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Summary 

High throughput single-cell gene expression profiling has enabled the characterization of novel 

cell types and developmental trajectories. Visualizing these datasets is crucial to biological 

interpretation, and the most popular method is t-Stochastic Neighbor embedding (t-SNE), which 

visualizes local patterns better than other methods, but often distorts global structure, such as 

distances between clusters. We developed Similarity Weighted Nonnegative Embedding 

(SWNE), which enhances interpretation of datasets by embedding the genes and factors that 

separate cell states alongside the cells on the visualization, captures local structure better than 

t-SNE and existing methods, and maintains fidelity when visualizing global structure. SWNE 

uses nonnegative matrix factorization to decompose the gene expression matrix into biologically 

relevant factors, embeds the cells, genes and factors in a 2D visualization, and uses a similarity 

matrix to smooth the embeddings. We demonstrate SWNE on single cell RNA-seq data from 

hematopoietic progenitors and human brain cells. 

 

Introduction 
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Single cell gene expression profiling has enabled the quantitative analysis of many different cell 

types and states, such as human brain cell types (Lake et al. 2016; Lake et al. 2017) and cancer 

cell states (Tirosh et al. 2016; Puram et al. 2017), while also enabling the reconstruction of cell 

state trajectories during reprogramming and development (Trapnell et al. 2014; Qiu et al. 2017; 

Setty et al. 2016). Recent advances in droplet based single cell RNA-seq technology (Macosko 

et al. 2015; Lake et al. 2017) as well as combinatorial indexing techniques (Cao et al. 2017; 

Rosenberg et al. 2017) have improved throughput to the point where tens of thousands of single 

cells can be sequenced in a single experiment, creating an influx of large single cell gene 

expression datasets. Numerous computational methods have been developed for latent factor 

identification (Buettner et al. 2017), clustering (Wang et al. 2017), cell trajectory reconstruction 

(Qiu et al. 2017; Setty et al. 2016), and differential expression (Kharchenko et al. 2014). 

However, visualization of these high dimensional datasets is still critical to their interpretation. 

The most common visualization method is t-Stochastic Neighbor Embedding (t-SNE), a non-

linear visualization method that tries to minimize the Kullback-Leibler (KL) divergence between 

the probability distribution defined in the high dimensional space and the distribution in the low 

dimensional space (Maaten & Hinton 2008; van der Maaten 2014).  

 t-SNE very accurately captures local structure in the data, ensuring cells that are in the 

same cluster are close together (van der Maaten 2014). This property enables t-SNE to find 

patterns that other methods, such as Principal Component Analysis (PCA) (Abdi & Williams 

2010) and Multidimensional Scaling (MDS) (Kruskal 1964), cannot (Maaten & Hinton 2008). 

However, t-SNE often fails to accurately capture global structure in the data, such as distances 

between clusters, possibly due to asymmetry in the KL divergence metric and the necessity of 

fine-tuning the perplexity hyperparameter (Maaten & Hinton 2008). This can make interpreting 

higher order features of t-SNE plots difficult. Additionally, existing visualizations lack biological 

context, such as which genes are expressed in which cell types, often requiring additional plots 

or tables for interpretation. While some newer methods such as UMAP address the issue of 
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capturing global structure in the data, no methods, to our knowledge, allow for biological 

information to be embedded onto the visualization (McInnes & Healy 2018). 

 

Results 

 

Figure 1: SWNE overview and methodology. (a) The gene expression matrix (𝐴) is 

decomposed into a gene loadings matrix (𝑊) and a factor matrix (𝐻) using NMF, with the 

number of factors selected via minimizing imputation error (see Figure S1). The factor matrix 

(𝐻) is smoothed with the SNN network, and factors (rows of 𝐻) are embedded in 2 dimensions 

via Sammon mapping of their pairwise distances. (b) Cells are embedded relative to the factors 

using the cell scores in the 𝐻 matrix, and the cell embeddings are refined using the SNN 

network. Finally, selected genes are embedded relative to the factors using the gene loadings 

(𝑊). 

 

SWNE overview and methodology 

We developed a method for visualizing high dimensional single cell gene expression datasets, 

Similarity Weighted Nonnegative Embedding (SWNE), which captures both local and global 

structure in the data, while enabling the genes and biological factors that separate the cell types 
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and trajectories to be embedded directly onto the visualization. SWNE adapts the Onco-GPS 

NMF embedding framework (Kim et al. 2017) to decompose the gene expression matrix into 

latent factors, embeds both factors and cells in two dimensions, and smooths both the cell and 

factor embeddings by using a similarity matrix to ensure that cells which are close in the high 

dimensional space are also close in the visualization. 

