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Abstract: 
 
As smartphone usage has become increasingly prevalent in our society, so have rates of 
depression, particularly among young adults. Individual differences in smartphone usage patterns 
have been shown to reflect individual differences in underlying affective processes such as 
depression (Wang et al., in press), where depressive symptoms and duration of phone usage were 
previously linked. In the current study, we identified a positive relationship between smartphone 
screen time (e.g. phone unlock duration) and resting-state functional connectivity (RSFC) 
between the subgenual cingulate cortex (sgCC), a brain region implicated in depression and 
antidepressant treatment response, and regions of the ventromedial/orbitofrontal cortex, such that 
increased phone usage was related to stronger connectivity between these regions.  We then used 
this cluster to constrain subsequent analyses looking at depressive symptoms in the same cohort 
and observed replication in a separate cohort.  We believe the data and analyses presented here 
provide proof-of-concept analyses and a first step in combining functional brain activity and 
smartphone usage patterns to better understand issues related to mental health.  Smartphones are 
a prevalent part of modern life and show promise in being a tool for mental health diagnostics 
and neuroscience research.  
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Introduction: 
Smartphone usage has become nearly ubiquitous in daily life at a time when depression 

rates are concurrently rising, particularly among college students.  Smartphones contain a variety 
of sensors that can allow researchers to passively measure various behaviors of the phone’s user.  
Previous research has linked smartphone usage to self-reported depressive symptoms (Matar 
Boumosleh & Jaalouk, 2017; Twenge, Joiner, Rogers, & Martin, 2018; Wang et al., in press).  In 
parallel, depressive symptoms have been linked to brain connectivity using resting-state 
functional connectivity (RSFC) MRI (Greicius et al., 2007).  The current manuscript has multiple 
goals. First, is to provide a proof-of-concept for linking passive mobile smartphone sensing 
technologies to brain connectivity measures that have also been linked to self-reported 
depressive symptoms across two independent cohorts. Second, is to briefly describe a variety of 
methods which could be used to combine results across these various data types on a larger scale. 
Third, is to identify preliminary links between a key behavior inferred from sensing (e.g. 
smartphone screen time) and brain connectivity metrics.  
 
Depression assessment 

Depressive disorders affect over 300 million people worldwide and have been ranked 
among the largest contributors to global disability since the early 1990s and currently rate as the 
single largest contributor to global disability (Ustün, Ayuso-Mateos, Chatterji, Mathers, & 
Murray, 2004).  Despite this, the diagnosis of depression has remained largely unchanged; 
further, a reliable means of identifying persons at risk of becoming depressed remains 
absent.  Psychology, psychiatry and neuroscience have long relied upon self-reported surveys 
and in-person interviews to measure symptoms, diagnose mental health disorders and identify 
appropriate treatment strategies (Horwitz, Wakefield, & Lorenzo-Luaces, 2016).  As a result of 
staggering costs inflicted at both individual and societal levels, clinicians and researchers set out 
to redefine the way mental disorders are conceptualized in hopes of creating innovative 
identification and prevention strategies.  The aforementioned aims have been synthesized in a 
research framework known as RDoC (Research Domain Criteria).  RDoC’s objective is to 
incorporate information across all planes of analysis ranging from cellular level data to person 
level self-report survey data to provide of a holistic picture of mental disorders (NIMH).  A core 
principle within the RDoC framework is the notion that neuroscience will inform future 
psychiatric classification schemes; in other words, aid in moving towards the establishment of a 
neural biomarker for depression.  Thus, of great importance is understanding the complete range 
of human behavior (and neurological functioning) from typical to atypical (Insel et al., 2010).  
The Patient Health Questionnaire (PHQ, with four, eight and nine question versions) is a reliable, 
short survey which has been validated in clinical settings and can be used to assess self-reported 
symptoms of depression that cause significant impairment and subjective distress (Cameron, 
Crawford, Lawton, & Reid, 2008; Kroenke et al., 2001; Kroenke et al., 2009), an approach in 
keeping within the RDoC research framework, seeking to explain individual variance in 
symptoms across domains, constructs, and units of analysis.  Future methods to accurately 
diagnose depression may hold promise with the inclusion of techniques that capitalize on the 
passive collection of behavioral data through mobile sensors (e.g. smartphones).  
 
Passive sensing 

Passive sensing using mobile smartphone technology allows for the assessment of daily 
activities by the smartphone user without continual effort on their part.  This increases the 
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frequency with which data can be collected and may reduce self-report bias, which is often a 
problem in prompted surveys (Ben-Zeev, Scherer, Wang, Xie, & Campbell, 2015; Rosenman, 
Tennekoon, & Hill, 2011).  Smartphone ownership has increased steadily over the last decade, 
with over 75% of the US population owning one (Smith, 2017). In parallel, depression rates have 
increased over the last decade (Twenge et al., 2018).  Prevalence of both smartphone ownership 
and depression rates are often reported as being higher in college-age students (Eisenberg, Hunt, 
& Speer, 2013; Nielsen.com, 2016).  Screen time, e.g. the amount of time that the screen is 
unlocked and being used is a relatively simple metric to calculate. Screen time and unlock 
duration will be used interchangeably henceforth. 
 
Resting-State Functional Connectivity 

Blood-oxygenation-level dependent (BOLD) functional magnetic resonance imaging 
(fMRI) is a non-invasive way to study activity in the human brain. Changes in BOLD signal are 
highly correlated with changes in neuronal activity in the local area, particularly local field 
potentials (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001). Resting-state functional 
connectivity (RSFC) measures the relationship between the time-courses of different regions, 
often by using the correlation of the time-series. While connectivity across the whole brain, or 
“functional connectome” is fairly similar across individuals, there are small individual 
differences in connectivity between individuals which can be reliably observed across time. 
There are a variety of factors which may potentially influence RSFC, including genetics, 
experiences across the lifetime and current physiological and emotional state (Birn et al., 2013; 
Patriat et al., 2013; Poldrack et al., 2015; Richiardi et al., 2015; Shehzad et al., 2009; Sinclair et 
al., 2015; Zuo et al., 2014).  

