
 1 

Title  1 

Ecological selection for small microbial genomes along a temperate-to-thermal soil gradient 2 

 3 

Authors  4 

Jackson W. Sorensen1, Taylor K. Dunivin1, 2, Tammy C. Tobin3, and Ashley Shade1,4* 5 

1. Department of Microbiology and Molecular Genetics, Michigan State University, East 6 

Lansing MI 48840 USA 7 

2. Environmental and Integrative Toxicological Sciences, Michigan State University, East 8 

Lansing MI 48840 9 

3. Department of Biology, Susquehanna University, Selinsgrove, PA 17870 USA 10 

4. Department of Plant, Soil and Microbial Sciences; Program in Ecology, Evolutionary 11 

Biology and Behavior; and the Plant Resilience Institute, Michigan State University, East 12 

Lansing, MI 48840 13 

 14 

*Materials and correspondence 15 

 16 

Keywords 17 

microbial ecology, genome size, genome reduction, thermophile, Centralia, coal seam fire, 18 

metagenome, disturbance, extreme environment  19 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/276584doi: bioRxiv preprint 

https://doi.org/10.1101/276584
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Summary 20 

Small bacterial and archaeal genomes provide insights into the minimal requirements for life1 21 

and seem to be widespread on the microbial phylogenetic tree2. We know that evolutionary 22 

processes, mainly selection and drift, can result in microbial genome reduction 3,4. However, we 23 

do not know the precise environmental pressures that constrain genome size in free-living 24 

microorganisms. A study including isolates 5 has shown that bacteria with high optimum growth 25 

temperatures, including thermophiles, often have small genomes 6. It is unclear how well this 26 

relationship may extend generally to microorganisms in nature 7,8, and in particular to those 27 

microbes inhabiting complex and highly variable environments like soil 3,6,9. To understand the 28 

genomic traits of thermally-adapted microorganisms, here we investigated bacterial and 29 

archaeal metagenomes from a 45°C gradient of temperate-to-thermal soils overlying the 30 

ongoing Centralia, Pennsylvania (USA) coal seam fire. There was a strong relationship between 31 

average genome size and temperature: hot soils had small genomes relative to ambient soils 32 

(Pearson’s r = -0.910, p < 0.001). There was also an inverse relationship between soil 33 

temperature and cell size (Pearson’s r = -0.65, p = 0.021), providing evidence that cell and 34 

genome size in the wild are together constrained by temperature. Notably, hot soils had 35 

different community structures than ambient soils, implicating ecological selection for thermo-36 

tolerant cells that had small genomes, rather than contemporary genome streamlining within 37 

the local populations.  Hot soils notably lacked genes for described two-component regulatory 38 

systems and antimicrobial production and resistance. Our work provides field evidence for the 39 

inverse relationship between microbial genome size and temperature requirements in a 40 

diverse, free-living community over a wide range of temperatures that support microbial life. 41 
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Our findings demonstrate that ecological selection for thermophiles and thermo-tolerant 42 

microorganisms can result in smaller average genome sizes in situ, possibly because they have 43 

small genomes reminiscent of a more ancestral state.   44 

 45 
 46 

Main text 47 

Genome streamlining is a reduction in genome size to increase cellular efficiency, and it 48 

evolves by means of selection3. A comparative analysis of changes in microbial genomes sizes 49 

with optimal growth temperature found a negative relationship that was independent of 50 

phylogeny and environment 6. This led to the conclusion that thermophiles are examples of 51 

free-living microorganisms subject to genome streamlining 6,10,11. These results were exciting 52 

because they suggested that high temperature can select on genome size, providing insights 53 

into environmental conditions that may propel efficiency. For the comparative analysis 6 and 54 

cited studies therein, temperature optimum, genome size, 16S rRNA gene sequences, and 55 

habitat were available for a curated collection 115 bacterial and archaeal isolates 5,12.  Given 56 

biases of cultivation 13, an outstanding question was whether the relationship between growth 57 

temperature and genome size would prove to be general for wild microbial communities.  58 

Fortuitously, the fire-impact gradient at the Centralia ecosystem provides an 59 

opportunity to investigate relationships between temperature and microbial genome traits. 60 

Centralia, Pennsylvania is the site of a slow-burning, near-surface coal seam fire that ignited in 61 

