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Abstract  37 

 Variant interpretation depends on accurate annotations using biologically relevant transcripts. 38 

We have developed a systematic strategy for designating primary transcripts, and applied it to 39 

109 hearing loss-associated genes that were divided into 3 categories. Category 1 genes (n=38) 40 

had a single transcript, Category 2 genes (n=32) had multiple transcripts, but a single transcript 41 

was sufficient to represent all exons, and Category 3 genes (n=38) had multiple transcripts with 42 

unique exons. Transcripts were curated with respect to gene expression reported in the literature 43 

and the Genotype-Tissue Expression Project. In addition, high frequency loss of function 44 

variants in the Genome Aggregation Database, and disease-causing variants in ClinVar and the 45 

Human Gene Mutation Database across the 109 genes were queried. These data were used to 46 

classify exons as "clinically relevant", "uncertain significance", or "clinically insignificant". 47 

Interestingly, 7% of all exons, containing >124 "clinically significant" variants, were of 48 

“uncertain significance”. Finally, we used exon-level next generation sequencing quality metrics 49 

generated at two clinical labs, and identified a total of 43 technically challenging exons in 20 50 

different genes that had inadequate coverage and/or homology issues which might lead to false 51 

variant calls. We have demonstrated that transcript analysis plays a critical role in accurate 52 

clinical variant interpretation. 53 

 54 

  55 
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Introduction 56 

With the rapid growth of genomic testing and the dropping cost of sequencing, proper analysis of 57 

genetic variants is critical for patient care. The American College of Medical Genetics and 58 

Genomics (ACMG) has set forth guidelines for the interpretation of sequence variants 1. 59 

However, use of the guidelines requires an understanding of the transcriptional architecture of 60 

each gene. There can be several mRNA transcripts for each gene, and each laboratory 61 

individually determines which transcript to use when annotating, interpreting, and reporting 62 

variants in any gene.  Human transcripts are currently designated and annotated by multiple 63 

groups. The most commonly used sets of coding transcripts that are currently available come 64 

from GENCODE (Ensembl and HAVANA, CCDS, LRG), UCSC, RefSeq (LRG), and AceView 65 

2-8. Each group annotates transcripts with a combination of computational and manual literature 66 

curation. Although current HGVS standards mention that describing variants in the context of 67 

exons and introns is optional 9, in many genes there are exon-specific factors that influence 68 

interpretation and tracking this data on an exon level is important.   69 

In addition to the above annotation challenges, technical limitations of NGS can also lead to 70 

inaccurate variant calls. Several genes contain coding sequences that can pose several technical 71 

problems, including sequences with high homology to other genomic regions, high GC content, 72 

and repetitive sequences. If a gene has significant sequence overlap with another gene or a 73 

pseudogene, it can be difficult to align the short NGS reads to the right genomic location, leading 74 

to false negative and/or false positive variant calls. DNA with high GC content is not easily 75 

amplified, and highly repetitive DNA is prone to sequencing and/or alignment errors. All such 76 

regions should be systematically investigated in the targeted genes of interest to address test 77 

limitations and design necessary ancillary assays 10.     78 
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Upon passing sequencing quality metrics and filtration cutoffs, a rare variant would then be 79 

evaluated based on the most biologically relevant transcript for the disease of interest. It is 80 

common to choose the longest transcript for sequencing pipelines. However, variants are often 81 

evaluated in the context of this transcript, which does not necessarily encompass all essential 82 

exons and can also contain non-biologically functional exons. Thus, choosing a medically 83 

relevant transcript is essential for variant interpretation, and for understanding the molecular 84 

consequence of a variant on the gene's function.  85 

Here we provide a framework for transcript curation and selection using a combination of tissue 86 

expression and genomic datasets, protein functional domains, and published work from animal 87 

and human studies. We apply this framework to hearing loss, a relatively common condition that 88 

affects 1 in 300 infants, half of which have a genetic etiology 11.  Due to the complexity of the 89 

auditory system, it is also highly heterogeneous with over 100 genes causative for nonsyndromic 90 

hearing loss alone 12. We also use clinical NGS datasets generated at two different diagnostic 91 

laboratories to systematically highlight technically challenging regions across the hearing loss 92 

genes. We demonstrate the utility of our framework and its impact on variant annotation and 93 

interpretation. While our analysis was limited to hearing loss, we recommend that this guidance 94 

be used for all genes that are definitively associated with fully penetrant diseases.  95 

