1C & 1E) showing sharper peaks trailed by relatively 

low incidence for several months after. 
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This high degree of variability in temporal incidence patterns had substantial impacts on 

estimates of R(t). At the national level, R(t) estimates never exceeded 3.5, whereas in Santander 

R(t) was estimated to exceed 5 (Fig. 1D) and in Valle del Cauca it was estimated to exceed 10 

(Fig. 1B), due in both cases to more rapid increases in incidence at the departmental level than 

the national level. In Norte de Santander, R(t) appeared to twice fall well below 1 but then 

quickly rise back above 1 (Fig. 1C). 

Examination of temporal patterns at the municipal scale revealed even more variability in 

temporal patterns than at the department level. In the department of Norte de Santander (Fig. 

1C), for example, it was clear that one municipality dominated the departmental pattern (Fig. 

1F). The municipalities with the second and third highest incidence both experienced short, 

unimodal patterns of incidence during the first two months, but incidence patterns thereafter 

were mostly low and erratic (Fig. 1G & 1H). Other municipalities in the department had only 

low, erratic incidence with no sign of a distinct epidemic (e.g., Fig. 1J). With the exception of the 

first few weeks of transmission, estimates of R(t) at the municipal level were characterized by 

erratic fluctuations and much larger uncertainty than was apparent at the departmental or national 

level. 

 

Classification analysis of cumulative incidence curves 

At the departmental level, there was only modest clustering overall, with the highest average 

silhouette value corresponding to two groups (0.256), a slightly lower value for three groups 

(0.254), and falling no lower than 0.201 for up to ten groups (Fig. S1). 𝐹𝑆𝐷 and 𝐹95% were the 

features that were most important for distinguishing two groups (Fig. S2), and 𝐹𝛥𝑡 contributed 

further to distinguishing three groups (Fig. S3). Differences in 𝐹𝑆𝐷 were associated with a 

difference of approximately two months in the time elapsed between the attainment of 5% and 

80% of cumulative incidence (Fig. 2, top left: blue longer than red), and differences in 𝐹95% were 

associated with a difference of approximately two months in the time elapsed between the 

attainment of 80% and 99% of cumulative incidence, but for different groups (Fig. 2, top left: red 

longer than blue). Overall, this meant that the time elapsed between attainment of 5% and 99% 

of cumulative incidence for both groups was similar, but with one group experiencing epidemics 

that were fast initially but slow to finish and another group experiencing epidemics that were 

slower initially but finished more quickly. These patterns were clearest for the curves associated 

with the medoid of each group (Fig. 2, top) but were generally apparent for the curves associated 

with the groups as a whole (Fig. S4). Spatially, groups tended to cluster along northern, central, 

and southern strata (Fig. 3, left), with incidence-weighted cartographs showing that the epidemic 

was mostly dominated by distinct northern and central strata (Fig. 3, top right). 
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Figure 2. Proportional cumulative incidence curves at the departmental level (top) with two 

(left) or three (right) groups and at the municipal level (bottom) with two (left), three (middle), 

and four (right) groups. Only one representative curve is shown for each group, with that curve 

being chosen on the basis of being associated with the medoid of its group. 
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Figure 3. Cartograms at the departmental level weighted by area (left), population (center), and 

incidence (right). Department assignments to two (top) and three (bottom) groups are indicated 

by color, with transparency inversely proportional to silhouette value. The one department 

(Bogotá) with zero incidence is indicated in black and given a weight equivalent to 1/5 of a case 

to allow for its inclusion in the right column. 

 

There was somewhat stronger clustering at the municipal level, with the highest average 

silhouette value corresponding to three groups (0.352), somewhat lower values for five and six 

groups (0.334, 0.326), and no lower than 0.297 for up to ten groups (Fig. S5). 𝐹𝛥𝑡 and 𝐹𝑆𝐷 were 

the features that were most important in distinguishing two groups (Fig. S6), 𝐹95% made 

additional contributions to distinguishing three groups (Fig. S7), and 𝐹𝑅2 contributed to 

distinguishing four groups (Fig. S8). Proportional cumulative incidence curves for the group with 

short 𝐹𝛥𝑡 and small 𝐹𝑆𝐷 were the most visually distinct group and remained relatively consistent 

regardless of the number of groups (Fig. 2, bottom). Some differences among the other groups 

were also apparent in the proportional cumulative incidence curves, with some having a long tail 