1962. The heat from the fire vents through overlying soils, causing surface soil temperatures to 62 

reach as high as > 400°C 14, but more recently in the range of 40 - 75°C 15,16. However, the soils 63 

in Centralia were previously temperate, with no known exposure to prolonged high 64 
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temperatures. Therefore, Centralia offers an interesting model for the examining the eco-65 

evolution of microbial communities 17. 66 

We recently used 16S rRNA gene amplicon sequencing to assess compositional changes 67 

in Centralia soil microbial communities along an ambient-to-thermal temperature gradient 16.   68 

Surface soils overlying the coal seam fire were collected to include soils that were hot from fire 69 

(“fire-affected”), soils that were previously hot but had since recovered to ambient 70 

temperatures (“recovered”) and reference soils that had never been impacted by the fire. As 71 

expected, fire-affected soils had starkly different community structure from ambient soils. 72 

However, after the fire advanced, soils reasonably recovered towards reference community 73 

structure. This suggested a considerable capacity of soil microbiomes for resilience, even after 74 

exposure to a severe and unanticipated stressor, and prompted us to next ask what microbial 75 

attributes underlay the observed changes in community structure in fire-affected soils. 76 

Moving forward, we assessed average genome size along the Centralia fire gradient 77 

(Table S1).  From twelve metagenomes (six fire-affected, five recovered, and one reference), 78 

we used MicrobeCensus 18 to calculate average genome size across a soil temperature range of 79 

45 °C. Average genome sizes were negatively and strongly correlated with temperature (Figure 80 

1A, Pearson’s r = -0.910, p < 0.001). In addition to MicrobeCensus, we used three other distinct 81 

and complementary methods to assess changes in genome size with soil temperature and 82 

found them all to be in agreement (Figure S1).  To the best of our knowledge, this is the first 83 

report of decreases in genome size across an in situ temperature gradient that supports the 84 

broad range of physiological requirements from mesophiles to thermophiles.  85 
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We next compared the average genome sizes estimated from Centralia metagenomes 86 

to those from 22 publicly available soil metagenomes (Figure 2, Table S2).  Generally, hot soils 87 

in Centralia had small genomes relative to other soils, while ambient soils in Centralia were 88 

closer to the average size observed among this set.  Intriguingly, permafrost soils also harbored 89 

small average genomes and were comparable to the hottest Centralia sites. These results 90 

support comparably small genome sizes in Centralia soils and also provide a range of expected 91 

soil genome sizes more generally. 92 

It was hypothesized that small cells may be selected to attain minimal cellular 93 

maintenance costs at high temperatures, and that small cells indirectly select for small 94 

genomes 6. Because we had microscope images from soil cell counts in Centralia16, we re-95 

analyzed the images to extract size information.  We found that average cell sizes were also 96 

negatively correlated with temperature (Figure 1B, Pearson’s r = -0.65, p =0.021).  Accordingly, 97 

cell size had a direct relationship with genome size (Figure 1C, Pearson’s r = 0.64, p = 0.025). 98 

These results agree with reported in situ relationships between cell size and temperature in 99 

aquatic systems.  For example, an experiment investigating a 6°C increase in water temperature 100 

confirmed that smaller cells with lower nucleotide content were selected at warmer 101 

temperatures 7, providing support that even slight warming may enrich for microorganisms 102 

with small genomes.  An observational study of marine microbial genome size along a 103 

latitudinal gradient (10.7°C range) also supports this hypothesis 8.  Our results extend the cell 104 

size-temperature trend to soils and also to a temperature range encompassing 45 °C. 105 

To understand the selective outcomes of high temperature on the functions of these 106 

small genomes, we next asked if there were functional genes that were characteristically 107 
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enriched or depleted with increasing temperature. We used shotgun metagenome annotations 108 

from the KEGG module (KM) database 19. KMs are groups of KEGG Orthologs (KOs) that 109 

represent complexes, functional sets, metabolic pathways, or signatures. Eighty-one percent of 110 

KOs detected in Centralia metagenomes were detected in all soils, and many patterns with 111 

temperature were attributable to changes in normalized KO abundance rather than in KO 112 

detection. In total, 284 (out of 541 detected; 52.50%) were correlated with temperature (Figure 113 

