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Abstract

Modern phylogenetic methods used to study how traits evolve often require a single
species tree as input, and do not take underlying gene tree discordance into account. Such
approaches may lead to errors in phylogenetic inference because of hemiplasy — the
process by which single changes on discordant trees appear to be homoplastic when
analyzed on a fixed species tree. Hemiplasy has been shown to affect inferences about
discrete traits, but it is still unclear whether complications arise when quantitative traits
are analyzed. In order to address this question and to characterize the effect of hemiplasy
on traits controlled by a large number of loci, we present a multispecies coalescent model
for quantitative traits evolving along a species tree. We demonstrate theoretically and
through simulations that hemiplasy decreases the expected covariances in trait values
between more closely related species relative to the covariances between more distantly
related species. This effect leads to an overestimation of a trait’s evolutionary rate
parameter, to a decrease of the trait’s phylogenetic signal, and to increased false positive
rates in comparative methods such as the phylogenetic ANOVA. We also show that
hemiplasy affects discrete, threshold traits that have an underlying continuous liability,
leading to false inferences of convergent evolution. The number of loci controlling a
quantitative trait appears to be irrelevant to the trends reported, for all analyses. Our
results demonstrate that gene tree discordance and hemiplasy are a problem for all types
of traits, across a wide range of methods. Our analyses also point to the conditions under
which hemiplasy is most likely to be a factor, and suggest future approaches that may

mitigate its effects.
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Introduction

Understanding how traits evolve through time is one of the major goals of
phylogenetics. Phylogenetic inferences made about traits can include estimating a trait’s
evolutionary rate and ancestral states, determining whether the evolution of a trait is
influenced by natural selection, and establishing whether certain character states make
speciation and extinction more or less likely!-3. Despite the variety of questions one can
ask, and the plethora of different discrete and continuous traits that can be studied, it has
long been recognized that in order to make inferences about trait evolution it is
imperative to consider how the species carrying these traits are related*. Phylogenetic
comparative methods model traits as evolving along a phylogeny, and therefore often
require one, or sometimes multiple, species trees as input3>56,

The unprecedented increase in the availability of molecular data has been a boon to
the construction of well-supported species trees — i.e., those with high levels of statistical
support. Thanks to advances in sequencing technology, species trees are now denser,
taller, and better resolved. In contrast to the high levels of support provided by genome-
scale data, phylogenomic studies have also revealed topological discordance between gene
trees to be pervasive across the tree of life’-13. Gene trees can disagree with one another
and with the species tree because of technical reasons — e.g., model misspecification, low
phylogenetic signal, or the mis-identification of paralogs as orthologs — but also as a
result of biological phenomena such as incomplete lineage sorting (ILS), introgression, and
horizontal gene transfer!4. Among the latter, ILS is well-studied due to its conduciveness
to mathematical characterization5-17, in addition to being an inevitable result of

population processes!8. Going backwards in time, ILS is said to occur when lineages from
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the same population do not coalesce in that population, but instead coalesce in a more
ancestral population. If these lineages then happen to coalesce first with others from more
distantly related populations, the gene tree will be discordant with the species tree.

While it is becoming clear that genealogical discordance is the rule rather than the
exception in species trees with short internal branches, the manner in which it might
affect studies of trait evolution is still not well understood. One way gene tree discordance
can affect phylogenetic inferences is by increasing the risk of hemiplasy. Hemiplasy is the
production of a homoplasy-like pattern by a non-homoplastic event!®, generally because a
character-state transition has occurred on a discordant gene tree. Consider the example
shown in figure 1: trait 1 is underlain by a gene whose topology is discordant with the
species tree; a single state transition occurs only once along the branch leading to the
ancestor of species A and C. However, if one attempts to infer the history of transitions on
the species tree, two spurious transitions (for instance, on branches leading to A and C)
must be invoked. The same occurs with trait 2 (Fig. 1), but on the other discordant gene
tree. Unless the gene tree underlying a discrete trait is concordant with the species tree
(such as trait 3 in Fig. 1), ignoring its topology can lead one to believe that homoplasy has

happened, when in fact it has not — this is due to hemiplasy.
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Figure 1: Three distinct discrete traits with their states mapped to the gene trees they evolved
on, and to the species tree. Hollow and filled shapes represent the ancestral and derived states,
respectively, with character state transitions being indicated by filled shapes along internal
branches. Traits 1 and 2 undergo a single character-state transition in their evolutionary
history, but when the states are resolved on the species tree, a homoplasy-like (yet not truly
homoplastic) pattern emerges (i.e., hemiplasy). Trait 3 has evolved along a gene tree that

matches the species tree in topology, and so no hemiplasy occurs.