(Fig. 2, bottom middle: green) or two discrete jumps (Fig. 2, bottom middle: blue). The timing of 

discrete jumps varied across municipalities, but curves within a group otherwise resembled the 

curve associated with the medoid for that group (compare Fig. 2 bottom with Fig. S9). Spatially, 

departments generally consisted of a mixture of municipalities from different groups, and the 

prominence of some groups in the cartograms varied depending on whether the cartograms were 
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weighted by area, population, or incidence (Fig. 4). The cartograms weighted by population 

showed that a sizeable portion of the population lives in cities that had no reported cases, such as 

Medellín and Bogotá (Fig. 4, black in the center column). Among municipalities that did have 

reported cases, the cartograms weighted by incidence showed that a relatively large proportion of 

reported cases came from municipal-level epidemics characterized by large 𝐹𝛥𝑡 and 𝐹𝑆𝐷 (Fig. 4, 

right column). 

 

 
Figure 4. Cartograms at the municipal level weighted by area (left), population (center), and 

incidence (right). Municipality assignments to two (top), three (middle), and four (bottom) 

groups are indicated by color, with transparency inversely proportional to silhouette value. 

Municipalities with zero incidence are indicated in black and were given a weight equivalent to 

1/5 of a case to allow for their inclusion in the right column. 
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Elucidation of driving processes 

We focused our analysis of simulated data at the municipal level given that the simulation model 

was not equipped to simulate transmission between municipalities, which is likely important for 

recreating departmental-level patterns. Overall, our model parameterization assumed that R0 > 1 

in 34.6% of municipalities. A total of 12.6% (range: 10.4-14.1%) of municipalities had zero 

simulated cases, with 99.0% (range: 97.0-100.0%) of those having R0 < 1. 

Out of 100 simulated datasets, the classification algorithm selected two groups eight 

times, three groups 80 times, and five and six groups four times each. Average silhouette value 

was 0.313 (range: 0.288-0.347) when there were two groups and 0.327 (range: 0.291-0.352) 

when there were three groups (see Fig. S10 for a representative silhouette plot from a randomly 

selected simulated dataset). Although this indicates a modest preference of the algorithm for 

three groups, we focused subsequent analyses on the two-group classification due to our desire to 

evaluate the correspondence between groups selected by the classification analysis and groups 

defined by R0 above or below 1. 

With the two-group classification, 99.1% (range: 90.3-100.0%) of municipalities with R0 

> 1 were placed into the group characterized by larger 𝐹𝛥𝑡 and 𝐹𝑆𝐷. Of the municipalities with R0 

< 1, 74.0% (range: 36.3-80.5%) were also placed into that group, with the others placed into the 

group with smaller 𝐹𝛥𝑡 and 𝐹𝑆𝐷 (see Fig. S11 for an example from a randomly selected simulated 

dataset). When municipalities were classified into three groups, a new group characterized by 

moderately low 𝐹𝛥𝑡 and 𝐹𝑆𝐷 and negative 𝐹95% contained 18.8% (range: 0.2-36.1%) of 

municipalities with R0 > 1 and 44.7% (range: 23.0-56.5%) with R0 < 1 (see Fig. S12 for an 

example from a randomly selected simulated dataset). In the presence of this third group, 79.9% 

(range: 63.4-89.7%) of municipalities with R0 > 1 and 32.1% (range: 22.8-38.8%) with R0 < 1 

were placed into the group characterized by larger 𝐹𝛥𝑡 and 𝐹𝑆𝐷.  

Visual inspection of five simulated datasets showed that the proportional cumulative 

incidence curves of municipalities placed in the group characterized by large 𝐹𝛥𝑡 and 𝐹𝑆𝐷 

generally resembled the curves of municipalities with R0 > 1 (Fig. 5, red). In contrast, 

proportional cumulative incidence curves of municipalities with R0 < 1 were more diverse than 

those placed in the group characterized by low 𝐹𝛥𝑡 and 𝐹𝑆𝐷 (Fig. 5, blue). A similar pattern was 

apparent spatially, with municipalities placed in the group characterized by large 𝐹𝛥𝑡 and 𝐹𝑆𝐷 

generally overlapping with municipalities with R0 > 1, but municipalities with R0 < 1 frequently 

placed in the group characterized by large 𝐹𝛥𝑡 and 𝐹𝑆𝐷 (Fig. 6). 
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Figure 5. Proportional cumulative incidence curves at the municipal level from five randomly 

selected simulated datasets. The left two columns show two different groups classified by the 

curve classification algorithm, and the right two columns show two different groups defined by 

whether those municipalities have a R0 above or below 1. 
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Figure 6. Cartograms at the municipal level weighted by area based on five randomly selected 

simulated datasets. Each municipality’s status as having R0 > 1 (red) or R0 < 1 (blue) is indicated 

in the top left panel. In each of five simulated datasets shown in the other panels, municipality 

assignments to two groups are indicated by color, with transparency inversely proportional to 

silhouette value. 