3, Table S3).  114 

Twenty-seven KMs were positively correlated with temperature (Pearson’s R > 0.656, 115 

false discovery rate adjusted p-value < 0.05;  Figure 3A). Specifically, dissimilatory sulfate 116 

reduction (M00596), dissimilatory nitrate reduction (M00530) and denitrification (M00529) 117 

were enriched in hot soils (Figure 3A, cluster iii; Figure 4A). These are anaerobic processes 118 

aligned with known and expected environmental conditions in Centralia. Fire-affected soils 119 

from active vents have higher moisture than reference and recovered soils (Pearson’s r = 0.714, 120 

p < 0.01), which likely promote inundated and anaerobic microhabitats therein. Prior work in 121 

Centralia has indicated an importance of these metabolisms in hot soils, noting that sulfur, 122 

sulfate, nitrate and ammonium were commonly elevated at vents 14,15. These results also agree 123 

with observations of thermophile metabolisms in other terrestrial and geothermal 124 

environments, including a prevalence of denitrification and dissimilatory nitrate reduction 20,21, 125 

highly active nitrogen cycles in hot springs 22, and increased dissimilatory organic sulfur 126 

mineralization 23. Notably, these anaerobic KMs grouped in their response patterns with several 127 

archaeal proteins (Figure 3A cluster iii; Archaeal ribosome M00179, polymerase M00184, and 128 

exosome M00390). We also observed an increase in Crenarchaeota in fire-affected soils 16, an 129 
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archaeal phylum that includes sulfate reducers 24.  Additional results describing patterns and 130 

thresholds of KM enrichment with temperature are provided in Supporting Materials. Together, 131 

these data suggest that the pathways enriched in small genomes from hot soils offer functions 132 

attuned to the Centralia habitat. 133 

 Temperature was negatively correlated with 257 KMs (47.5% out of 541 total KMs 134 

detected, Pearson’s R < -0.6, false discovery rate adjusted p-value < 0.05; Figure 3B). In general, 135 

these depleted KMs were detected across recovered soils and the reference soil. There were 136 

two noteworthy categories of KMs that were consistently depleted in hot soils: antimicrobial 137 

resistance and production and two component regulatory systems (Figure 4B).  Together, these 138 

two KM categories comprised 32.7% of KMs negatively correlated with temperature (84 out of 139 

257). This trend was striking, but we also note that some KMs belonging to these categories had 140 

no relationships with temperature and that these KM categories were always detected in fire-141 

affected soils.   142 

Thirty-nine modules for antimicrobial production and resistance mechanisms were 143 

negatively correlated with temperature (Figure 4B), which agrees with a prior analysis of 144 

antibiotic resistance genes in this system 25. Among these modules were resistance to 145 

vancomycin, tetracycline, fluoroquinolone, aminoglycoside, nisin, erythromycin, streptomycin 146 

and beta-lactam, and several multidrug efflux pumps. The small genomes of host-associated 147 

symbionts often lack antimicrobial genes 26. However, the Pelagibacter clade, which is a model 148 

free-living population that has streamlined genomes, has a conserved multidrug transporter 149 

across sequenced genomes 27. It could be that thermophiles have fewer genes encoding 150 

resistance to described antimicrobials, as evidenced by the challenges inherent in developing 151 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/276584doi: bioRxiv preprint 

https://doi.org/10.1101/276584
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

specific selectable antibiotic resistance markers for thermophiles 28,29.  A related consideration 152 

is that, like most databases, KEGG is biased towards genomes and annotations from fast-153 

growing mesophiles and may have missed annotation of under-described thermophile 154 

antimicrobials. To clarify whether the observed decrease in antimicrobial production and 155 

resistance was due to unannotated novelty or a true deficit of these functions in thermal sites, 156 

annotation-independent methods could be used to identify antimicrobial-related biosynthetic 157 

gene clusters from Centralia metagenomes 30,31.  In addition, functional screens of Centralia 158 

isolates could be performed for antibiotic production and resistances.  If there is a true deficit in 159 

genes encoding antimicrobial production and resistance, it could be that the thermal conditions 160 

present a strong environmental filter that reduces competition among the populations tolerant 161 

of the heightened temperature. Our previous work reported decreased richness and 162 

phylogenetic diversity fire-affected Centralia soils 16, suggesting that there is a smaller pool of 163 

potential competitors inhabiting the hot soils. 164 

Additionally, forty-nine detected two-component regulatory system modules were also 165 