Methods 96 

Transcript Curation process 97 

109 hearing loss-associated genes largely from the OtoGenome™ Test (GTR000509148.8) at the 98 

Laboratory for Molecular Medicine (LMM) were included for transcript curation. All known 99 

(NM) RefSeq transcripts in these genes were curated with respect to function, tissue specificity 100 
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and temporal expression from published literature (Figure 1). Exon-specific expression data 101 

were extracted from the Genotype-Tissue Expression Project (GTEx) on 01/15/18. GTEx was 102 

supported by the Common Fund of the Office of the Director of the National Institutes of Health, 103 

and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. In addition, high allele frequency 104 

(>0.3%) predicted loss of function (LoF) variants (nonsense, frameshift and +/-1,2 splice site) 105 

were queried from the Genome Aggregation Database (gnomAD) 13, and exons containing such 106 

LoFs were flagged. An allele frequency of 0.3% was chosen since variants in hearing loss genes 107 

that are above this frequency can be considered likely benign as defined by Duzkale et al 14.   108 

Exon Numbering and Classification 109 

All coding and noncoding exons in the primary transcript were numbered sequentially. Coding 110 

and noncoding exons in minor transcripts were also numbered separately and sequentially per 111 

transcript. Transcripts were aligned and viewed using Alamut (Version 2.6.1 Interactive 112 

Biosoftware). Each minor transcript was given a different letter that was added after the exon 113 

number. For example, if there were two transcripts with unique alternate exon 1, they were 114 

numbered as 1A and 1B. To define a minimal curated transcript list, unique exons were listed in 115 

the minimal number of minor transcripts and the designated longest transcript contained the most 116 

coding bases (Table 1, Supplemental Tables 1-3). 117 

Exons were classified as "clinically significant", "uncertain significance", or "clinically 118 

insignificant" (Figure 1C). Exons were classified as "clinically significant" if there was no 119 

evidence they were alternatively spliced, they did not contain high frequency exonic LoF 120 

variants, or they were supported by tissue-specific inner ear expression in the literature. 121 

"Uncertain significance" exons were spliced out of major transcripts, had no expression data and, 122 

for some, contained one high frequency LoF variant. Finally, "clinically insignificant" exons 123 
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were noncoding, had non-supporting human or animal tissue expression data, or had multiple 124 

high frequency LoF variants.  125 

Variant Counts 126 

Pathogenic (P), likely pathogenic (LP), benign (B), likely benign (LB) variants, and variants of 127 

uncertain clinical significance (VUS) in the ClinVar database 15 in addition to Disease Mutations 128 

(DMs) in the Human Gene Mutation Database (HGMD) 16 were counted across all uncertain and 129 

insignificant exons.  Each variant was evaluated based on transcript location and predicted 130 

molecular consequence to the gene.  131 

Technically challenging regions 132 

Exon-level next generation sequencing (NGS) quality metrics, including average mapping 133 

quality (MQ) and average minimum depth of coverage (DP), were calculated across all 109 134 

genes using exome sequencing data. Exome targets were captured using the Agilent Clinical 135 

Research Exome (CRE) V5 kit, after which 2x100bp paired-end sequencing was performed on 136 

the Illumina HiSeq platform. 137 

Exome sequencing using the above conditions was performed at the Children's Hospital of 138 