 
Depression and neuroimaging 

RSFC has been used successfully to distinguish between healthy controls and depressed 
individuals, even going so far as to distinguish between subtypes of depressed individuals 
(Berman et al., 2013; Drysdale et al., 2016; Greicius et al., 2007; Kaiser, Andrews-Hanna, 
Wager, & Pizzagalli, 2015). Task-based studies of self-referential processing have revealed that 
the sgCC is preferentially involved in processing valenced self-referential information (Moran, 
Macrae, Heatherton, Wyland, & Kelley, 2006; Somerville, Heatherton, & Kelley, 2006). 
Additionally, this region has been associated with antidepressant treatment response, and an area 
proximal to this has been used as a site of deep-brain stimulation for treatment-resistant 
depression (Holtzheimer, 2012; Mayberg et al., 2005).  
 
Combing RSFC and mobile smartphone passive-sensing technology 

There are a wide-variety of approaches that can be taken when combining high-
dimensional data from multiple modalities. We wanted to answer the following question: do 
smartphone sensing features previously identified as being related to a depression show 
correlations with resting-state functional connectivity from a region previously identified to have 
aberrant connectivity in depressed individuals? In the current proof-of-concept study we decided 
to take a targeted approach, selecting screen time with mobile smartphone (e.g. unlock duration), 
a feature previously shown to be linked to depressive symptoms (Twenge et al., 2018; Wang et 
al., in press.) and a brain area, the subgenual cingulate cortex (sgCC) which has previously been 
identified as having aberrant RSFC in depressed individuals, and more recently has been used as 
a target for deep brain stimulation for treatment resistant depression (Greicius et al., 2007; 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/276568doi: bioRxiv preprint 

https://doi.org/10.1101/276568


 
Huckins et al. Page 5 

Holtzheimer, 2012; Mayberg et al., 2005).  Furthermore, if there are regions identified in the 
passive-sensing unlock duration analysis and RSFC analysis, do these regions also show similar 
connectivity patterns when looking at the same correlations with brief surveys of self-reported 
depressive symptoms (PHQ4/8)?  We expect that they would.  Alternatively, depression may be 
a summation of a variety of factors and may be better understood by interrogating passive-
sensing mobile technology and neuroimaging than self-reported scales.  Keeping within the 
RDoC matrix, we assess a variety of units of analysis including brain connectivity with fMRI 
(physiological), passive-sensing of phone usage (behaviors) and both computer-based and 
phone-based depression scales (self-report).  
 
Methods: 
Study design 

In the current study two separate cohorts of first-year undergraduate students were 
enrolled and analyzed separately for test-retest comparison. Individuals were enrolled in three 
study components: neuroimaging, smartphone sensing/EMA and online surveys. Two modified 
versions of the PHQ-9 were used: PHQ-8 and PHQ-4. PHQ-8 is the same as PHQ-9 with the 
question about suicidal ideation removed.  This question was removed because the surveys are 
not monitored in real-time.  PHQ-4 is a four question survey which includes two questions from 
the PHQ-8 and two from the GAD-7 as to assess both depressive and anxiety related symptoms 
(Kurt Kroenke, Spitzer, Williams, & Löwe, 2009).  They are used because of their brief form. 
They may miss some of the nuances that the other inventories pick up on but have been found to 
have high internal reliability (Cronbach’s Alpha > 0.8) and are correlated with diagnoses of 
clinically relevant depression (Cameron et al., 2008; Khubchandani, Brey, Kotecki, Kleinfelder, 
& Anderson, 2016). 

Individuals completed an online survey to assess study eligibility (safe for MRI per 
Dartmouth Brain Imaging Center guidelines, no contraindications that would lead to signal loss, 
and owned an Android or iOS smartphone). If an individual was eligible and interested in 
participating in the study, she or he completed a battery of online surveys, including the PHQ-8 
through REDCap (Harris et al., 2009). Individuals were then scanned during the academic term 
and had the StudentLife application (Wang et al., 2014) installed on their phone at or near the 
time of scanning. In Cohort 1, StudentLife data was collected from the time of scanning until the 
end of the term. In Cohort 2, StudentLife data was collected from the time of scanning and data 
collection is currently ongoing but the data presented here only continued until the end of the 
first term.  
 
StudentLife 

A smartphone application, StudentLife is used in the current study to collect a variety of 
data about smartphone usage and mood from participants. The application is installed on a 
participant’s phone (iOS or Android) and collects data from the GPS, microphone, accelerometer 
and lock/unlock status. Data from these sensors are processed create variables that assesses the 
day-to-day and week-by-week impact of workload on stress, sleep, activity, mood, sociability, 
mental well-being and academic performance of students (Wang et al., 2014). The workflow of 
the current study includes data collected through StudentLife, MRI scanning sessions and self-
reported surveys (Figure 1). 
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Figure 1. Summary graphic of the study workflow in the current study, showing raw data 
collection from both smartphones (StudentLife, passive sensing) and MRI (resting-state 
functional connectivity, sgCC seed-based analysis). Calculated features were selected based on 
previous research. Survey data was collected both online (REDCap, PHQ-8) and smartphone 
(StudentLife, Ecological Momentary Assessments, PHQ-4) sources. 
 