First, SWNE uses Nonnegative Matrix Factorization (NMF) (Lee & Seung 1999; Franc et 

al. 2005) to create a parts based factor decomposition of the data (Figure 1a). The number of 

factors (𝑘) is chosen by randomly selecting 20% of the gene expression matrix to be set to 

missing, and then finding the factorization that best imputes those missing values, minimizing 

the mean squared error (Euclidean distance) (Figure S1a). With NMF, the gene expression 

matrix (𝐴) is decomposed into: (1) a genes by factors matrix (𝑊), and (2) a factors by cells 

matrix (𝐻) (Figure 1a). SWNE then uses the similarity matrix, specifically a Shared Nearest 

Neighbors (SNN) network (Houle et al. 2010), to smooth the 𝐻 matrix, resulting in a new matrix 

𝐻 . SWNE calculates the pairwise distances between the rows of the 𝐻  matrix, and 

uses Sammon mapping (Sammon 1969) to project the distance matrix onto two dimensions 

(Figure 1b). Next, SWNE embeds cells relative to the factors using the cell scores in the 

unsmoothed 𝐻 matrix and uses the SNN network to smooth the cell coordinates so that cells 

which are close in the high dimensional space are close in the visualization (Figure 1b). Finally, 

SWNE embeds genes relative to the factors using the gene loadings in the 𝑊 matrix (Figure 

1b).  
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Figure 2: SWNE captures local and global structure in simulated datasets more faithfully 

than t-SNE and other methods. (a) Simulating a discrete dataset with five clusters, and a 

branching trajectory dataset with four paths. (b) SWNE and t-SNE plots of the simulated 

discrete dataset (see Figure S2a for additional plots). (c) SWNE and t-SNE plots of the 

simulated trajectory dataset (see Figure S2b for additional plots). (d) Quantitative evaluation of 

SWNE and existing visualization methods on the discrete simulation. Global structure is 

evaluated by correlating pairwise cluster distances in the embedding with distances in the 
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original gene expression space. Cluster separation is evaluated with the Silhouette score. (e) 

Quantitative evaluation of SWNE and existing visualization methods on the trajectory simulation. 

Global structure is evaluated by dividing each path up into time steps, and correlating pairwise 

path-time-step distances in the embedding with distances in the original gene expression space. 

Local structure is evaluated by taking the Jaccard similarity of the nearest neighbors in the 

embeddings with the true nearest neighbors. 

 

SWNE captures local and global structure in simulated datasets more faithfully than t-

SNE 

To benchmark SWNE against PCA, t-SNE, and other visualization methods, we used the 

Splatter single-cell RNA-seq simulation method (Zappia et al. 2017) to generate two synthetic 

datasets. We generated a 2700 cell dataset with five discrete groups, where Groups 2 – 4 were 

relatively close and Groups 1 & 5 were further apart (Figure 2a). We also generated a 

simulated branching trajectory dataset with 2730 cells and four different paths, where Path 1 

branches into Paths 2 & 3, and Path 4 continues from Path 3 (Figure 2a). For the discrete 

simulation, the t-SNE plot qualitatively distorts the cluster distances, making Groups 1 & 5 

closer than they should be to Groups 2 – 4 (Figure 2b). The SWNE plot more accurately shows 

that Groups 1 & 5 are far from each other and Groups 2 – 4 (Figure 2b). PCA, LLE, and MDS 

do a better job of accurately visualizing these cluster distances, but have trouble separating 

Groups 2 – 4 (Figure S2a). For the branching trajectory simulation, the t-SNE plot incorrectly 

expands the background variance of the paths, while the SWNE plot does a much better job of 

capturing the important axes of variance, resulting in more clearly defined paths (Figure 2c). 

PCA, LLE, and MDS again do a better job of capturing the trajectory-like structure of the data, 

but still inaccurately expand the background variance more than SWNE (Figure S2b). 

To quantitatively benchmark the visualizations, we developed metrics to quantify how 

well each embedding captures both the global and local structure of the original dataset. For the 
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discrete simulation, we calculated the pairwise distances between the group centroids in the 

original gene expression space, and then correlated those distances with the pairwise distances 

in the 2D embedding space to evaluate the embeddings’ ability to capture global structure 

(Figure 2d). To evaluate local structure, we calculated the average Silhouette score 

(Rousseeuw 1987), a measure of how well the groups are separated, for each embedding 

(Figure 2d). SWNE outperforms t-SNE and performs nearly as well as PCA, MDS, and 

Diffusion Maps in maintaining global structure (Figure 2d). SWNE also clearly outperforms 

every other method, including t-SNE, in cluster separation (Figure 2d).  

For the trajectory simulation, since we know the simulated pseudotime for each cell, we 

divide each path into groups of cells that are temporally close (Methods). We then evaluate 

global structure by calculating pairwise distances between each path-time-group in the original 

gene expression space and the 2D embedding space, and then correlating those distances 

(Figure 2e). We can evaluate local structure by constructing a ground truth neighbor network by 

connecting cells from adjacent pseudotimes, and then computing the Jaccard distance between 

each cell’s ground truth neighborhood matches and its 2D embedding neighborhood (Methods, 

Figure 2e). SWNE outperforms t-SNE in capturing global structure, and performs about as well 

as PCA, MDS, and LLE (Figure 2e). For capturing neighborhood structure, SWNE again 

outperforms every other embedding, including t-SNE (Figure 2e). Finally, both the qualitative 

and quantitative benchmarks show that SNN smoothing of the cell and factor embeddings is 

critical to SWNE’s performance, especially for capturing local structure in the data (Figure 2b, 

2c, Figure S2a, S2b). 