Philadelphia (CHOP) 17 and the Laboratory for Molecular Medicine (LMM) with an overall 139 

average coverage of ~100x and 180x, respectively. Poor quality regions as defined in Results 140 

section were compared between the two sites. Additionally, 87 of the 109 genes were targeted at 141 

the LMM using a custom-based capture kit (Agilent), followed by 2x150bp paired-end 142 

sequencing to an average coverage of ~600x. Exon-level NGS quality metrics from this capture-143 

based sequencing approach were calculated and compared to those from exome sequencing.     144 

Results  145 
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Transcript curation 146 

A total of 109 genes on LMM's hearing loss panel were curated for clinically relevant transcripts 147 

as outlined in Figure 1.  These genes had between 1 and 17 NCBI reference sequence RefSeq 148 

transcripts and between 1 and 72 unique exons, for a total of 340 unique transcripts and 2161 149 

unique exons across all genes (Figure 2A).  Genes were divided into 3 categories using RefSeq 150 

transcripts 5. All genes with only one RefSeq transcript were classified as category 1 (C1) genes. 151 

Genes with multiple transcripts were considered category 2 (C2) genes if the longest transcript 152 

included all annotated exons and those with multiple transcripts and mutually exclusive exons 153 

were grouped under category 3 (C3) (Figure 1).     154 

Category 1 genes. Of the 109 genes evaluated, 38 had a single RefSeq transcript each with an 155 

average of 19 exons (total of 38 transcripts and 725 exons across 38 genes, Figure 2A and 156 

Supplementary Table 1). Because each gene had only one known RefSeq transcript, C1 157 

transcripts had minimal curation and almost all exons, except for noncoding ones (n=24), were 158 

considered to be critical for inclusion in diagnostic testing and variant interpretation. 159 

Interestingly, however, based on exon-level counts of high allele frequency loss of function 160 

(LoF) variants in the general population (see Methods), there was one insignificant exon 161 

(MYO15A, NM_016239.3, Exon 26) and another of uncertain significance (ATP6V1B1, 162 

NM_001692.3, Exon 1) in this category. 163 

The MYO15A exon 26 contained a nonsense variant (c.5925G>A; p.Trp1975*) that was present 164 

in 1.3% (316/23,712) South Asian alleles including 3 homozygotes in the Genome Aggregation 165 

Database (gnomAD). Interestingly, RNA sequencing data from the Genotype-Tissue Expression 166 

(GTEx) study showed that this exon is not expressed across all tested tissues. We therefore 167 

considered this exon to be clinically insignificant and that variants identified therein are more 168 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/276287doi: bioRxiv preprint 

https://doi.org/10.1101/276287
http://creativecommons.org/licenses/by-nd/4.0/


 

 

8 

 

likely to be benign. The ATP6V1B1 exon 1 contained a start loss variant (c.2T>C; p.M1?) that 169 

was present in 40% total alleles in gnomAD, including 23,280 homozygotes. It is possible that 170 

the exon start is erroneously annotated or that re-initiation might occur elsewhere, including at 171 

any of the two downstream methionines in this exon. However, there is currently no functional 172 

data to support either possibility or to rule out potential re-initiation at downstream exons. We 173 

therefore classified this exon as uncertain clinical significance wherein sequence variants should 174 

be carefully interpreted. 175 

Category 2 genes. This category included 33 genes each with an average of 4 transcripts and 18 176 

unique exons (Figure 2A and Supplementary Table 2). A total of 118 transcripts, including 582 177 

unique exons, were curated in this category. Although the longest transcript represented all 178 

annotated RefSeq exons and was presumed to be the major transcript for C2 genes, we curated 179 

the shorter (minor) transcripts for potentially identifying non-biologically or non-clinically 180 

relevant exons in the longer transcript. Apart from the 23 noncoding exons in these genes, there 181 

were 26 coding exons not contained in minor transcripts, thus questioning their clinical relevance 182 

(Figure 2B).  Of those, 7 exons were not expressed in any tissue in the GTEx database including 183 