Ecological Momentary Assessments   

Students were prompted once a week within the StudentLife application during the term 
to complete a few short surveys as Ecological Momentary Assessments (EMA, one of which was 
PHQ-4 (Shiffman, Stone, & Hufford, 2008). In the current study we are focusing on PHQ-4, a 
modified, shorter version of the PHQ-8 which in four questions provides a glimpse of depressive 
and anxious symptoms (two questions related to each).  
 
Subjects 

Subjects were first-year undergraduate students recruited from the Dartmouth College 
community. Cohort 1 included 151 subjects (94 female, mean age = 19.59, std = 1.69, range = 
18-28) which were all scanned during the first term of their first year at Dartmouth.  Cohort 2 
included 106 subjects (75 female, mean age = 18.25, std = 0.63, range = 18-22) which were all 
scanned during the first term of their first year at Dartmouth. One subject was removed from the 
study for having an incompatible phone and one MRI session was stopped due to not reporting a 
permanent top retainer.  

See Table 1 for a summary of the number of individuals included in each analysis, 
grouped by Cohort. Subjects were only included in each analysis if they met the minimum 
number of time-points for smartphone-based StudentLife data and each analysis and had resting-
state functional connectivity that passed quality control (see RSFC analysis methods section 
below for further details). Subjects had normal or corrected-to-normal visual acuity.  Each 
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subject provided informed consent in accordance with the guidelines set by the Committee for 
the Protection of Human Subjects at Dartmouth College and received either course credit or 
monetary compensation for participating in the study. 

 
Table 1. Summary of the number of subjects in each analysis.  
 
 Cohort 1 Cohort 2 

Total Scanned 151 106 

RSFC Data (Passed QC) 145 93 

PHQ-8 65 89 

PHQ-4 (1-Day) 84 89 

Unlock Duration (20-Days) 77 77 
 
RSFC data collection 
  
Apparatus 

Cohort 1 imaging was performed on a Philips Intera Achieva 3-Tesla scanner (Philips 
Medical Systems, Bothell, WA). Cohort 2 imaging was performed on a Siemens MAGNETOM 
Prisma 3-Tesla scanner (Siemens Medical Solutions, Malvern, PA). Data for both cohorts was 
collected using a 32-channel phased array head coil.  During scanning, participants viewed a 
white fixation cross on a black background projected on a screen positioned at the head end of 
the scanner bore, which participants viewed through a mirror mounted on top of the head coil.  
 
Cohort 1 imaging 

Anatomic images were acquired using a high-resolution 3-D magnetization-prepared 
rapid gradient echo sequence (MP-RAGE; 160 sagittal slices; TE, 4.6 ms; TR, 9.9 ms; flip angle, 
8°; voxel size, 1 x 1 x 1 mm).  Resting-state functional images were collected using T2*-
weighted fast field echo, echo planar functional imaging sensitive to BOLD contrast (TR= 2500 
ms; TE= 35 ms; flip angle= 90°; 3 x 3 mm in-plane resolution; sense factor of 2).  Functional 
scanning was performed in one or two runs; during each run, 240 brain volumes (36 slices, 3.5 
mm slice thickness, 0.5 mm skip between slices) were acquired, allowing complete brain 
coverage.  As such, each participant completed between 10 and 20 minutes of RSFC scanning. 
 
Cohort 2 imaging 

Anatomic images were acquired using a high-resolution 3-D magnetization-prepared 
rapid gradient echo sequence (MP-RAGE; 192 sagittal slices; TE, 2.32 ms; TR, 2300 ms; flip 
angle, 8°; voxel size, 1 x 1 x 1 mm) with a Grappa 2 acceleration factor.  Resting-state functional 
images were collected using T2*-weighted fast field echo, echo planar functional imaging 
sensitive to BOLD contrast (TR= 1190 ms; TE= 32 ms; flip angle= 63°; 2.4 x 2.4 mm in-plane 
resolution; SMS factor of 4).  Functional scanning was performed in one or two runs; during 
each run, 605 volumes (46 slices, 3 mm slice thickness, no skip between slices) were acquired, 
allowing complete brain coverage.  As such, each participant completed 12 and 24 minutes of 
RSFC scanning.  Data for cohort 2 was processed and organized into BIDS format with datalad 
(Gorgolewski et al., 2016; Halchenko et al., 2017). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/276568doi: bioRxiv preprint 

https://doi.org/10.1101/276568


 
Huckins et al. Page 8 

 
RSFC analyses 

All processing was performed using a standard previously published processing stream 
(Power et al., 2014) with two exceptions: frame-displacement (FD) threshold was set to 0.25mm 
(instead of 0.2mm) and 36 motion parameters (instead of 24) were used for motion regression.  
Functional images were preprocessed to reduce artifacts, including: (i) slice-timing correction, 
(ii) rigid body realignment to correct for head movement within and across runs, (iii) within-run 
intensity normalization such that the intensity of all voxels and volumes achieved a mode value 
of 1000 scale with 10 units equal to ~1% signal change, (iv) transformation to a standardized 
atlas space  (3 mm isotropic voxels) based on (Talairach & Tournoux, 1988), (v) frame 
censoring, (vi) nuisance regression (excluding censored frames), (vii) interpolation, and (viii) 
bandpass filtering (0.009 < f < 0.08Hz) following Power et al. (2014).  Final correlation 
calculations between time-courses were calculated based upon uncensored frames. 
 
Neurosynth analysis and subgenual cingulate cortex seedmaps 

To identify an unbiased subgenual cingulate cortex (sgCC) seed to create voxelwise 
functional seed maps, an automated meta-analysis was performed using Neurosynth for the term 
“subgenual” (Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011). Subgenual cingulate 
cortex seed maps were created from a seed placed at 0, 25, -10 (MNI coordinates), which was the 
peak of the term “subgenual” as of February 17th, 2017 and are centered around BA 25. The 
mean time-course from this seed was correlated with the time-course from every voxel within the 
brain. These seed maps, i.e. maps of resting-state connectivity from the subgenual region, were 
produced for each individual that passed quality control (more than 5 minutes of uncensored 
frames, see above for more details).  
 