negatively correlated with temperature (Pearson’s R < -0.6, Figure 4B). Two-component 166 

systems consist of a sensor kinase and a response regulator and allow for transcriptional 167 

responses to environmental stimuli 32. This simple regulatory system allows bacteria to respond 168 

to multiple stimuli: the involved genes duplicate, the sensors evolve sensitivity to additional 169 

stimuli, and additional genes are transcribed 32,33. Previous studies suggested that smaller 170 

genomes have fewer regulatory components 34, and this relationship is often observed in 171 

streamlined genomes 3,8. Our results agree with observations of generally less regulation with 172 

smaller genomes4,11,27,35,36  and also suggest that thermophiles may have lower regulatory 173 
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needs.  It has been proposed that thermophiles with “streamlined” genomes may be more 174 

likely to utilize global regulatory systems that mediate transcriptional responses to co-occurring 175 

environmental stimuli 11.   The degree of environmental variability is also predicted to influence 176 

the relative benefit an organism gains from investing in sensing its environment 37.  As a 177 

common case study in genome reduction, obligate endosymbionts are thought to have drifted 178 

towards small genomes in part because environmental conditions are stable and thus sensing 179 

requirements are minimal (e.g., 3 ).   Furthermore, in Centralia, seasonal temperature 180 

fluctuations in fire-affected soils are equivalent to those in ambient soils (Figure S2), providing 181 

evidence that the soils experience similar environmental stability in temperature, albeit at 182 

different ranges.  This suggests that small genomes are not necessarily conditional on very 183 

stable environments 3. Future work should investigate whether two-component regulatory 184 

systems are consistently less prevalent among thermophiles, and, if so, whether their absence 185 

is reminiscent of an ancestral state. 186 

Our field study supports and reinforces cultivation-dependent observations that 187 

suggested bacteria and archaea with small genome sizes have higher growth temperatures 6. 188 

Because our study considers ecological section, as evidenced by the turnover in community 189 

membership between ambient and hot soils16, these data indicate that environmental 190 

microorganisms with relatively higher temperature requirements also are likely to have small 191 

genomes and cell sizes. Surprisingly, it also suggests that microbial populations inhabiting 192 

complex environments, like soils, may generally reflect similar overarching traits in genome size 193 

as those observed in laboratory studies, which are necessarily biased towards fast-growing 194 

organisms that often are of medical, industrial, or agricultural interest (e.g., 38). In addition, this 195 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/276584doi: bioRxiv preprint 

https://doi.org/10.1101/276584
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

work expands upon previous reports of smaller genomes with higher temperatures 7,8 to 196 

consider a range of in situ temperatures at which a variety of microbes compete in non-optimal 197 

conditions. For example, we would expect mesophiles growing near their upper temperature 198 

ranges and thermophiles growing near their lower temperature ranges to co-occur at some 199 

sites in Centralia. Therefore, these results are relevant to the experiences of many wild 200 

microorganisms that cope with dynamic environments.  201 

Our results add evidence that supports both smaller genomes and cells, on average, 202 

with higher temperatures but also offer a key point of distinction. Though the taxa enriched in 203 

Centralia hot soils characteristically had smaller genomes and cells, there is no evidence for 204 

contemporary genome streamlining in Centralia. Rather, we suspect that these thermo-tolerant 205 

cells were resuscitated from the vast dormant pool in soil. This is supported by three lines of 206 

evidence. First, there was turnover in community membership across hot and ambient 207 

Centralia soils 16, providing evidence against contemporary streamlining within local lineages.  208 

Second, there was striking comparability in average genome size of hot Centralia soils to 209 

ancient permafrost soils, which largely contain an inactive and very old dormant pool.  Third, 210 

many other studies have described thermophile persistence and resuscitation from non-211 

thermal environments, suggesting that these lineages are widespread but typically inactive 21,39–212 

43. Therefore, we posit that Centralia small genomes are characteristic of an ancestral trait of 213 

previously dormant thermophiles in the soil and not the outcome of genome streamlining.   214 

In conclusion, we found a strong negative relationship between average microbial 215 

genome size and temperature in Centralia soils along a mesophile-to-thermophile gradient, 216 

spanning 45°C. We also found that cells were smaller in hot soils, supporting the hypothesis 217 
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that thermo-tolerant bacteria have smaller cell size, which indirectly selects for small genomes 218 