4 exons (CCDC50 exon 6, DFNA5 exon 2, EDN3 exon 4, and ILDR1 exon 6) harboring high 184 

allele frequency LoF variants in gnomAD (Supplementary Table 2). Of the 15 exons that 185 

showed expression in the GTEx database, 5 exons (CEP78 exons 1, 2, and 16, DFNA5 exon 6, 186 

and KARS exon 15) also contained high frequency LoF variants in gnomAD (Supplementary 187 

Table 2), while the remaining 10 exons did not, although more information is needed to clarify 188 

their biological or clinical relevance. 189 

An illustrative example in this category is the EDN3 gene known to cause Waardenburg 190 

syndrome (WS) type 4 18, 19. This gene has 5 RefSeq transcripts sharing coding exons 1-3 and 5 191 
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but differing in the inclusion of coding exon 4. Specifically, the NM_001302456.1 and 192 

NM_207033.2 transcripts do not contain the fourth coding exon shared by the three other 193 

transcripts (Figure 3). Interestingly, a frameshift variant (NM_207034.2: c.559_560insA; 194 

p.Thr189Asnfs) in this exon was present in 0.6% (157/25790) Finnish European alleles in 195 

gnomAD, with a high quality variant score, including 2 homozygotes (Figure 3), supporting the 196 

clinical insignificance of this exon.  197 

Category 3 genes. There were 38 genes in this category, each with an average of 5 transcripts 198 

and 22 unique exons (Figure 2A and Supplementary Table 3). In total, C3 genes had 184 199 

RefSeq transcripts and 854 unique exons. Given the multiple transcripts with mutually exclusive 200 

exons in this category, a thorough curation was carried out to select the most clinically relevant 201 

transcript for each C3 gene (Supplementary Table 3).  Published human and/or animal tissue 202 

expression studies supported transcript selection for 30 C3 genes; the longest transcript was 203 

supported in 25 genes while a shorter isoform was most relevant in 5 genes. There were no 204 

expression data to guide selection of the most biologically relevant transcript for 8 C3 genes for 205 

which we defaulted to the longest transcript. Overall, 104 coding exons in the C3 genes met our 206 

criteria for “uncertain significance”, while 7 coding exons were classified as "clinically 207 

insignificant" (see Methods and Figure 2B).   208 

A C3 example is the PAX3 gene which is a common cause of WS, type 1 20-22.  This gene has 8 209 

RefSeq transcripts with varied tissue and temporal expression 23-25, and with significant 210 

alternative splicing; a transcript can include 4, 5, 8, 9, or 10 exons. Certain exons use alternate 211 

splice junctions which can also change reading frame for the terminal exon (Figure 4A).  212 

Interestingly, one putative LoF variant (c.638C>A; p.S213*) in exon 4d of the NM_000438.5 213 

transcript was found in 0.54% (166/30,592) South Asian alleles including one homozygous 214 
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individual. This allele frequency is inconsistent with the estimated disease prevalence for 215 

autosomal dominant WS of approximately 1/40,00022, 26. Exon 4d is only 20 amino acids longer 216 

than exon 4 on all other transcripts. Human expression data in the GTEx database strongly 217 

supports usage of the exon 4 (and not 4d) splice donor site, suggesting that exon 4d is not 218 

biologically relevant (Figure 4B). 219 

Similarly, exon 8c in the NM_181460.3 transcript of the PAX3 gene is unlikely to be biologically 220 

relevant as supported by lack of its expression (GTEx database) and the presence of a putative 221 

LoF splicing variant (c.1024+1G>C) impacting this exon in 0.15% (47/30,764) South Asian 222 

alleles in gnomAD. This same variant has a missense effect (p.Arg402Pro) on the NM_181461.3 223 

transcript, further highlighting the importance of appropriate transcript selection for variant 224 

annotation and interpretation (Figure 4C). 225 

Impact on clinical testing and interpretation 226 

Transcript selection can significantly alter variant interpretation because variants can have 227 

differing molecular consequences on each transcript. For example, pathogenic missense and 228 

nonsense variants in the MITF gene, encoding a transcription factor critical for melanocyte 229 

development, are known to cause WS, type 2 22, 27. This gene has 13 curated RefSeq transcripts. 230 