 

With respect to the empirical data, group assignments at the municipal scale were 

associated with perceptible differences in relevant environmental variables. For two groups, 

differences between groups were statistically significant for all eight variables examined 

(p<0.002 for all; Table S1). The group typified by steep, short curves (Fig. 2, bottom left: red), 

was associated with lower Ae. aegypti occurrence probability (0.04 vs. 0.05; F836=19.7, p<10-5), 

higher NDVI (aqua: 0.09 vs. 0.07; F836=12.9, p<10-3) (terra: 0.10 vs. 0.07; F836=13.3, p<10-3), 

lower temperature (21.7 vs. 23.9 °C; F836=32.9, p<10-7), lower urban cover (0.02 vs. 0.07; 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2018. ; https://doi.org/10.1101/276006doi: bioRxiv preprint 

https://doi.org/10.1101/276006
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

F836=29.6, p<10-7), lower population (13,506 vs 49,144; F836=10.2, p<10-2), lower GCP (6,016 

vs. 6,676; F836=8.3, p<10-2), and lower R0 (1.1 vs. 1.7; F836=16.1, p<10-4) (Table S1). Differences 

among groups were significant only for the urban cover variable for three groups, and for no 

variables for four groups (Table S1). At the departmental scale, group assignments based on 

empirical data were generally not associated with differences in relevant environmental variables 

(Table S2). 

 

DISCUSSION 

Temporal incidence patterns play a vital role in inferring ecological dynamics and drivers 

thereof. By analyzing data from the 2015-2016 Zika epidemic in Colombia, we showed that 

temporal patterns can appear very different depending on the spatial scale at which data are 

aggregated. Whereas national-level dynamics appeared to follow a unimodal pattern consistent 

with behavior of standard epidemic models, departmental-level dynamics were somewhat more 

varied and municipal-level dynamics were the most varied. Combining these observations with a 

formal classification of temporal incidence patterns and a model-based exploration of 

mechanisms capable of generating those patterns, we deduced that there is distinct variation in 

temporal patterns subnationally and that much of that variation may be driven by spatial 

variation in local conditions. Associations between group assignments and relevant 

environmental variables were most apparent at the municipal scale, consistent with the 

hypothesis that linkages between temporal dynamics and underlying ecological processes are 

strongest at fine spatial scales. 

Similar to our findings of differing dynamics at municipal and departmental scales, 

theoretical analyses of a range of ecological models have proposed that dynamics approach 

deterministic behavior as spatial scales grow larger and data become increasingly more 

aggregated (Rand & Wilson 1995). Methods based on long-term dynamics have been proposed 

for identifying the scales at which behavior transitions from stochastic to deterministic in models 

of plant competition and predator-prey interactions (Keeling et al. 1997; Pascual & Levin 1999). 

Epidemics, however, are inherently transient in nature, leaving open the question of how best to 

define characteristic spatial scales in that context. It is certainly the case that the data from 

Colombia that we examined displayed greater stochasticity at finer spatial scales. At the same 

time, the greater variability in temporal patterns that we observed at finer scales suggests that 

models that aspire to a deterministic representation of behavior at coarser scales must account for 

spatial structure at finer scales. Indeed, a recent attempt to fit a national-scale transmission model 

to national-scale time series of Zika case reports from Colombia showed that ignoring 

subnational spatial structure inhibited that model’s fit to the data (Shutt et al. 2017). A 

theoretical exploration of similar issues concluded that the scale at which spatial structure must 

be modeled explicitly is expected to vary by pathogen and geographic context, with less mobile 

pathogens requiring explicit spatial representation at finer scales (Mills & Riley 2014). 

Both stochasticity and spatial interaction are expected to contribute to variability in 

temporal dynamics at local scales (Durrett & Levin 1994). For some municipalities, temporal 

incidence patterns appeared to be dominated by stochasticity (e.g., those with discrete jumps). 