6. By KEGG annotations, Centralia metagenomes at hot temperatures were best defined by 219 

what they lacked rather than enriched modules of distinctive metabolisms. Specifically, 220 

environmental sensing mechanisms, such as two-component regulatory systems, and 221 

antimicrobial production and resistance mechanisms were in lower abundance in hot soils. In 222 

addition, there were a few modules enriched at high temperatures that met expectations for 223 

the hot anaerobic environment at active vents, including nitrogen and sulfur metabolism.  Our 224 

results show that the relationship that was observed between growth temperature and 225 

genome size for cultivable isolates also holds true in a complex, in situ microbial community 226 

that inhabits a complex and variable soil environment. We suggest that, for thermo-tolerant 227 

organisms, the relationship between temperature and genome size indicates the precursory 228 

microbial condition of small genomes, reminiscent of ancient lineages, rather than 229 

contemporary genome streamlining.   230 

 231 

Materials and Methods 232 

DNA extraction and metagenome sequencing 233 

DNA for metagenome sequencing was manually extracted using a phenol chloroform extraction 234 

44 and then purified using the MoBio DNEasy PowerSoil Kit (MoBio, Solana Beach, CA, USA) 235 

according the manufacturer’s instructions. Total DNA sequencing was performed on all 12 236 

samples by the Department of Energy’s Joint Genome Institute (Community Science Project) 237 

using an Illumina HiSeq 2500. Libraries were prepared with a targeted insert size of 270 base 238 
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pairs. Samples had between 19Gbp and 50Gbp of sequence data.  Additional methodology 239 

details are provided in Supporting Materials.  240 

 241 

Quality control, assembly and annotation 242 

Assembly was performed by the Joint Genome Institute according to their standard operating 243 

procedure (Supporting Materials). To use all sequencing data, we worked with assembled and 244 

unassembled reads processed by Integrated Microbial Genomes (IMG) using their standard 245 

annotation pipeline45. After comparing several annotation methods (Supporting Materials), we 246 

chose to use the KEGG Orthology database for analyzing the Centralia data due to its inherent 247 

structure and ability to integrate metabolic pathways. KEGG Ortholog (KO) abundances were 248 

relativized to the median abundance in each site of a set of 36 single copy genes published 249 

previously46 (see Supporting Materials). One single copy gene (K01519) was an outlier in 7 out 250 

of 12 samples as assessed by Grubb’s test for outliers and removed. We analyzed patterns in 251 

KEGG Modules (KMs)19, a set of manually defined functional units made up of multiple KOs. KM 252 

abundances were calculated based on the median abundance of their constituent KOs that 253 

were present in the metagenomes. KMs were included in analysis if 50% or more of their 254 

constituent KOs were identified in the dataset.  Approximately one third of the open reading 255 

frames per sample were able to be annotated with KEGG (Table S1). As a caveat to the study, 256 

unannotated open reading frames can result from erroneous reads and mis-assemblies but also 257 

could be novel and or divergent genes critical for microbial processes. Thus, new annotations 258 

could impact the overarching patterns described here.   259 

 260 
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Average genome and cell size 261 

Average genome size was calculated from the quality filtered DNA sequences using 262 

MicrobeCensus (“run_microbe_census.y –n 2000000”), which estimates average genome size 263 

by calculating the percent of sampled reads that match to a set of single copy genes 18.  We also 264 

used three additional methods to calculate average genome size (see Supporting Materials), 265 

and all were in agreement in revealing the negative relationship between temperature and 266 

average genome size. To calculate cell size, we re-analyzed microscope images previously used 267 

to count microbial cells for community size quantifications in the same soils 16. We hand-268 

curated a debris-free subset from the images and measured 44 - 910 cells from 3 - 9 replicate 269 

fields for each soil. The major and minor axes of cells were measured using a FIJI macro in 270 

ImageJ (Version: 2.0.0-rc-65/1.51s Build: 961c5f1b7f). We found that cell size range and 271 

deviations (Table S4) were consistent with those previously reported 48. 272 

 273 

Comparisons with other soil metagenomes 274 

All metagenomic data sets for comparison were obtained from MG-RAST 275 

((http://metagenomics.anl.gov/). The MG-RAST database was searched with the following 276 

criteria: material = soil, sequence type = shotgun, public = true. The resulting list of 277 

metagenome data sets were ordered by number of base pairs (bp). Metagenomic data sets 278 

with the most bp were included if they were sequenced using Illumina (to standardize 279 

sequencing errors), had an available FASTQ file (for internal quality control), and contained < 280 