On 4 out of 13 transcripts, a particular pathogenic variant (which segregated with disease in >10 231 

members of a family with WS 27) is annotated as a variant in a +1 canonical splice donor site 232 

(c.33+1G>A). However, this nucleotide change is a deep intronic variant in the other 9 233 

transcripts (e.g. NM_001184967.1:c.199-1066G>A), and could easily be misclassified if only the 234 

deep intronic consequence were interpreted. 235 
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Tissue-specific transcript expression can also significantly alter variant interpretation. Variants in 236 

TBC1D24, a GTPase-activating protein, are associated with either nonsyndromic hearing loss, 237 

DOORS syndrome, or a spectrum of epilepsy conditions 28-33. This gene has 2 curated RefSeq 238 

transcripts: NM_001199107.1, the longest which contains 8 exons and is most abundant in 239 

mouse neurons, and NM_020705.2, which is missing exon 3, contains only 7 exons, and is 240 

expressed in mouse cochlea and non-neuronal tissues 29. NM_001199107.1:c.969_970delGT 241 

(p.Ser324Thrfs), a frameshift variant in exon 3, is not present in the shorter transcript and was 242 

identified in the homozygous state in five members of a consanguineous family with severe 243 

lethal epileptic encephalopathy but no hearing loss, thereby supporting the tissue-specific 244 

expression of the longest transcript 31.    245 

Based on our comprehensive curation of all transcripts, there were 139 coding exons with no or 246 

uncertain clinical significance, constituting 7% of all 2089 coding exons across all 109 genes 247 

(Figure 2B).  Because of the limited evidence supporting those exons' clinical relevance, 248 

variants therein should be carefully interpreted as they can be a source of false positive 249 

diagnoses.  Interestingly, there are 124 variants that are labeled as disease causing (DM or P/LP) 250 

in disease databases (HGMD and ClinVar, respectively), in addition to 224 VUSs and 151 B/LB 251 

variants across those exons (Figure 2C). These variants interpreted as clinically significant will 252 

all require further assessment to ensure sufficient evidence is present to implicate them in 253 

hearing loss. This highlights the importance of our transcript curation approach and the impact it 254 

could have on functional and clinical annotations.     255 

Technical Assessment 256 

Due to its genetic heterogeneity, most clinical genetics laboratories use targeted or exome-based 257 

panels to sequence a comprehensive set of genes known to cause hearing loss.  Although very 258 
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robust, such approaches have limitations inherent to the next generation sequencing (NGS) 259 

technology including the inability to reliably capture and sequence low complexity and/or high 260 

homology genomic regions.  261 

We sought to identify regions in a set of 109 hearing loss genes that are technically challenging 262 

to sequence using current short read (100-150bp) NGS in clinical laboratories. We used clinical 263 

exome sequencing data generated in two different sites (CHOP and LMM) to calculate exon-264 

level quality metrics across all exons in the 109 hearing loss genes.  We have recently shown that 265 

an average mapping quality (MQ) and/or an average minimum depth of coverage (DP) cutoffs of 266 

20 and/or 15, respectively, are strong indicators of poor quality regions 17. We identified 43 well-267 

baited (~90% baited bases) exons in 20 genes with the above cutoffs despite being exome 268 

sequenced to an overall average coverage of up to 180x at the two clinical laboratories 269 

(Supplementary Table 4 and methods).  Of those, 31 exons were sequenced to an overall 270 

coverage of ~600x using a different targeted capture (average % baited exons: 95%) and longer 271 

reads (150bp), but still had low quality metrics (Supplementary Table 4).   272 

The 43 regions included exons with high homology to other genomic sequences (n=21 exons in 273 