Combining data 

Since the version of the StudentLife application used in the current study generates 182 
features automatically, and with RSFC it is possible to generate thousands of features, it is 
necessary to minimize the number of features compared given the relatively small size of the 
Cohorts (N<100). To minimize the number of features inspected, unlock duration was the only 
feature inspected given its simplicity to calculate and previously-identified relationship with 
PHQ-8 (Wang et al., in press). While many features were identified, we specifically chose 
unlock duration (e.g. screen time) as a simple feature both to calculate and to conceptualize as it 
can be considered similar to total phone screen time.  

For all surveys analyzed here, one time-point was sufficient for a subject to be included 
in the current analyses. If there were multiple responses to ecological momentary assessments 
(EMAs, e.g. surveys prompted by the application) over the course of the term those responses 
were averaged. Individuals were included in the unlock duration analysis if they had 20 days of 
quality data with more than 16 hours of quality unlock duration data for each day included. 
 
Group analyses and statistics 

SgCC seedmaps from Cohort 1 were correlated with unlock duration sampled from 
smartphone usage with the StudentLife application.  For each analysis, the degrees of freedom 
was N-2, with N being listed in Table 1. Results from the unlock duration and sgCC correlational 
analysis from Cohort 1 were volume corrected to account for multiple comparisons using 
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AFNI’s 3dClustSim ACF function. Results from the sgCC/unlock duration analysis were used to 
restrict the regions investigated in further analyses.  
 
Visualization 

All results were transformed into MNI space (Montreal Neurological Institute) and 
mapped onto the Conte69 template for volume-based slices or inflated surfaces for visualization 
(Van Essen, Glasser, Dierker, Harwell, & Coalson, 2012). Group results were viewed in 
Connectome Workbench Version 1.1.1 (Marcus, Fotenos, Csernansky, Morris, & Buckner, 
2010).  
 
Results 
Unlock duration correlated with sgCC connectivity 

In Cohort 1 exploratory whole-brain analyses of the correlation between unlock duration 
and sgCC seedmaps identified a large cluster (1620 voxels, 43,740mm3) in the ventromedial 
prefrontal cortex with a positive linear relationship (Figure 2, S1). This cluster extended from the 
anterior caudate to medial frontal orbitofrontal cortex and dorsally to medial prefrontal cortex. 
Information about peaks within this cluster can be observed in Table 2. To determine if these 
results replicated in Cohort 2, the cluster identified in Cohort 1 was used as a mask and voxels 
which showed a significant positive relationship between unlock duration and sgCC connectivity 
in Cohort two were identified.  This identified a small cluster at -9, 30, -15 (peak T = 2.67, voxel 
extent = 13) and another small cluster at 12, 63, 12 (peak T = 1.98, voxel extent = 5) (Figure S2).  

 
p<0.05     p<0.001 

 
Figure 2. Exploratory analysis correlation sgCC RSFC seedmaps correlated with mean unlock 
duration identified a cluster with a positive relationship to unlock duration in the ventromedial 
prefrontal cortex (p<0.05, volume corrected using ACF to 0.01, k>489) shown on inflated lateral 
(top left), medial (middle left) and ventral (right) cortical surfaces. The sgCC seed is represented 
as a black sphere. 
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Table 2. Exploratory analysis correlation sgCC RSFC seedmaps correlated with mean unlock 
duration (smartphone screen time) identified 1 cluster in the ventromedial prefrontal cortex 
(p<0.05, volume corrected using AFNI’s ACF to p<0.01, k>489, 1620 voxels total). Peaks 
identified from xjview 9.6, showing 3 maximia per cluster, at least 8mm apart. 
 

Best Estimate of Region X Y Z T 

Caudate -15 21 -9 4.29 

Caudate 12 21 -9 3.64 

Anterior sgCC 6 33 -12 3.34 
 
 
Self-reported depression symptoms correlated with sgCC connectivity 

Previous research (Wang and colleagues, 2018) identified a relationship between 
depressive symptoms and unlock duration. To determine if depressive symptoms and unlock 
duration had overlap in the brain connectivity (seed based subgenual RSFC) regressions for both 
computer-based pre-screening (PHQ-8), phone based post-scanning (PHQ-4 as EMA) were 
performed. Results from both of these analyses were masked with the cluster identified in Cohort 
1’s sgCC/unlock duration analysis. PHQ-8 computer-based surveys correlated with sgCC 
connectivity maps identified clusters in both Cohorts and identified a cluster which overlapped 
between the two.  Cohort 1 revealed three significant clusters, which were located in bilateral 
OFC with peaks located at -21, 42, -12 (peak T = 3.19, voxel extent = 130), 24, 51, -9 (peak T = 
2.55, voxel extent = 21), and -21, 21, -21 (peak T = 2.75, voxel extent = 8) (Figure 3, Table 3).   
Cohort 2 revealed two significant cluster, which were located in left OFC and medial rectus at -
15, 36, -9 (peak T = 3.35, voxel extent = 24) and 0, 54, -21 (peak T = 2.62, voxel extent 26) 
respectively.  Overlap between significant clusters of the two Cohorts identified an 11-voxel 
cluster with located in left OFC, with a peak at -21, 39, -9 in Cohort 1 (peak T = 2.6) and -15, 33, 
-12 in Cohort 2 (peak T = 2.98). The peak of overlap from Cohort 1 is significant in the unlock 
duration analysis at p<0.01 (T = 2.61) and significant at the Cohort 2 peak at p<0.005 (T = 2.7) 
In addition to identifying a cluster with overlap between the two Cohorts for PHQ-8, visual 
inspection suggests proximal cortical regions beyond the area with overlap at a threshold of 
p<0.05 and increased overlap, including right OFC at a more liberal threshold of p<0.1. 
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A)          B) 