30% low quality as determined by MG-RAST. Within high quality Illumina samples, priority for 281 

inclusion was given to projects with multiple samples. When a project had multiple samples, 282 
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data sets with the greatest bp were selected. This search yielded 22 data sets from 12 locations 283 

and five countries (Table S2). Sequences from MG-RAST data sets were quality checked using 284 

FastQC (v0.11.3, 49 and quality controlled using the FASTX toolkit (fastq_quality_filter, "-Q33 -q 285 

30 -p 50"). Average genome size for each dataset was calculated from the quality filtered DNA 286 

sequences using MicrobeCensus with default parameters.  287 

 288 

Statistical analyses 289 

 Statistics for the metagenome datasets were performed in the R environment for 290 

statistical computing50. The stats package was used for calculating Pearson’s correlations50. The 291 

outliers package 51 was used for identifying outlying KOs. The ggplot2 package was used for 292 

visualization52. Heat maps were created with heatmap2 from the gplots package53.  293 

 294 

Data and workflows 295 

All analysis workflows are available on GitHub (ShadeLab/PAPER_SorensenInPrep).  296 

Metagenome data are available on IMG under the GOLD Study ID GS0114513. 297 

 298 
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 429 

Figure Legends 430 

Figure 1. Changes in average genome and cell sizes across the soil temperature gradient in 431 

Centralia. (A) Average genome size in each metagenome was calculated using MicrobeCensus 432 

and plotted against site temperature.  (B) Average cell length was measured from 44-910 cells 433 

from 3-9 replicate fields for each soil and plotted against soil temperature.  (C) Average genome 434 

size had a direct relationship with average cell size.   435 

 436 

Figure 2.  Average genome size in soil metagenomes, estimated using MicrobeCensus.18 437 

Samples are ordered by average genome size and colored by sample location.  438 

 439 

Figure 3. Heatmap of KEGG modules correlated with temperature (false discovery rate adjusted 440 

p-value < 0.05).  Modules (rows) are centered and standardized across Centralia metagenomes 441 

(columns), with warm colors showing relative enrichment and cool colors showing relative 442 

depletion. Modules with significant relationships with temperature are shown. Sites are 443 

arranged by increasing temperature from left to right. (A) 27 KEGG modules were positively 444 

correlated with temperature (Pearson’s R range = 0.646 to 0.933). (B) 257 KEGG modules were 445 

negatively correlated with temperature (Pearson’s R range = -0.642 to -0.925). A third of the 446 

KEGG modules negatively correlated with temperature were either two-component regulatory 447 
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systems (TCRS, blue dendrogram tips), antimicrobial resistance or production (ARP, gray tips), 448 

or both (black tips). Note differences in color gradient ranges across panels A and B.   449 

 450 

Figure 4. KEGG modules that had notable enrichments or depletions with temperature. (A) The 451 

median abundances of KEGG modules for denitrification (red), dissimilatory nitrate reduction 452 

(green) and dissimilatory sulfate reduction (blue) were all positively correlated with 453 

temperature. (B) Pearson’s correlation values for all detected modules classified as antibiotic 454 

resistance and production (gray density, n = 62 detected modules) or two-component 455 

regulatory systems (blue density, n = 89 detected modules).  The black vertical line 456 

distinguishes correlation values that are significant at a false discovery rate adjusted p-value < 457 

0.05 (left), and all of these had a strong and negatively relationship with temperature. In total, 458 

there were 39 antimicrobial resistance and production modules and 49 two-component 459 

regulatory system modules that significantly decreased with temperature.  460 

 461 

Supporting Figures 462 

Figure S1.  Complementary methods used to assess changes in average genome size across the 463 

soil temperature gradient in Centralia. (A) Odds ratios were calculated for 35 single-copy gene 464 

KEGG Orthologs in each site and plotted against site temperature. Reported correlation is 465 

between all single copy gene odds ratios and temperature, and all p < 0.001. (B) Average 466 

genome size in each site was calculated based on phylum level abundances from 16S rRNA gene 467 

amplicon data, using weighted average genome sizes of each phylum present in JGI IMG 468 
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(accessed 19 June 2017, correlation p < 0.001). (C) Average MAG size at each site was calculated 469 

based on presence/absence of 104 MAGs (correlation p = 0.029). 470 

 471 

Figure S2.  Annual temperature fluctuations at three fire-affected (circles) and two ambient 472 