For others, there were implications for a role of spatial interaction (e.g., those with two sharp 

increases or a long tail). Whereas our simulation model was realistic with respect to demography 

and the inclusion of spatiotemporal variability in local transmission, it made the very simplistic 

assumption about spatial interaction that importation patterns have identical timing and 

magnitude in all municipalities. This may have caused municipalities with R0 < 1, particularly 
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those with larger populations, to display patterns that simply reflected the national trend used to 

drive importation. Analyses of subnational spatiotemporal dynamics in a range of contexts show 

that importation patterns vary substantially over time and as a function of regional connectivity 

or being positioned on an international border (Grenfell et al. 2001; Cummings et al. 2004; 

Dalziel et al. 2013; Rodriguez-Morales et al. 2016). Future work that includes more realistic 

spatial interaction among subnational units would be helpful for resolving the hypothesis 

proposed here about the importance of spatial interaction in shaping temporal patterns at each of 

the spatial scales that we considered. 

Our analysis identified intriguing differences in temporal patterns across spatial scales, 

but at the same time there are important limitations to acknowledge. First, although our 

conclusions are not dependent on the magnitude of transmission, they do require that patterns in 

case report data reflect patterns in underlying transmission. With a high rate of asymptomatic 

infection and the likelihood of extensive variability in reporting rates (Lessler et al. 2016), 

particularly at the municipal level, some caution is due. Second, our ability to ascribe meaning to 

the groups identified by our classification algorithm was limited by the simplicity of our 

simulation model, particularly with respect to spatial interaction. Consequently, while this 

analysis identified important relationships between spatial scale and epidemic characteristics, it 

does not provide a complete or comprehensive understanding of the spatial transmission 

dynamics of ZIKV in Colombia. Third, our model relied on a simplified description of seasonal 

transmission, when in fact patterns of seasonality could vary spatially and interact strongly with 

introduction timing (Huber et al. 2017). 

Previous analyses of Zika (Ferguson et al. 2016; Shutt et al. 2017), as well as 

chikungunya (Perkins et al. 2015; Escobar et al. 2016; Del Valle et al. 2018), have drawn 

inferences and made forecasts on the basis of nationally aggregated time series data. These 

efforts depend on the implicit assumption that spatially disaggregated temporal patterns are 

homogeneous and consistent with spatially aggregated temporal patterns. Our analysis showed 

that while national-level patterns may be somewhat reflective of departmental-level patterns, 

municipal-level patterns of cumulative incidence are diverse and not well approximated by 

national-level patterns. Although our analysis was limited in its ability to explain the 

mechanisms that drove these diverse patterns, applying our classification algorithm to simulated 

data in which driving mechanisms were known showed that spatial differences in driving 

mechanisms can be associated with perceptible differences in temporal patterns. The initial wave 

of the Zika epidemic appears to have subsided, but understanding of spatial variation in 

transmission dynamics remains imperative for time-sensitive applications such as site selection 

for vaccine trials (Perkins 2017; Asher et al. 2017) and anticipating future epidemics (Ferguson 

et al. 2016). 
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Appendix S1. Description of simulation model of Zika virus transmission in Colombia. 

We simulated data sets comparable to the observed data using an R implementation of the ZIKV 

transmission model described by Ferguson et al. (2016) parameterized to match the municipal-

level R0 values derived from Perkins et al. (2016). The model by Ferguson et al. had a number of 

attractive features, including plausible values of a number of parameters common to ZIKV 

transmission models, realistic accounting of the timing of transmission-relevant processes in 

mosquitoes and humans, seasonal variation in transmission, and the ability to capture multiple 

forms of stochasticity associated with transmission and surveillance. In brief, the model assumes 

that humans transition from a susceptible compartment into a recovered and immune 

compartment following a period of incubation and infectiousness and that mosquitoes become 

infectious and remain so following bites of infectious humans and a seasonally variable 

incubation period. Mosquito population density is also seasonally variable, driven by seasonal 

variation in larval carrying capacity and adult mortality. A full description of the model can be 

found in the paper by Ferguson et al. (2016). 

To drive the model, we based estimates of the basic reproduction number, R0, on a set of 

ZIKV epidemic size projections for Latin America made early in the epidemic using 

relationships between environmental variables and transmission metrics (Perkins et al. 2016). To 

obtain a single value of R0 for each municipality, we took a weighted sum of the R0 raster at 5 

km x 5 km resolution weighted by a raster layer of human population projections (Sorichetta et 

al. 2015) aggregated to that scale by Siraj et al. (2018). We calibrated these R0 estimates to 

observed dynamics in Colombia by scaling municipal values of R0 from Perkins et al. (2016) by 

a constant (2.72) such that the value for the municipality of Girardot, Colombia, matched an 

estimate of 4.61 derived from an analysis of temporal incidence patterns there (Rojas et al. 