 

  
p<0.05     p<0.001 

 
C)  

 
 
Figure 3. PHQ-8 regression for sgCC connectivity seedmaps for A) Cohort 1, B) Cohort 2 (MNI 
Z of -3 to -27 in steps of 3 and C) overlap between Cohorts (MNI Z of -9 and -12), all masked by 
the results from Cohort 1 phone usage (unlock duration). 
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Table 3. Results for the correlation of sgCC RSFC seedmaps, correlated with PHQ-8, masked by 
phone screentime results (Top and Middle). Overlap between Cohort 1 and Cohort two for sgCC 
RSFC seedmaps correlated with PHQ-8 (Bottom).  
 
Cohort 1      

Best Estimate of Region X Y Z T Extent 

Left OFC -21 42 -12 3.19 130 

 -21 51 -15 3.12 Subpeak 

 -6 48 -21 3.04 Subpeak 

Left OFC -21 21 -21 2.75 8 

Right OFC 24 51 -9 2.55 21 

 18 42 -9 2.52 Subpeak 

Cohort 2      

Best Estimate of Region X Y Z T Extent 

Left OFC -15 36 -9 3.35 24 

Medial Rectus 0 54 -21 2.62 26 

Cohort Overlap      

Cohort X Y Z T Extent 

1 -15 33 -12 2.6018 11 

2 -21 39 -9 2.98 11 
 

PHQ-4 EMAs correlated with sgCC connectivity maps identified peaks in Cohort 1 and 
2, but there was no overlap in the clusters between the Cohorts (Table S1). In Cohort 1 there 
were 2 significant clusters identified, with peaks at -21, 72, -3 (peak T = 2.99, voxel extent = 7) 
and 9, 57, 3 (peak T = 2.31, voxel extent = 7). In Cohort 2 there were 4 significant clusters 
identified, with peaks at -15, 30 -12 (peak T = 3.71, voxel extent = 139), 9, 57, -24 (peak T = 
2.38, voxel extent = 7), 18, 33, -24 (peak T = 2.11, voxel extent = 5), and 24, 39, -15 (peak T = 
1.87, voxel extent = 13).  
 
Discussion 

In the current manuscript, we provide proof-of-concept linking passive smartphone 
metrics, active smartphone-based surveys of mental health and computer-based surveys of 
mental health with brain connectivity measures. Specifically, RSFC between the subgenual 
cingulate cortex, a region previously implicated in depression, and nearby ventral prefrontal 
regions, was strongly related to unlock duration, such that more connectivity was associated with 
more screen time, which has been implicated as being related to self-reported depressive 
symptoms. The link between RSFC and individual differences has long been established but 
extending that and combining it with an individual’s behavior inferred from smartphone sensors 
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provides exciting new directions. While the results presented here are a relatively simple analysis 
of complex, highly dimensional data, we discuss some methods which could be used to combine 
these highly multivariate and complex datasets in exciting ways.  

Phone-related screen time, which we estimate here by using unlock duration, has 
previously been shown to be related to self-reported depression levels (Twenge et al., 2018; 
Wang et al., in press).  An exploratory analysis in Cohort 1 of the correlation between unlock 
duration and sgCC seedmaps identified a large cluster which extended from the anterior caudate 
to medial frontal orbitofrontal cortex and dorsally to medial prefrontal cortex, a result which was 
partially replicated in Cohort 2 event though the sampling rate for screen time was greatly 
reduced. Next, to determine if depressive symptoms showed a similar pattern of connectivity 
between sgCC and ventral prefrontal cortex the cluster from Cohort 1’s unlock duration analysis 
was used as a mask with PHQ-8, a commonly used survey to assess depressive symptoms in the 
general population. Two small clusters of overlap were identified in the left OFC, one of them 
neighboring voxels that were identified to replicate in the unlock duration analysis between the 
Cohorts. While these clusters are not large and would not necessarily survive volume correction 
on their own, observing similar regions across Cohorts and analyses suggests that there is a link 
between depressive symptoms and related behaviors and sgCC-OFC connectivity, particularly 
left OFC that should be further investigated. The PHQ-4, which contains 2 depression questions 
and 2 anxiety questions, did not show the same robust relationship across both Cohorts, with no 
voxels overlapping, although Cohort 2 identified a cluster in the left OFC which overlapped with 
results observed with PHQ-8 in both Cohorts. Connectivity between the sgCC seed (BA 25), 
located at 0, 25, -10 and the left OFC region around -15, 33, -12 shows a consistent relationship 
between self-reported depressive symptoms and screen time, which has previously been 
associated with depression. Increased connectivity between sgCC, a region involved in 
processing of valenced information about the self (Moran et al., 2004) and OFC, which is 
involved in valuation and reward processing has been linked increased depressive symptoms and 
screen time across both Cohorts. It seems quite plausible that regions involved in valence 
processing related to the concept of self and a more general reward valuation processing region 
would have increased connectivity in individuals with higher depressive symptoms. 

As a proof-of-concept, we have shown that resting-state functional connectivity of the 
brain, as measured with MRI, in two separate Cohorts of individuals, with two separate MRI’s 
and two separate versions of the StudentLife applications show similarity in the results observed. 
The cluster identified with the unlock duration analysis covered an extent similar to that of the 
limbic network previously identified (Choi, Yeo, & Buckner, 2012; Yeo et al., 2011). Due to the 
constraints we imposed on the analysis, all of the subsequent results were within this area, but 
noticeably, many of the results were proximal to the left OFC, which is also a member of a set of 
nodes which are commonly activated during reward processing and can form their own system 
(Huckins et al., submitted) and is identified as a peak in reverse-inference meta-analyses of 
reward using Neurosynth (Yarkoni et al., 2011). 
 