We used these quantitative metrics to assess how changing the number of factors 

affects performance for both the trajectory and discrete simulated datasets. The quantitative 

performance of SWNE is fairly robust across the number of factors used, although there is more 

of a penalty for using too few factors than too many (Figure S1b, S1c). Visually, using too few 

factors again results in sub-optimal cluster separation, while using too many does not seem to 
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affect performance (Figure S1d, S1e). Additionally, we performed a runtime analysis of SWNE 

on simulated datasets, showing that SWNE scales linearly with the number of cells (Figure 

S2c). SWNE seems to scale in polynomial time with the number of genes, suggesting that 

feature selection is crucial to reducing runtimes (Figure S2d). Using the top 3000 overdispersed 

genes, the entire SWNE workflow takes about 17 minutes to run on a 50,000 cell dataset 

(Figure S2c).  
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Figure 3: Illuminating the branching structure of hematopoiesis. (a) Paul et al sorted single 

hematopoietic cells from bone marrow, sequenced them using scRNA-seq, and identified the 

relevant cell types. The hematopoiesis trajectories were reconstructed using Monocle2, and the 

cells were ordered according to their differentiation pseudotime. (b) SWNE plot of 

hematopoiesis dataset, with selected genes and biological factors displayed (see Figure S3a-b 

for gene and factor annotations). (c) t-SNE plot of hematopoiesis dataset. (d) SWNE plot of 

hematopoiesis dataset, with developmental pseudotime calculated from Monocle2 overlaid onto 

the plot. (e) t-SNE plot of hematopoiesis dataset, with developmental pseudotime overlaid onto 

the plot. 
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Illuminating the branching structure of hematopoiesis 

We then applied SWNE to analyze the single cell gene expression profiles of hematopoietic 

cells at various stages of differentiation (Paul et al. 2015) (Figure 3a). Briefly, single cells were 

sorted from bone marrow and their mRNA was sequenced with scRNA-seq (Paul et al. 2015) 

(Figure 3a). The differentiation trajectories of these cells were reconstructed using Monocle2 

(Qiu et al. 2017), a method built to identify branching trajectories and order cells according to 

their differentiation status, or “pseudotime” (Figure 3a). The branched differentiation trajectories 

are shown in the tree in Figure 3a, starting from the monocyte and erythrocyte progenitors 

(MP/EP) and either moving to the erythrocyte (Ery) branch on the left, or the various monocyte 

cell types on the right (Qiu et al. 2017). We selected the number of factors using our imputation-

based model selection method (Figure S1f, Methods). 

Qualitatively, the SWNE plot (Figure 3b) separates the different cell types at least as 

well as the t-SNE plot (Figure 3c). However, the SWNE plot does a much better job of capturing 

the two dominant branches: the erythrocyte differentiation branch and the monocyte 

differentiation branch, and shows that those two branches are the primary axes of variation in 

this dataset (Figure 3b). While the t-SNE plot captures the correct orientation of the cell types, it 

disproportionately expands many of them, obfuscating the branch-like structure of the data 

(Figure 3c). Neither SWNE nor t-SNE accurately orient the different monocyte cell types in the 

monocyte branch, most likely because the variance is dominated by the erythrocyte – monocyte 

split, and the extent of differentiation. We also used Monocle2 to calculate differentiation 

pseudotime for the dataset, which is a metric that orders cells by how far along the 

differentiation trajectory they are (Qiu et al. 2017). We then overlaid the pseudotime score on 

the SWNE and t-SNE plots (Figure 3d, 3e). Again, we can see that in the SWNE plot, there’s a 

clear gradient of cells at different stages of differentiation along the two main branches (Figure 

3d). The gradient in the t-SNE plot is not as visible, most likely because t-SNE obscures the 

branching structure by expanding the more differentiated cell types (Figure 3e).  
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SWNE provides an intuitive framework to visualize how specific genes and biological 

factors contribute to the visual separation of cell types or cell trajectories by embedding factors 

and genes onto the visualization. We used the gene loadings matrix (𝑊) to identify the top 

genes associated with each factor, as well as the top marker genes for each cell type, defined 

using Seurat (Butler et al. 2018; Satija et al. 2018) (Methods). We chose three factors and five 

genes that we found biologically relevant (Figure S3a, S3b). The five genes are: Apoe, Flt3, 

Mt2, Sun2, and Pglyrp. The three factors are: Antigen Presentation, Metal Binding, and Platelet 

Generation, and factor names were determined from the top genes associated with each factor 

(Figure S3b) (Table S1). The factors and genes enable a viewer to associate biological 

processes and genes with the cell types and latent structure shown in the data visualization. For 

example, dendritic cells (DC) are associated with Antigen Presentation, while erythrocytes (Ery) 

are associated with Heme metabolism and express Mt2, a key metal binding protein (Figure 

3b). Additionally, the embedded factors and genes allow for interpretation of the overall 

differentiation process (Figure 3d). Undifferentiated progenitors (MP/EP) express Apoe, while 

more differentiated monocytes express Sun2 and Pglyrp1 (Figure 3d, Figure S3f). We validate 

the location of the Apoe embedding by overlaying Apoe expression onto the SWNE plot (Figure 

S3f). 
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Figure 4: Creating an interpretable map of the human visual cortex and cerebellum. (a) 