2016). The environmental variables that drove spatial variation in these R0 values include 

temperature, Ae. aegypti occurrence probability, and the gross cell product economic index. 

To apply this model to Colombia, we used municipal-level human population sizes 

derived from WorldPop (Sorichetta et al. 2015) and adjusted seasonally averaged mosquito 

densities such that seasonally averaged values of R0 matched our municipal-level R0 estimates. 

Another departure from the original model by Ferguson et al. (2016) that we made was to 

remove explicit spatial coupling, given the complexity of doing so realistically for all 1,123 

municipalities in Colombia. Instead, we simulated imported infections (i.e., infections acquired 

outside a given municipality) to occur at a daily per capita rate that was proportional to a normal 

probability density function fitted to the temporal pattern of national-scale incidence (timing of 

national-scale incidence: mean = 32.57 weeks after the first reported case, standard deviation = 

8.85 weeks). Although this approach was not able to capture differences in the timing of 

importation patterns across municipalities, none of the six features of the cumulative incidence 

curves that we analyzed depended on the timing of the epidemic in one municipality relative to 

another. To approximately match the national total of 85,353 suspected Zika cases, the time-

varying ZIKV importation function that we used was scaled by a value of 1.55 x 10-3. This value 

was obtained by trial-and-error tuning of example simulations in which a reporting rate of 11.5% 

was assumed (Kucharski et al. 2016). Also, given that our interest was in short-term dynamics 

rather than long-term dynamics as in Ferguson et al. (2016), we removed human age 

stratification from the model. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2018. ; https://doi.org/10.1101/276006doi: bioRxiv preprint 

https://paperpile.com/c/HacYQO/JSkQ
https://paperpile.com/c/HacYQO/JSkQ
https://paperpile.com/c/HacYQO/Cqtn
https://paperpile.com/c/HacYQO/Cqtn
https://paperpile.com/c/HacYQO/Cqtn
https://paperpile.com/c/HacYQO/8g1v
https://paperpile.com/c/HacYQO/8g1v
https://paperpile.com/c/HacYQO/8g1v
https://paperpile.com/c/HacYQO/8g1v
https://paperpile.com/c/HacYQO/Cqtn
https://paperpile.com/c/HacYQO/Cqtn
https://paperpile.com/c/HacYQO/Cqtn
https://paperpile.com/c/HacYQO/qKEQ
https://paperpile.com/c/HacYQO/qKEQ
https://paperpile.com/c/HacYQO/qKEQ
https://paperpile.com/c/HacYQO/qKEQ
https://paperpile.com/c/HacYQO/8g1v
https://paperpile.com/c/HacYQO/8g1v
https://paperpile.com/c/HacYQO/8g1v
https://paperpile.com/c/HacYQO/TyP4
https://paperpile.com/c/HacYQO/TyP4
https://paperpile.com/c/HacYQO/TyP4
https://paperpile.com/c/HacYQO/JSkQ
https://paperpile.com/c/HacYQO/JSkQ
https://paperpile.com/c/HacYQO/JSkQ
https://doi.org/10.1101/276006
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

SUPPORTING TABLES 

 

 Two groups Three groups Four groups 

 F836 p F836 p F836 p 

Ae. aegypti 19.7 9.9x10-6 8.7x10-3 0.93 0.86 0.35 

NDVIterra 13.3 2.8x10-4 1.1 0.30 0.046 0.83 

NDVIaqua 12.9 3.5x10-4 1.1 0.29 0.072 0.79 

Mean temp. 32.9 1.4x10-8 0.14 0.71 1.7 0.19 

Pct. urban 29.6 7.0x10-8 7.9 5.2x10-3 0.029 0.86 

Population 10.2 1.4x10-3 1.7 0.19 0.50 0.48 

GCP 8.3 4.1x10-3 2.0 0.16 1.6 0.21 

R0 16.1 6.6x10-5 0.056 0.81 1.7 0.19 

 

Table S1. Summary of results from one-way analyses of variance at the municipal scale (n=836). 