Limitations and Future Directions: 

The current study is presented as a proof-of-concept and has several limitations and ways 
in which future research may provide a more comprehensive survey of the relationships between 
the diverse set of features provided from passive smartphone sensing, functional brain 
connectivity measures and self-reported measures of depression or other mental health metrics. 
The moderate sample size precludes the use of some machine learning methods. Furthermore, 
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the relatively small number of clinically depressed individual in the current sample weighs the 
results heavily on the RSFC and passive-sensing features from those individuals. Test-retest 
within the moderately sized samples allows for identification of factors with reliable cross-cohort 
replicability in RSFC both and passive-sensing features. Ideally similar sensing features could be 
collected across many sites, allow for identification and characterization of depressive subtypes 
that span across passive-sensing and RSFC as has been done by Drysdale and colleagues (2016) 
with RSFC and survey data. In the current study, particularly Cohort 2 in which data quality was 
actively monitored, we maintained a relatively large majority of individuals from those scanned 
(see Table 1). The sample sizes used here would have been considered relatively large several 
years ago. Increased sample sizes in the current study would help future analyses given the large 
number of features from both passive mobile smartphone sensing and RSFC. An outstanding 
question is if long-term changes in depressive symptoms can be better predicted by RSFC or 
smartphone sensing metrics at the initiation of the study or if changes in either of these over time 
parallel depressive symptoms. Ideally to assess this a large number of individuals would be 
tracked over multiple years. In the second Cohort our working group aims to track them over 
multiple years while eventually increasing the number of individuals enrolled. Furthermore, 
including multiple sites, as the ABCD study (Volkow et al., 2017) does, would increase 
applicability to a wider population. Multiple research sites are currently collecting MRI data, 
self-reported surveys and smartphone sensing metrics.  As unresolved issue is what, exactly is 
the optimal approach to analyze the huge amounts of multivariate data produced by these 
methods. 
 
Application changes Between cohorts 

In the current study, unlock duration data collection changed between the cohorts. In 
Cohort 1, unlock duration was sampled for 1 minute out of every 4 minutes, while in Cohort 2 
unlock duration was sampled for 1 minute every 10 minutes. This change was instituted to 
optimize battery life, a primary limitation to users keeping the StudentLife app on their phone. 
By decreasing the ratio of time sampled from 0.25 to 0.1, our ability to accurately estimate 
unlock duration decreases. As with all passive and active smartphone features, the ability to 
collect data must be weighed against the invasiveness to the user experience, either through app 
prompts or decreased battery life and phone speed.  
 
Temporal factors related to school 

The demands of the academic term provide a generally applicable path of stress which is 
shaped over the term. Avoiding, or potentially purposefully collecting MRI data during finals, 
which may be particularly stressful, or during popular social weekends may lead to changes in 
stress levels, sleep patterns and other variables which could alter connectivity patterns and self-
reported behavioral data that would have otherwise been observed. In the study herein, we 
attempted to scan before finals and avoid well-known “party weekends”. Future studies may be 
able to capitalize on temporal differences in stress and depression levels by scanning at these 
peak times of stress or sleep deprivation and comparing that data to less stressful times, such as 
the beginning of the term. 
 
Voxelwise Resting-State Functional Connectivity 

A relatively simple first-pass method is to target specific region and feature pairs. If there 
are a priori hypotheses related to the topic of interest it may be possible to look at connectivity 
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from one region using seed maps or between a small number of regions and relate them to 
specific passive-sensing features.  As shown here this is plausible but even correlating seed maps 
with 1 sensing variable leads to potential multiple comparisons issues based on the 50,000+ 
voxels in the brain using a 3mm3 voxel size.  Recent statistical simulations have suggested an 
increased false-positive rate associated with older versions of 3dClustSim, a function of AFNI 
(Cox, Chen, Glen, Reynolds, & Taylor, 2017).  Indeed, the authors of 3dClustSim now suggest 
using a different algorithm with the same program, the autocorrelation function (ACF) with a 
high p-value threshold per voxel to minimize the possibility of false-positives. In some datasets, 
at lower p-value thresholds ACF requires a much larger voxel-extent than the old version of 
3dClustSim.  The increased voxel-extent may make it difficult to identify smaller functional 
regions in a whole-brain regression using a lower per-voxel p-value threshold (p<0.05).  This 
shift in accepted methods decreases the rate of the false-positives but requires a larger expected 
functional region, a very strong effect size or a very large number of participants.  Across all 
possible methods presented here there are a variety of factors which should be taken into 
consideration to decrease false positive rates.  Having a large number of subjects to draw data 
will increase the portion of the population sampled.  

If possible having two distinct Cohorts to analyze then looking for overlap in results 
between the Cohorts would decrease false positives due to random sampling, Cohort specific 
variance, and further increase the total size of individuals sampled.  The above factors apply to 
most any study.  With passive smartphone mobile sensing there are many features which can be 
measured or computed based on the intersection of multiple features.  For example, “phone 
unlock duration” is a very simple metric, which measure the time that the smartphone was 
unlocked. This can be further broken down into location specific features, such as “phone unlock 
duration at dorm” or “phone unlock duration at study places” by looking at the intersection of 
location on a geo-tagged campus and “phone unlock duration.  Given the large number of initial 
features that can be calculated, along with the nearly endless number of meta-features that can be 
generated, making sure that the feature is relatively simple to calculate and interpret should be at 
the forefront of anyone analyzing passive-mobile phone sensing features.  Furthermore, such 
features should be validated to make sure they are actually measuring the effect or phenomena 
they are supposed to.  