STRC and OTOA) or exons that have GC-rich or repeat sequences (n=22, e.g. KCNQ1, MYO15A, 274 

and TPRN) (Figure 5). It is unlikely that sequence variants in all 43 exons will be reliably 275 

detected using available NGS chemistries, and therefore false positive and/or false negative 276 

variant calls in those exons should be highly expected.  277 

Discussion  278 

Transcript selection is critical for determining DNA variants' potential effects on RNA and/or 279 

protein expression, function and stability. This annotation, in turn, significantly impacts variant 280 
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interpretation. Although most clinical laboratories use one set of coding transcripts (commonly 281 

RefSeq) for variant annotation, any set might contain multiple transcripts for each gene; some of 282 

which are true clinically relevant isoforms, while others can be false annotations. Even for those 283 

genes with multiple isoforms, deciphering the relevant isoform for a given disease – often based 284 

on tissue-specific expression data – is necessary for interpretation. In the absence of uniform 285 

guidelines for transcript selection, each lab applies different internal rules for identifying the 286 

most appropriate transcript(s) for interpretation and reporting. 287 

Here we provide a comprehensive evidence-based framework for transcript curation and 288 

selection. We apply this framework to 109 hearing loss genes, and illustrate its utility in 289 

transcript selection and variant annotation and interpretation.  We also use a new exon 290 

classification system, and show that 7% of all coding (RefSeq) exons in these genes have no or 291 

questionable clinical validity rendering them a potential source of false variant calls irrespective 292 

of their predicted protein effect (missense, loss of function, etc.).   293 

A challenge with our approach is that it requires significant manual curation, though such 294 

curation is essential for accurate interpretation, and is arguably more effective if performed 295 

ahead of testing, and not retrospectively to minimize analysis and wet bench burdens. Another 296 

challenge is that it is highly dependent on availability of human and/or animal expression data in 297 

the relevant disease tissue – the inner ear in this current work. However, leveraging existing 298 

large human genomic population (gnomAD) and transcriptome (GTEx) sequencing data as well 299 

as high quality variant databases (ClinVar) can support the selection of clinically relevant 300 

transcripts in our genes.     301 

Finally, we use exon-level NGS quality metrics to highlight regions that are inaccessible to 302 

sequencing and/or accurate variant calling, especially with short read (100-150bp) chemistries 303 
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that are mostly used in clinical and research labs.  It is possible that some of those regions can be 304 

recovered with longer reads and improved bioinformatics pipelines. Until then, however, it is 305 

highly important that different ancillary assays, such as Sanger sequencing, be validated to 306 

accurately capture sequence variants in those regions.    307 

In summary, we recommend that our transcript selection framework and exon classification 308 

system be used in other disease areas for more efficient and accurate variant interpretation, and 309 

to avoid erroneous annotations and, potentially, misdiagnoses.    310 
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 696 

Figure Legends: 697 

Figure 1: A) Transcript Curation Workflow: 109 hearing loss-associated genes, 698 

predominantly from the OtoGenome™ Test (GTR000509148.7), were categorized. Genes were 699 

divided into 3 categories using NCBI reference sequence (RefSeq) transcripts. Category 1 (C1) 700 

contained genes that had a single transcript, genes in category 2 (C2) had multiple transcripts, 701 

but the longest transcript encompassed all exons, and Category 3 (C3) genes had multiple 702 

transcripts with unique exons.  B) Category 2 and 3 Curation Process: Category 2 and 3 genes 703 

were manually curated. Exon-specific expression data was pulled from GTEx and gEAR. 704 

Literature searches were performed for information about functional domains, additional 705 

expression data, such as tissue-specific transcript expression, and temporal expression. To 706 

evaluate population variation, loss of function variants were pulled from gnomAD. To evaluate 707 

interpreted variation, LP/P variants were pulled from our internal database (also in ClinVar) and 708 