Single nuclei were dissociated from the visual cortex and the cerebellum, and sequenced using 
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single nucleus RNA-seq. The inset shows that the excitatory neurons from the visual cortex are 

grouped into different spatial layers, each of which has different functions. (b) SWNE plot of 

single cells from the visual cortex and cerebellum, with selected genes and factors displayed 

(see Figure S3c-d, S3g for gene and factor annotations). (c) Inset: SWNE plot of the excitatory 

neurons from the visual cortex only, colored by the spatial layer the excitatory neurons belong to 

(see Figure S3e, S3h for gene annotations). (d) t-SNE plot of single cells from the visual cortex 

and cerebellum. (e) Inset: t-SNE plot of the excitatory neurons from the visual cortex only, 

colored by the spatial layer the excitatory neurons belong to. 

 

Creating an interpretable map of the human visual cortex and cerebellum 

We also applied SWNE to a single nucleus RNA-seq human brain dataset (Lake et al. 2017) 

from the visual cortex (13,232 cells) and the cerebellum (9,921 cells) (Figure 4a). Briefly, single 

nuclei were dissociated from the visual cortex and cerebellum of a single donor and sequenced 

using single nucleus Drop-seq (Lake et al. 2017). We also applied SWNE to the subset of layer 

specific excitatory neurons in the visual cortex, where each layer has different functions 

(Molyneaux et al. 2007; Bernard et al. 2012; Hubel 1995) (Figure 4a, inset). To run SWNE, we 

selected the number of factors using the same missing value imputation method (Figure S1g, 

S1h). We can see that both SWNE (Figure 4b) and t-SNE (Figure 4d) are able to visually 

separate the various brain cell types. However, SWNE is able to ensure that related cell types 

are close in the visualization, specifically that the inhibitory neuron subtypes (In1 – 8) are 

grouped together at the top of the visualization (Figure 4b). t-SNE distorts the distances 

between inhibitory neurons, visually separating them with Astrocytes (Ast) and the 

Oligodendrocytes (Oli) (Figure 4d).  

SWNE again provides an intuitive framework to visualize the contributions of specific 

genes and factors to the visual separation of cell types. We selected three factors (Myelin, Cell 

Junctions, and Immune Response) and 8 genes (PLP1, GRIK1, SLC1A2, LHFPL3, CBLN2, 
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NRGN, GRM1, FSTL5) to project onto the SWNE plot using the cell type markers and gene 

loadings (Figure S3d, S3e, Table S1), adding biological context to the spatial placement of the 

cell types (Figure 4b). We can see that CBLN2, a gene known to be expressed in excitatory 

neuron types (Seigneur & Sudhof 2017), is expressed in the visual cortex excitatory neurons 

and that GRIK1, a key glutamate receptor (Sander 1997), is expressed in inhibitory neurons 

(Figure 4b, Figure S3g). We validate the CBLN2 embedding by overlaying CBLN2 expression 

onto the SWNE plot (Figure S3g). Additionally, the Myelin biological factor is associated with 

Oligodendrocytes (Oli), consistent with their function in creating the myelin sheath (Bunge 1968) 

(Figure 4b). The Cell junction biological factor is very close to Endothelial cells (End), 

reinforcing their functions as the linings of blood vessels (Figure 4b). 

SWNE has a unique advantage over t-SNE in capturing the local and global structure of 

the data, exemplified when we zoom into the layer specific excitatory neurons (Figure 4c, 4e). 

SWNE visually separates the different neuronal layers, while also showing that the main axis of 

variance is along the six cortical layers of the human brain (Figure 4c). Each layer seems to 

branch off of a main trajectory from Layer 4, possibly reflecting Layer 4’s biological function as 

the only layer to receive input (Figure 4c). The t-SNE plot can visually separate the layers, but it 

is unclear that the main axis of variance is between the different layers (Figure 4e). Additionally, 

we selected five layer specific marker genes (DAB1, NTNG1, DCC, HS3ST2, POSTN) to project 

onto the SWNE plot (Figure 4c, Figure S3e). DAB1, a signal transducer for Reelin (Trotter et 

al. 2013), is primarily expressed in Layer 2/3 excitatory neurons, while NTNG1, a protein 

involved in axon guidance (Lin et al. 2003), is expressed in Layer 4 neurons (Figure 4c, Figure 

S3g). We again validate the position of DAB1 by overlaying its expression on the SWNE plot 

(Figure S3h). 

 

Dataset projection 
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To demonstrate SWNE’s ability to project new data onto existing SWNE embeddings, we used 

a 3,000 cell PBMC dataset generated by 10X genomics (Zheng et al. 2017), and ran the 

standard SWNE embedding (Figure S4a). We projected a 33,000 cell PBMC dataset with 

additional cell types onto the training SWNE embedding (Figure S4b). The projected 

embedding obviously cannot distinguish between all the PBMC subtypes since they were not 

present in the training dataset. Nevertheless, SWNE places the new projected cell types near 

similar cell types in the training dataset, demonstrating that SWNE embeddings can act as a 

reference map that new datasets can be projected onto (Figure S4b). 