Typically, only features with sensing data from many days should be used to get a more 
stable estimate of that features’ value.  While putting a sensing application of many students’ 
phones may seem like a plausible method for maximizing data collect, there are a variety of 
factors which can lead to reduced data collect, potentially rendering an individual’s sensing data 
unusable.  Phone operating system (OS) updates can often change application permission or 
render the sensing application completely useless.  To avoid this beta testing should be done as 
early as possible and new versions of the application that are compatible with the latest OS 
pushed to participants.  Participant non-compliance or attrition is another important factor to 
consider. Individuals may delete the application, limit its permissions within the OS or otherwise 
limit the researcher's’ ability to accurately measure data.  Clearly, it is the individual's choice to 
continue to participate in any study, particularly one where large amounts of data are being 
collected (anonymously) on their habits.  It may be difficult for the researcher to determine if the 
individual has deleted the application or simply not uploaded their data in while.  Finally, a rate 
of attrition is expected in all longitudinal studies and some individuals may simply decide that 
they do not wish to continue their participation in the study.  
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Whole-brain and network-based connectivity 
A possible method to deal with the large number of comparisons related to voxelwise or 

whole-brain connectivity is to simply look at connectivity between a set of predefined regions or 
parcellation (Huckins et al., submitted) (Gordon et al., 2016; Poldrack et al., 2015; Power et al., 
2011; Yeo et al., 2011). Connectivity between each pair of regions can be correlated with the 
sensing feature of interest.  Unfortunately, many of the commonly used parcellations have many 
nodes, which increases the total number of comparisons in a nonlinear manner as the number of 
nodes increases.  The number of comparisons can soon approach the number of comparisons 
evident when using voxelwise seed maps without methods such as voxel extent to appropriately 
correct for the associated multiple comparisons. 

A simple but perhaps relatively unsophisticated sophisticated method is to calculate mean 
connectivity within a functional system or network.  The system or network would be 
determined off of data driven approach such community detection using a random walk 
technique like InfoMap (Rosvall & Bergstrom, 2008) or regions identified as being part of a 
coherent functional system using another method.  In this approach, the mean of all Fisher r-to-z 
transformed correlation values between nodes of interest is calculated.  For example, mean 
connectivity within the Cingulo-Opercular network would be calculated between all nodes or 
parcels belonging to that network.  Between-network or system connectivity can also be 
calculated by taking the mean of all pairwise connections between the two networks of interest.  
This can greatly reduce the number of total connections observed, thus reducing the multiple 
comparisons problem mentioned under the whole-brain connectivity section.  One drawback to 
this method is that it is not selective about which connections it is using in the calculation - 
specifically, that it may be and probably is including connections that are not physiologically or 
psychologically relevant.  

A plausible may to reduce the number of connections by selections ones that are likely to 
be “real”, such that information may actually travel through that connection on the neural level, 
even if not on a first-order or even second-order synapse. Multiple approaches have been taken 
to identify meaningful connections. Within or between networks there are likely to be positive 
and negative correlations, which then somewhat cancel out. One could take the absolute value of 
each connection before averaging across the network, but this would introduce bias in any 
connections with a distribution of correlation values that included positive and negative values. 
Values of correlation, or connectivity measures in the brain vary by orders of magnitude. 
Identifying a multiscale network backbone that accounts for important connections within and 
between communities, regardless of the connectivity strength would be a method to decrease the 
number of connections analyzed. One way of identifying the network backbone is to use the z-
value from each connection as the weight, or amount of information that could travel between 
the two brain regions that the connectivity was estimated from. A group did just this (Serrano, 
Boguñá, & Vespignani, 2009), identifying connections which are statistically relevant across 
multiple scales of connectivity, work which has been extended non-parametrically (Foti, Hughes, 
& Rockmore, 2011). By identifying the network backbone for each individual, it may be 
plausible to identify a variety of subcategories or continuums of depression along which different 
symptom severities fall for each individual, along with passive smartphone monitoring will allow 
for greater insight into interactions of behavioral, self-report and physiological RDoC matrix 
criteria. 
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Data reduction techniques 
A variety of techniques can be used to extract information from data that are both 

longitudinal and high-dimensional; that is, situations where the data are collected from 
participants at multiple time points and the number of covariates begins to approach, or even 
surpasses the number of subjects in the dataset (Cheng, Honda, Li, & Peng, 2014; Chu, Li, & 
Reimherr, 2016; L. Wang, Zhou, & Qu, 2012; Zipunnikov et al., 2014). 

As has been mentioned repeatedly above, both with resting-state and passive smartphone 
sensing there are a large quantity of features and analyses that can be generated. In the current 
study we chose features that were reasonable based on previous data but are unlikely to be the 
optimal features that describe the relationship between depression, passive mobile sensing and 
brain connectivity. Multiple approaches could be taken with data from both sources. One 
approach which would greatly decrease the number of features that were necessary including 
trying to create a singular propensity metric, or biomarker of depression for both the resting-state 
fMRI data and a separate one for the sensing data then observing the relationship between the 
two. Alternatively, data reduction techniques such as independent component analysis could be 
applied to each group then the relationship between them could be measured. Many researchers 
have taken a “risk” or “propensity” score approach, where they generate models which contain 
predictive variables (gender, substance use, family history) pertinent to the outcome of interest 
and use the propensity score as a regressor when doing analyses at the group or individual 
difference level (Hansen et al., 2012; Stuart, 2010). This could be applied to smartphone data, 
but only once appropriate sensor features, and model have been calculated. By creating a unitary 
risk feature multiple comparison issues can be greatly mitigated. Data reduction techniques that 
account for variance that is common between two data modalities such as joint ICA, parallel ICA 
and CCA-Joint ICA, which has been implemented for combining high-dimension data across 
fMRI and genetic data (FusionICA, available from http://mialab.mrn.org/software/fit/).  
 