(triangles) Centralia sites, measured using in situ temperature loggers (HOBOs) that were buried 473 

5 - 10 cm below the surface. Temperature loggers were deployed after the soils were collected 474 

for this study.    475 

  476 
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Supporting Tables 477 

Table S1. Sequence summary information for Centralia metagenomes.  Soils were collected 03-478 
07 October 2014. Asterisks indicate that the site was actively venting at the time of soil 479 
collection. 480 
Table S2.  MG-RAST metadata for soil metagenomes used in this study. 481 
Table S3.  KEGG Modules significantly correlated with temperature (false-discovery-rate 482 
adjusted p-value <0.05)  483 
Table S4. Cell size measurements from microscope images.   484 
Table S5. Single-copy KEGG Orthologs’ odds ratios correlations with temperature. 485 
Table S6. Lineage, completeness and contamination of Metagenome Assembled Genomes as 486 
estimated by CheckM 487 
  488 
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 489 
Figure 1. Changes in average genome and cell sizes across the soil temperature gradient in 490 
Centralia. (A) Average genome size in each metagenome was calculated using MicrobeCensus 491 
and plotted against site temperature.  (B) Average cell length was measured from 44-910 cells 492 
from 3-9 replicate fields for each soil and plotted against soil temperature.  (C) Average genome 493 
size had a direct relationship with average cell size.   494 
 495 

 496 

  497 
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Figure 2. Average genome sizes across soil metagenomes, estimated using MicrobeCensus.18 498 
Samples are ordered by average genome size and colored by sample location. 499 
 500 
 501 

 502 
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Figure 3. Heatmap of KEGG modules correlated with temperature (false discovery rate adjusted 505 
p-value < 0.05).  Modules are centered and standardized (rows) across Centralia metagenomes 506 
(columns), with warm colors showing relative enrichment and cool colors showing relative 507 
depletion. Modules with significant relationships with temperature are shown. Sites are 508 
arranged by increasing temperature from left to right. (A) 27 KEGG modules were positively 509 
correlated with temperature (Pearson’s R range = 0.646 - 0.933). (B) 257 KEGG modules were 510 
negatively correlated with temperature (Pearson’s R range = -0.642 to -0.925). A third of the 511 
KEGG modules negatively correlated with temperature were either two-component regulatory 512 
systems (TCRS, blue dendrogram tips), antimicrobial resistance or production (ARP, gray tips), 513 
or both (black tips). Note differences in color gradient ranges across panels A and B.   514 
 515 
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Figure 4. KEGG modules that had notable enrichments or depletions with temperature. (A) The 517 
median abundances of KEGG modules for denitrification (red), dissimilatory nitrate reduction 518 
(green) and dissimilatory sulfate reduction (blue) were all positively correlated with 519 
temperature. (B) Pearson’s correlation values for all detected modules classified as antibiotic 520 
resistance and production (gray density, n = 62 detected modules) or two-component 521 
regulatory systems (blue density, n = 89 detected modules).  The black vertical line 522 
distinguishes correlation values that are significant at a false discovery rate adjusted p-value < 523 
0.05 (left), and all of these had a strong and negatively relationship with temperature. In total, 524 
there were thirty-nine antimicrobial resistance and production modules and forty-nine two-525 
component regulatory system modules that significantly decreased with temperature. 526 
 527 
 528 

 529 

0.4

0.1

0.2

0.3

10 20 30 40 50Ab
un

da
nc

e 
(C

op
ies

 p
er

 G
en

om
e)

° Temperature ( C)

A

Dissimilatory SO3
-

Dissimilatory NO3
-

Dinitrification

Pearson’s r (correlation with temperature)
-1.0 1.0-0.5 0.50.0

D
en

si
ty

2.5

2.0

1.5

1.0

0.5

0.0

B adjusted 
p < 0.05

two-component 
regulatory systems 
antimicrobial resistance 
and production

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/276584doi: bioRxiv preprint 

https://doi.org/10.1101/276584
http://creativecommons.org/licenses/by-nc-nd/4.0/