 

Discussion 

SWNE improves visualization fidelity while adding key biological context 

Interpretation and analysis of high dimensional single cell gene expression datasets often 

involves summarizing the expression patterns of tens of thousands of genes in two dimensions, 

creating a map that shows viewers properties of the data such as the number of cell states or 

trajectories, and how distinct cell states are from each other. However while t-SNE, the most 

popular visualization method, can visualize subtle local patterns of expression that other 

methods cannot, it often distorts global properties of the dataset such as cluster distances and 

sizes. This is especially apparent in t-SNE’s inability to visualize time series developmental 

datasets, as t-SNE tends to exaggerate the size of cell types instead of visualizing the axes of 

differentiation. Additionally, t-SNE and existing methods only display cells, forcing important 

biological context, such as the cell type marker genes, to be conveyed in separate plots. Here, 

we integrate NMF with a Nearest Neighbors smoothing method to create SWNE, a visualization 

method that preserves global properties of the data and improves upon t-SNE’s ability to 

capture local properties, while enabling key genes and biological factors to be embedded onto 

the visualization alongside the cells. 
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One of SWNE’s key advantages is that the factor embedding framework allows for 

embedding of genes and cells on the same visualization. The nonnegative factors act as a 

skeleton for the data, as both cells and genes are embedded relative to these factors. The 

closer a group of cells is to a gene or a factor on the visualization, the more of that gene or 

factor the cells express (Figure S3c, S3g, S3h). If one thinks of the visualization as a map, 

these embedded genes and factors act as landmarks, adding key biological context to features 

of the visualization. Embedding genes and factors also streamlines the presentation of the data, 

eliminating the need for separate plots of marker genes or genesets. Another key factor in 

SWNE’s performance is the Shared Nearest Neighbors (SNN) network weighting. Without SNN 

weighting, the quantitative and qualitative performance of SWNE drops significantly (Figure 2d, 

2e, S2a, S2b). We believe SNN weighting reduces the effect of biological or technical noise, 

collapsing the data onto the biologically relevant components of heterogeneity. Surprisingly, this 

ability to minimize noise enables SWNE to capture local structure in the data even better than t-

SNE (Figure 2d, 2e). This ability to capture local structure enables SWNE to be particularly 

effective at illuminating the branch-like structure in developmental trajectory datasets (Figure 

2c, 3b, 3d).  

 

Robustness and simplicity of SWNE 

One issue with t-SNE is the need to fine-tune the perplexity hyper-parameter, without a cross-

validation method to find the optimal perplexity. SWNE also has a critical parameter: the number 

of factors (𝑘) used for the decomposition (Figure S1a). However, we include a method for 

selecting 𝑘, suggested by the author of the NNLM (Lin & Paul C Boutros 2016) package, which 

uses NMF to impute missing values in the gene expression matrix (𝐴) and selects the 𝑘 that 

minimizes the imputation error (Figure S1a, Methods). Additionally, SWNE performance is 

fairly robust across a wide range of 𝑘. While using too few factors affects SWNE’s ability to 
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separate closely related clusters or trajectories, using too many factors seems to have minimal 

penalty (Figure S1b, S1c, S1d, S1e).  

A final factor working in SWNE’s favor is that that the underlying methodology is fairly 

simple, especially compared to methods such as UMAP and t-SNE (McInnes & Healy 2018; 

Maaten & Hinton 2008). The Onco-GPS based embedding, and subsequent similarity matrix 

weighting is very transparent, allowing users to understand how the visualization is being 

produced. For many users, methods such as UMAP and t-SNE can become a black box, which 

can result in the incorrect usage of key hyperparameters, such as t-SNE perplexity, and over-

interpretation of potential computational artifacts. The simplicity of SWNE also makes it possible 

to project additional data onto an existing SWNE plot, which is difficult to do with non-linear 

methods like t-SNE and UMAP (Methods, Figure S4a, S4b). 

 

SWNE limitations and future work 

One current limitation of SWNE is the relatively slow runtime when using the whole 

transcriptome. While we recommend using feature selection which greatly reduces runtime, 

there are cases when using all genes is necessary. The main computational bottleneck is the 

NMF decomposition, so future work could focus on improving NMF speed, or substituting NMF 

with a faster matrix decomposition method such as f-scLVM and pagoda/pagoda2 (Buettner et 

al. 2017; Fan et al. 2016). Both these methods can also use pre-annotated gene sets to guide 

the factor decomposition, making interpretation of the factor even easier. A second limitation is 

that the SNN weighting occurs sequentially after embedding the cells, factors, and genes. This 

causes the genes and factors to sometimes be further from cell clusters than they should be, 

although they are still generally closest to the most relevant cell cluster. Future work could 

involve developing a more elegant method that allows factor embeddings to shift relative to the 

cell embeddings. This would most likely involve some sort of expectation maximization 
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framework, where the method alternates between optimizing the cell embedding coordinates 

and the factor embedding coordinates until convergence. 