ClinVar and DM variants were pulled from HGMD. C) Exon Curation Process: Exons were 709 

categorized as “Clinically relevant,” “Uncertain significance,” or “Clinically Insignificant” based 710 

on the pieces of evidence listed in the table. 711 

Figure 2: A) Gene, exon, and transcript Counts:  Genes were categorized and transcripts and 712 

exons were counted. B) Exon Counts Across Categories: For each of the three categories, 713 

exons were classified as Noncoding, Uncertain, or Insignificant as per the definitions in Figure 714 

1C. C) Impact on Interpretation: Variant counts in uncertain and insignificant exons for each 715 

category were collected from HGMD and ClinVar. DM, Disease causing mutation; LP, Likely 716 

Pathogenic; P, Pathogenic; VUS, Variant of Uncertain Significance. 717 
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Figure 3: Visualization of category 2 example, EDN3. A) Transcript view of the EDN3 gene. 718 

The high frequency loss of function variant is pulled from gnomAD and is located in the exon 719 

boxed in red. 720 

Figure 4: Visualization of category 3 example, PAX3. A) Transcript view of the PAX3 gene. 721 

B) A close-up of the high frequency nonsense variant in exon 4d. C) A close-up of the two 722 

uncertain exons in PAX3, and 9a (NM_181459.3) and 8c (NM_181460.3).     723 

Figure 5. Visualization of three genes with known technically challenging regions. Exons in 724 

Otoancorin, OTOA (top) or Stereoclin, STRC (bottom) with high homology to other genomic 725 

sequences; and GC-rich first exon in the potassium channel, KCNQ1 (middle). MQ and coverage 726 

plots are displayed for OTOA, KCNQ1 and STRC. Green bars indicate exons with both average 727 

MQ ≥ 20 and min DP ≥ 15. Orange bar represents either average MQ < 20 or min DP < 15. Red 728 

bars indicate poor exons where both average MQ < 20 and min DP < 15. Each bar in MQ and 729 

coverage plots shows minimum and maximum range for each exon (top and bottom of the bar), 730 

average is shown by a tick mark in the middle of each bar. 731 

  732 
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Table 1: Curated transcripts for category 2 and 3 genes. The minimal curated transcript set 733 

with all unique exons for categories 2 and 3 are listed. C2 genes in which the curated transcript is 734 