For each relevant environmental variable (rows), we performed an analysis of variance to test for 

differences in the mean of that variable across two, three, or four groups identified by the 

classification analysis (columns). The F statistic and p value of each test is shown.  
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 Two groups Three groups Four groups 

 F31 p F31 p F31 p 

Ae. aegypti 2.9 0.10 0.24 0.63 0.38 0.54 

NDVIterra 1.2 0.29 0.022 0.88 2.8x10-4 0.99 

NDVIaqua 0.52 0.48 0.32 0.58 0.21 0.65 

Mean temp. 5.5 0.025 4.0 0.055 3.9 0.058 

Pct. urban 0.28 0.60 0.37 0.54 0.42 0.52 

Population 0.13 0.72 0.04 0.84 8.0x10-3 0.93 

GCP 1.5 0.23 1.5 0.24 1.1 0.31 

R0 3.1 0.086 0.38 0.54 1.0 0.32 

 

Table S2. Summary of results from one-way analyses of variance at the departmental scale 

(n=31). For each relevant environmental variable (rows), we performed an analysis of variance 

to test for differences in the mean of that variable across two, three, or four groups identified by 

the classification analysis (columns). The F statistic and p value of each test is shown. 
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SUPPORTING FIGURES 

 

Figure S1. Silhouette plots at the departmental level for groups numbering two to ten obtained 

by partitioning around medoids. Each bar corresponds to the silhouette value of a given 

department according to the group assignments indicated by different colors in each panel. 

Higher average silhouette values indicate stronger clustering.  
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Figure S2. Pairwise plots of features of proportional cumulative incidence curves, with colors 

distinguishing group assignment of the departments into one of two groups. Histograms show the 

marginal distributions of the features, and numbers in the upper right half indicate pairwise 

correlation coefficients between each pair of features. The transparency of each point is inversely 

proportional to silhouette value.  
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Figure S3. Pairwise plots of features of proportional cumulative incidence curves, with colors 

distinguishing group assignment of the departments into one of three groups. Histograms show 

the marginal distributions of the features, and numbers in the upper right half indicate pairwise 

correlation coefficients between each pair of features. The transparency of each point is inversely 

proportional to silhouette value.  
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Figure S4. Proportional cumulative incidence curves at the departmental level with two (top) or 

three (bottom) groups. Within each row, groups are distinguished by color. 
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Figure S5. Silhouette plots at the municipal level for groups numbering two to ten obtained by 

partitioning around medoids. Each bar corresponds to the silhouette value of a given 

municipality according to the group assignments indicated by different colors in each panel. 

Higher average silhouette values indicate stronger clustering.  
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Figure S6. Pairwise plots of features of proportional cumulative incidence curves, with colors 

distinguishing group assignment of the municipalities into one of two groups. Histograms show 

the marginal distributions of the features, and numbers in the upper right half indicate pairwise 

correlation coefficients between each pair of features. The transparency of each point is inversely 

proportional to silhouette value.  
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Figure S7. Pairwise plots of features of proportional cumulative incidence curves, with colors 

distinguishing group assignment of the municipalities into one of three groups. Histograms show 

the marginal distributions of the features, and numbers in the upper right half indicate pairwise 

correlation coefficients between each pair of features. The transparency of each point is inversely 

proportional to silhouette value.  
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Figure S8. Pairwise plots of features of proportional cumulative incidence curves, with colors 

distinguishing group assignment of the municipalities into one of four groups. Histograms show 

the marginal distributions of the features, and numbers in the upper right half indicate pairwise 

correlation coefficients between each pair of features. The transparency of each point is inversely 

proportional to silhouette value.  
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Figure S9. Proportional cumulative incidence curves at the municipal level with two (top), three 

(middle), or four (bottom) groups. Within each row, groups are distinguished by color.  
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Figure S10. Silhouette plots at the municipal level based on a randomly selected simulated data 

set for groups numbering two to ten obtained by partitioning around medoids. Each bar 

corresponds to the silhouette value of a given municipality according to the group assignments 

indicated by different colors in each panel. Higher average silhouette values indicate stronger 

clustering.  
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Figure S11. Pairwise plots of features of proportional cumulative incidence curves based on a 

randomly selected simulated data set, with colors distinguishing group assignment of the 

municipalities into one of two groups. Histograms show the marginal distributions of the 

features, and numbers in the upper right half indicate pairwise correlation coefficients between 

each pair of features. The transparency of each point is inversely proportional to silhouette value.  
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Figure S12. Pairwise plots of features of proportional cumulative incidence curves based on a 

randomly selected simulated data set, with colors distinguishing group assignment of the 

municipalities into one of three groups. Histograms show the marginal distributions of the 

features, and numbers in the upper right half indicate pairwise correlation coefficients between 

each pair of features. The transparency of each point is inversely proportional to silhouette value. 
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