Overall, we developed a visualization method, SWNE, which captures both the local and 

global structure of the data, and enables relevant biological factors and genes to be embedded 

directly onto the visualization. Capturing global structure enables SWNE to address issues of 

distortion that occurs with t-SNE, creating a more accurate map of the data. Capturing local 

structure with the SNN network smoothing enables SWNE to accurately visualize the key axes 

of variation. This enables SWNE to illuminate differentiation trajectories and layer-specific 

neuron structure that is not apparent in other visualizations, such as t-SNE. Finally, embedding 

key marker genes and relevant biological factors adds important biological context to the SWNE 

visualization. As single cell gene expression datasets increase in size and scope, we believe 

that SWNE’s ability to create an accurate, context-rich map of the datasets will be critical to 

biological interpretation. 

 

Author Contributions 

Y.W., P.T., and K.Z. developed the conceptual ideas and designed the study. Y.W. 

implemented all computational methods. Y.W., P.T., and K.Z. wrote the manuscript. 

 

Acknowledgements 

We would like to acknowledge Dr. Prashant Mali for his feedback and advice, and Dinh Diep for 

her technical feedback. Additionally, we would like to acknowledge the Zhang Lab, the Tamayo 

Lab, and the Mali Lab for their help and support. 

Funded in part by NIH grants R01HG009285 (KZ & PT), U01CA217885 (PT), and P30 

CA023100 (PT), U01MH098977 (YW & KZ), R01HL123755 (YW & KZ) 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2018. ; https://doi.org/10.1101/276261doi: bioRxiv preprint 

https://doi.org/10.1101/276261
http://creativecommons.org/licenses/by-nc-nd/4.0/


Conflicts of Interest 

The authors declare no conflicts of interest. 

 

Supplementary Figures 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2018. ; https://doi.org/10.1101/276261doi: bioRxiv preprint 

https://doi.org/10.1101/276261
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2018. ; https://doi.org/10.1101/276261doi: bioRxiv preprint 

https://doi.org/10.1101/276261
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S1: SWNE model selection; related to Figures 1 – 4.  (a) A subset of the gene 

expression matrix is set to missing, and NMF is run across a range of factors, and the missing 

values are imputed. We then plot the imputation error vs number of factors (k), and select the k 

values close to the minimum imputation error to create SWNE visualizations with. The k that 

gives the best visualization is selected (Figure 1). (b) Quantitative evaluation of SWNE 

performance across a range of 𝑘 for the discrete simulation (Figure 2). (c) Quantitative 

evaluation of SWNE performance across a range of 𝑘 for the trajectory simulation (Figure 2). 

(d) SWNE visualizations of the discrete simulation across a range of 𝑘 (Figure 2). (e) SWNE 

visualizations of the trajectory simulation across a range of 𝑘 (Figure 2). (f) Imputation error 

versus 𝑘 for the hematopoiesis dataset (Figure 3) (g) Imputation error versus 𝑘 for the cortex & 

cerebellum dataset (Figure 3). (h) Imputation error versus 𝑘 for the layer specific excitatory 

neurons (Figure 3). 
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Figure S2: Additional visualizations of the simulated datasets and simulated runtime 

analysis; related to Figure 2. (a) Additional visualizations for the discrete simulation: SWNE 

without SNN weighting, PCA, locally linear embedding (LLE), multidimensional scaling (MDS). 

(b) Additional visualizations for the trajectory simulation: SWNE without SNN weighting, PCA, 

locally linear embedding (LLE), multidimensional scaling (MDS). (c) SWNE runtime on 

simulated datasets as a function of the number of cells. (d) SWNE runtime on simulated 

datasets as a function of the number of genes. 
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Figure S3: Identifying and validating genes and factors to embed; related to Figure 3 and 

Figure 4. Genes and factors highlighted in blue are embedded in the corresponding 

visualization. (a) Log fold-change heatmap for the top cell type specific markers in the 
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hematopoiesis dataset (Figure 2b, Figure 2d). (b) Top gene loadings heatmap for NMF factors 

in the hematopoiesis dataset (Figure 2b, Figure 2d). (c) Log fold-change heatmap for the top 

cell type specific markers in the cortex & cerebellum dataset (Figure 3b). (d) Top gene loadings 

heatmap for NMF factors in the cortex & cerebellum dataset (Figure 3b). (e) Log fold-change 

heatmap for the top layer specific marker genes in the visual cortex excitatory neuron layers 

(Figure 3c). (f) Apoe projected onto the hematopoiesis SWNE plot with Apoe expression 

overlaid (Figure 2b, 2d).  (g) CBLN2 projected onto the cortex & cerebellum SWNE plot with 

CBLN2 expression overlaid (Figure 3b). (h) DAB1 projected onto the layer specific excitatory 

neuron SWNE plot with DAB1 expression overlaid (Figure 3c). 
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Figure S4: Demonstrating new data projection with PBMCs. (a) SWNE was run on a 3,000 

PBMC dataset, creating a training embedding. (b) SWNE plot of 33,000 PBMCs projected onto 

the training embedding. 
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Method Details 

Normalization, variance adjustment, and scaling 

We normalize the gene expression matrix by dividing each column (sample) by the column sum 

and multiplying by a scaling factor. Batch effects were normalized by a simple model, adapted 

from pagoda2 (Barkas et al. 2018; Fan et al. 2016), that subtracts any batch specific expression 

from each gene. We used the variance adjustment method from pagoda (Fan et al. 2016) to 

adjust the variance of features, an important step when dealing with RNA-seq data. Briefly, a 

mean-variance relationship for each feature is fit using a generalized additive model (GAM) and 

each feature is multiplied by a variance scaling factor calculated from the GAM fit. Feature 

scaling is also performed using either a log-transform, or the Freeman-Tukey transform. 