not the longest one are listed in bold. 735 

Gene Category Transcript Set 
ACTG1 2 NM_001199954.1† 
BCS1L 2 NM_004328.4† 

CATSPER2 2 NM_001282310.1† 
CCDC50 2 NM_178335.2† 
CEP78 2 NM_001098802.1† 
CHD7 2 NM_017780.3† 
COCH 2 NM_001347720.1† 

COL11A2 2 NM_080680.2† 
COL4A5 2 NM_033380.2† 
DFNA5 2 NM_004403.2† 

DFNB59 (PJVK) 2 NM_001042702.3† 
DIABLO 2 NM_019887.5† 

EDN3 2 NM_207034.2† 
GJB6 2 NM_001110219.2† 

GPSM2 2 NM_013296.4 
HARS 2 NM_002109.5† 
HARS2 2 NM_012208.2† 
ILDR1 2 NM_001199799.1† 
KARS 2 NM_001130089.1† 

KCNE1 2 NM_000219.5† 
KCNQ4 2 NM_004700.3† 
KITLG 2 NM_000899.4† 

MARVELD2 2 NM_001038603.2† 
MYH14 2 NM_001145809.1† 
MYO6 2 NM_001300899.1 
NLRP3 2 NM_004895.4† 
PRPS1 2 NM_002764.3† 

SLC52A2 2 NM_024531.4† 
SYNE4 2 NM_001039876.2 

TBC1D24 2 NM_020705.2 
USH1G 2 NM_173477.4† 
USH2A 2 NM_206933.2† 

2 NM_007123.5 
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WFS1 2 NM_006005.3† 
ADCY1 3 NM_021116.2*† 

  3 NM_001281768.1 
CABP2 3 NM_016366.2* 

  3 NM_001318496.1† 
CACNA1D 3 NM_000720.3*† 

  3 NM_001128839.2 
CDC14A 3 NM_033312.2*† 

  3 NM_003672.3 

  3 NM_033313.2 

  3 NM_001319210.1 
CDH23 3 NM_022124.5*† 

  3 NM_001171935.1 

  3 NM_001171932.1 

  3 NM_052836.3 

  3 NM_001171931.1 

  3 NM_001171930.1 

  3 NM_001171936.1 
CD164 3 NM_006016.5*† 

  3 NM_001142404.2 
CIB2 3 NM_006383*† 

  3 NM_001301224 
CLIC5 3 NM_001114086.1*† 

  3 NM_016929.4 

  3 NM_001256023.1 
CLDN14 3 NM_144492*† 
CLRN1 3 NM_174878.2* 

  3 NM_052995.2 

  3 NM_001195794.1† 

  3 NM_001256819.1 
DFNB31 (WHRN) 3 NM_015404.3*† 

  3 NM_001346890.1 
DIAPH1 3 NM_005219.4*† 

  3 NM_001314007.1 
EDNRB 3 NM_000115.4*† 

  3 NM_001201397.1 

  3 NM_003991.3 
EYA1 3 NM_000503.5*† 

  3 NM_172060.3 
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EYA4 3 NM_004100.4* 

  3 NM_172105.3 

  3 NM_001301013.1† 
HGF 3 NM_000601.5*† 

  3 NM_001010931.2 

  3 NM_001010934.2 
HSD17B4 3 NM_001199291.1*† 

  3 NM_000414.3 

  3 NM_0012929027.1 

  3 NM_001292028.1 
KCNQ1 3 NM_000218.2*† 

  3 NM_181798.1 
LOXHD1 3 NM_144612.6*† 

  3 NM_001145472.2 
LRTOMT 3 NM_00145309.5*† 

  3 NM_001205138.3 

  3 NM_001145307.4 
MITF 3 NM_000248.3* 

  3 NM_198159.2† 
MSRB3 3 NM_001193460.1* 

  3 NM_198080.3† 
MYO7A 3 NM_000260.3*† 

  3 NM_001127179.2 
OSBPL2 3 NM_144498.2*† 

  3 NM_001278649.1 
OTOA 3 NM_144672.3*† 

  3 NM_001161683.1 

  3 NM_170664.2 
OTOF 3 NM_001287489.1* 

  3 NM_194248.2† 

  3 NM_194322.2 
OTOG 3 NM_001277269.1*† 

  3 NM_001292063.1 
PAX3 3 NM_001127366.2* 

  3 NM_181459.3† 

  3 NM_181457.3 

  3 NM_181461.3 

  3 NM_000438.5 

  3 NM_013942.4 
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PCDH15 3 NM_001142763.1*† 

  3 NM_001142769.1 

  3 NM_001142771.1 

  3 NM_001354430.1 

  3 NM_001142770.1 
PDZD7 3 NM_001195263.1*† 

  3 NM_001351044.1 

  3 NM_024895.4 
P2RX2 3 NM_174873.1* 

  3 NM_170683.2† 

  3 NM_001282164.1 

  3 NM_001282165.1 
RIPOR2 3 NM_014722.3*† 

  3 NM_001286445.1 

  3 NM_001286446.1 

  3 NM_015864.3 
RDX 3 NM_002906.3*† 

  3 NM_001260494.1 
SERPINB6 3 NM_004568.5* 

  3 NM_001271822.1 

  3 NM_001271823.1 
TIMM8A 3 NM_004085.3*† 

  3 NM_001145951.1 
TMPRSS3 3 NM_024022.2*† 

  3 NM_032405.1 
TRIOBP 3 NM_001039141.2*† 

  3 NM_138632.2 
USH1C 3 NM_153676.3*† 

  3 NM_001297764.1 
*Primary transcript, †Longest transcript  736 

 737 
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