Unresolved Questions about Directionality and Timing 

In the current sample, resting-state fMRI data is from 1 time-point while mobile 
smartphone sensing data is dynamic and collects data over a longer period of time. An 
unresolved question is if changes in fMRI data across multiple sessions reflects or predicts 
changes in smartphone usage. Likely a more sensitive measure would be to do the reverse - using 
changes in smartphone usage, which is continuously monitored, to predict when there may be 
changes in brain connectivity as measured by fMRI. Changes in depressive symptoms have been 
successfully predicted with passive smartphone features (Wang et al., in press), and may be 
useful for signaling when an individual should be referred to clinical services or brought in for a 
subsequent fMRI session.  
 
Moderating Factors of RSFC 

RSFC has repeatedly been shown to be relatively stable across individuals and time, 
displaying similar network structure across thousands of individuals. While similar network 
structure and connectivity patterns are observed between sites, preprocessing methods, and 
Cohorts, differences between individuals are observed across individual differences in 
personality, affect and current mood have been related to alterations in RSFC. Furthermore, 
individual differences in the network structure on an individual level have been observed. 
Properly mapping individual differences in networks across the cortex would allow for better 
cross-subject alignment. The network assignment of particular regions may in itself be linked to 
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depressive symptoms, while lining up networks would allow for the proper comparison of 
networks across individuals. Additionally, the current state physiological state an individual is in, 
such as food satiety or caffeination status can influence their mood (Rogers & Lloyd, 1994) and 
has also been shown to influence an individual’s brain connectivity (Poldrack et al., 2015). 
While there are a variety of factors that can influence RSFC, reliable individual differences 
across brain disorders have been observed in previous studies and here. As the predictive 
accuracy of RSFC or other neuroimaging methods increases the field may move closer to using 
MRI as a biomarker of depression, as has been done with physical pain (Atlas, Bolger, Lindquist, 
& Wager, 2010; Wager et al., 2013).  
 
Conclusions: 

In summary, we have identified proof-of-concept relationships between resting-state 
functional connectivity of the brain, web-based self-reported surveys of depressive symptoms 
(PHQ-8), a passive mobile smartphone sensing feature (unlock duration) and mobile smartphone 
based ecological momentary assessments of depressive symptoms (PHQ-4). An important 
mental health implication is that the amount of time spent using a phone is correlated with 
depressive symptoms. Further, these symptoms, both before time-of-scanning and after time-of-
scanning, show a relationship with connectivity between areas implicated in depression, reward 
and processing of valenced self-relevant material. These results predominantly replicate across 
two separate cohorts, increasing the applicability and scope of the findings herein. Although the 
current results do not elucidate causality in the relationship between screen-time, depression and 
brain connectivity, future work should aim to do so, especially given recent changes to public 
policy, with professional groups such as the American Academy of Pediatrics providing 
suggesting screen-time limits and policy and investor groups calling on media device makes such 
as Apple and other phone makers. In the current work we replicate previous research, replicate 
results across multiple MRI’s and cohorts all while combining data from a while variety of 
sources. The analyses done here are by no-means comprehensive and we hope that the findings 
of this study and future research methods proposed herein are useful to a wide-range of 
researchers. Ultimately continuation and extensions of this research has the potential to provide 
important insights into mental health, as well as inform psychological treatments and other 
interventions. 
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Supplemental Material 
 

 

  
p<0.05     p<0.001 

 
 
Figure  S1. Exploratory analysis correlating sgCC RSFC seedmaps correlated with mean unlock 
duration identified a cluster with a positive relationship to unlock duration in the ventromedial 
prefrontal cortex (p<0.05, volume corrected using ACF to 0.01, k>489) shown on axial slices. 
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Figure S2. Replication of the relationship between unlock duration and sgCC connectivity 
between Cohorts 1 and 2.  The large cluster identified in Cohort 1 to have a positive relationship 
with unlock duration was used to restrict the area interrogated in Cohort 2, showing positive 
clusters in sgCC/vmPFC (saggital view, X = -10) and MPFC (axial view, Z = 12). Replication 
clusters were observed at p<0.05, with 5 or more contiguous voxels. 
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A)                                                                  

 
B) 
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Figure S3. PHQ-4 regression for sgCC connectivity seedmaps for A) Cohort 1, B) Cohort 2 
masked by the results from unlock duration in Cohort 1. No common regions were found 

between the two analyses. 
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Table S1. Exploratory analysis identifying peaks with a positive relationship from sgCC RSFC 
seedmaps correlated with phone-based surveys of depressive symptoms (EMA form of PHQ-4). 
Only clusters showing overlap with the Cohort 1 unlock duration analysis, with a positive 
relationship between PHQ-4 and connectivity with greater than 5 contiguous voxels are reported 
here. 
 
Cohort 1           

Best Estimate of Region X Y Z T Extent 

 Superior Frontal Gyrus -21 72 -3 2.99 7 

 Medial PFC 9 57 3 2.31 7 

Cohort 2           

Best Estimate of Region X Y Z T Extent 

 Ventromedial PFC -15 30 -12 3.71 139 
  -9 51 -18 2.87 Subpeak 
  3 48 -21 2.49 Subpeak 

 Anterior Medial OFC 9 57 -24 2.38 7 

 Right OFC 18 33 -24 2.11 5 

 Right OFC 24 39 -15 1.87 13 
  15 51 -15 1.72 Subpeak 

No Cohort Overlap Observed           
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