 

Feature Selection 

We highly recommend doing some sort of selection of overdispersed genes before running 

SWNE, as the NMF algorithm scales poorly with the number of features (Figure S2c, S2d). 

Both Pagoda2 and Seurat offer dispersion based feature selection methods, and we wrapped 

with Pagoda2 feature selection method in an SWNE function. 

 

Nonnegative Matrix Factorization and model selection 

We use the NNLM package (Lin & Paul C Boutros 2016) to run the Nonnegative Matrix 

Factorization (NMF). Equation 1 shows the NMF decomposition: 

𝐴 = 𝑊𝐻     (1) 

Where 𝐴 is the (features x samples) data matrix, 𝑊 is the (features x factors) feature loading 

matrix, and 𝐻 is the (factors x samples) low dimensional representation of the data. The NMF 

initialization method can affect the embedding, and we offer an Independent Component 

Analysis (ICA) initialization, a Nonnegative-SVD (NNSVD) initialization, and a purely random 
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initialization. ICA initialization works well with most datasets, and is set as the default option. We 

select the number of factors by setting a random subset of the data as missing, usually around 

25% of the matrix, and then use the NMF reconstruction (𝑊 𝑥 𝐻) to impute the missing values 

across a range of factors. The number of factors, k, which minimizes the mean squared error, is 

typically the optimal number of factors to use.  

 

Generating the SNN matrix 

In order to ensure that samples which are close to each other in the high dimensional space are 

close in the 2d embedding, we smooth the NMF embeddings with a Shared Nearest-Neighbors 

(SNN) matrix, calculated using code adapted from the Seurat package (Satija et al. 2018; Butler 

et al. 2018). Briefly, we calculate the approximate k-nearest neighbors for each sample using 

the Euclidean distance metric (in the Principal Component space. We then calculate the fraction 

of shared nearest neighbors between that sample and its neighbors. We can then raise the SNN 

matrix, denoted here as 𝑆, to the exponent 𝛽: 𝑆′ = 𝑆 . If 𝛽 > 1, then the effects of neighbors on 

the cell embedding coordinates will be decreased, and if 𝛽 < 1, then the effects will be 

increased. Finally we normalize the SNN matrix so that each row sums up to one. 

 

Weighted Factor Projection 

We adapt the Onco-GPS (Kim et al. 2017) methodology to embed the NMF factors onto a two 

dimensional visualization. First, we smooth the 𝐻 matrix with the SNN matrix using Equation 2:  

𝐻 = 𝐻 ∗ 𝑆    (2) 

We then calculate the pairwise similarities between the factors (rows of the 𝐻  matrix) 

using either cosine similarity, or mutual information (Kim et al. 2016). The similarity is converted 

into a distance with equation 3:  

𝐷 = 2(1 − 𝑅)     (3) 
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Here, 𝑅 is the pairwise similarity. We use Sammon mapping(Sammon 1969) to project the 

distance matrix into two dimensions, which represent the x and y coordinates for each factor. 

The factor coordinates are rescaled to be within the range zero to one.  

 

Weighted Sample Embedding 

Let 𝐹 , 𝐹  represent the x and y coordinates for factor 𝑖. To embed the samples, we use the 

sample loadings from the unsmoothed 𝐻 matrix via equations 4 & 5: 

𝐿 =
∑ (𝐻 𝐹 )  

∑ 𝐻  
    (4) 

𝐿 =
∑ (𝐻 𝐹 )  

∑ 𝐻  
    (5) 

Here, 𝑗 is the sample index and 𝑖 is iterating over the number of factors in the decomposition 

(number of rows in the 𝐻 matrix). The exponent 𝛼 can be used to increase the “pull” of the NMF 

components to improve separation between sample clusters, at the cost of distorting the data. 

Additionally, we can choose to sum over a subset of the top factors by magnitude for a given 

sample, which can sometimes help reduce noise. We end up with a 2 𝑥 𝑁 matrix of sample 

coordinates, 𝐿. 

 To weight the effects of the SNN matrix on the samples, the sample coordinates 𝐿 are 

smoothed using equation 6: 

𝐿 = 𝑆 ∗ 𝐿     (6) 

The smoothed sample coordinates (𝐿 ) are then visualized. While we have found that an 

SNN matrix works well in improving the local accuracy of the embedding, other similarity 

matrices, such as those generated by scRNA-seq specific methods like SIMLR, could also work. 

In general, you should use whichever similarity or distance matrix you used for clustering. 

 

Embedding features 
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In addition to embedding factors directly on the SWNE visualization, we can also use the gene 

loadings matrix (𝑊) to embed genes onto the visualization. We simply use the 𝑊 matrix to 

embed a gene relative to each factor, using the same method we used to embed the cells in the 

𝐻 matrix. If a gene has a very high loading for a factor, then it will be very close to that factor in 

the plot, and far from factors for which the gene has zero loadings.  

 

Constructing the SNN matrix from different dimensional reductions 

The SNN matrix can be constructed from either the original gene expression matrix (𝐴), or on 

some type of dimensional reduction. We have found that constructing the SNN matrix from a 

PCA reduction tends to work well, especially in datasets where that follow a trajectory or 

trajectories. We believe this is due to PCA’s ability to capture the axes of maximum variance, 

while NMF looks for a parts-based representation (Abdi & Williams 2010; Lee & Seung 1999). 

For datasets where there are discrete cell types, constructing the SNN matrix from the NMF 

factors is often similar to constructing the SNN matrix from PCA components. Thus, we default 

to building the SNN matrix from principal components. 

 

Interpreting NMF components 

In order to interpret the low dimensional factors, we look at the gene loadings matrix (𝑊). We 

can find the top genes associated with each factor, in a manner similar to finding marker genes 

for cell clusters. Since we oftentimes only run the NMF decomposition on a subset of the 

overdispersed features, we can use a nonnegative linear model to project the all the genes onto 

the low dimensional factor matrix. One can also run Geneset Enrichment Analysis(Subramanian 

et al. 2005) on the gene loadings for each factor to find the top genesets associated with that 

factor.  

 

Projecting New Data 
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To project new data onto an existing SWNE embedding, we first have to project the new gene 

expression matrix onto an existing NMF decomposition, which we can do using a simple 

nonnegative linear model. The new decomposition looks like equation 7: 

𝐴 = 𝑊𝐻    (7) 

Here, 𝐴’ is the new gene expression matrix, and 𝑊 is the original gene loadings matrix, which 

are both known. Thus, we can simply solve for 𝐻’. The next step is to project the new samples 

onto the existing SNN matrix. We project the new samples onto the existing principal 

components, and then for each test sample, we calculate the k closest training samples. Since 

we already have the kNN graph for the training samples, we can calculate, for each test sample, 

the fraction of Shared Nearest Neighbors between the test sample and every training sample. 

With the test factor matrix 𝐻’, and the test SNN matrix, we can run the SWNE embedding as 

previously described to project the new samples onto the existing SWNE visualization. 

 

Generating Simulated Datasets 

We used the Splatter (Zappia et al. 2017) R package to generate a discrete dataset with five 

different clusters, estimating parameters from the 3k PBMC dataset published by 10X 

genomics. We generated five distinct clusters (groups), where Groups 1 and 5 had a differential 

expressed gene (DEG) probability of 0.3, while Groups 2 – 4 had a DEG probability of 0.15. 

Group 5 contains 1215 cells, Groups 2 – 4 contain 405 cells each, and Group 1 contains 270 

cells. Thus, Groups 1 & 5 should be relatively distant and Groups 2 – 4 should be relatively 

close. To simulate a branching trajectory dataset, we estimated parameters from the 

hematopoiesis dataset from Paul et al. We generated four paths, where each path is 

parameterized by the number of cells in that path and the number of “time-steps”, which 

essentially controls how long the path is. Path 1 branches into Paths 2 and Paths 3, and Path 3 

continues onto Path 4. Paths 1 & 2 contained 819 cells each, and Paths 3 & 4 contained 546 

cells each. Path 1 had 100 steps, Path 2 was the “longest” path with 200 steps, and Paths 3 & 4 
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had 50 steps each. Each cell is assigned to a path, and a time-step. For example, Cell2522 

might belong to Path1 and time-step 68. 

 

Evaluating Embedding Performance 

To evaluate how well each embedding maintained the global structure of the discrete 

simulation, we correlated the pairwise cluster distances in the 2D embedding with the pairwise 

cluster distances in the original gene expression space. We then calculated the average 

Silhouette score for each embedding, evaluating how well the visualization separates the 

clusters. For the trajectory simulation, we divided each path into “chunks” of five time-steps. We 

correlated the pairwise distances of each “path-time-chunk” in the embedding space, and the 

original gene expression space to evaluate how well the embeddings maintained the global 

structure. To evaluate the local structure, we constructed a “ground-truth” neighborhood graph 

by adding an edge between every cell in each path-time-step, and every cell in each 

neighboring path-time-step. For example, we would connect all the cells in Path1 at time-step 

23, with all the cells in Path1 and time-step 24. We then created a nearest neighbors graph for 

each embedding, and took the Jaccard distance between each cell’s neighborhood in the 

embedding and the true neighborhood. We used the average Jaccard distance as our 

“neighborhood score”. 

 

Data and Software Availability 

The SWNE package is available at https://github.com/yanwu2014/swne. The scripts used for 

this manuscript are under the Scripts directory. The data needed to recreate the figures can be 

found here:  

 ftp://genome-miner.ucsd.edu/swne_files/hemato_data.tar.gz (Hematopoiesis data) 

 ftp://genome-miner.ucsd.edu/swne_files/neuronal_data.tar.gz (Neuronal data) 
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The raw data for the hematopoietic and neuronal cells can be found at the GEO accessions 

GSE72857 and GSE97930, respectively. The PBMC dataset can be found at the 10X genomics 

website: https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k. 

The simulated datasets can be found at:  

 ftp://genome-miner.ucsd.edu/swne_files/splatter_simulated_data.tar.gz  
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