Recent work on the relevance of gene tree discordance to phylogenetic inferences
has demonstrated that hemiplasy is widespread and problematic. At the molecular level,
90 hemiplasy can cause apparent substitution rate variation, can spuriously increase the
detection of positive selection in coding sequences, and can lead to artefactual signals of
convergence?%21 In datasets with high levels of gene tree discordance, the fraction of all

substitutions that are hemiplastic can be quite high?22.
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An interesting and still unanswered question is whether phylogenetic inferences
95  about continuous traits can also be affected by hemiplasy. As continuous traits are often
underlain by a large number of loci, a significant fraction of them could have discordant
gene trees in the presence of ILS or introgression. Trait-affecting substitutions on
discordant internal branches (those that are absent from the species tree?3) of such trees
would then increase the similarity in traits between more distantly related species, while

100  decreasing that of more closely related species. Such an effect could consequently affect
the inferences from phylogenetic comparative methods about these quantitative traits. On
the other hand, the most frequent gene tree in a data set is generally expected to be
concordant with the species tree (except in cases of anomalous gene trees?*). As a
consequence, we might expect that the contribution to traits from loci with concordant

105 gene trees would outweigh the signal introduced by loci with discordant gene trees,
possibly making phylogenetic inferences about continuous traits more robust to
hemiplasy relative to discrete traits. In other words, a reasonable hypothesis is that gene
tree discordance should only be problematic for traits controlled by a small number of
loci, but not for those controlled by many loci®.

110 Here, we investigate whether standard phylogenetic methods for studying
quantitative traits are affected by genealogical discordance and hemiplasy. We present a
model of quantitative traits evolving under the multispecies coalescent and derive the
expected variances and covariances in quantitative traits under this model. We then apply
phylogenetic comparative methods to data simulated under the coalescent framework.

115  This framework makes it possible to vary levels of ILS and the number of loci controlling a

quantitative trait (cf. ref. 25), and so we also address whether inferences can be affected by
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variation in genetic architecture. Finally, we use the threshold model?627 to investigate
whether discretizing quantitative traits makes inferences about them more or less robust
to the potential effects of gene tree discordance and hemiplasy.

120
Characterizing trait distributions in the three-species case under the coalescent and
Brownian motion models

To investigate the effect of discordance and hemiplasy on inferences about

quantitative traits, we first compare expectations for quantitative traits under the

125  coalescent model relative to Brownian motion (BM), a diffusion model commonly used in
phylogenetic comparative methods, using a three-species phylogeny. Under BM, trait
values from multiple species will exhibit a multivariate normal distribution with the
covariance structure given by the phylogeny?8. More specifically, in the case of n species,
the variances within species and covariance between species are given by V = ¢2T, the

130  variance-covariance matrix. Here, 02 is the evolutionary rate parameter, which measures
how much change is expected in an infinitesimal time interval. T is an n x n matrix whose
off-diagonal entries, t;;, are lengths of the internal branches subtending the ancestor of
species i and j, and whose diagonal entries correspond to the lengths of the paths between

each species and the root?8. For the phylogeny in figure 2a, and 02 = 1:

ti1 liz U3 5 4 0
V=02T=0%t1 tz t3(=]|4 5 0 (1)
t3; l3z 33 0 0 5
135
For example, the BM expected variance in species 4, Vargu(A), corresponds to the rate

parameter multiplied by the length of the path extending from the root to the tip, and

therefore evaluates to 5. Note that Varsu(A) is not the population trait variance observed
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among individuals of 4, but the expected variance in species A’s mean trait value, resulting
140  from evolution along the lineage leading to A. The covariance between species A and B,
Covpu(A, B), corresponds to the rate parameter multiplied by the length of the branch

shared by these two lineages, which evaluates to 4 in this example.

(a)
t'12=
(b)
t=4
t=4
t=4
A B C D E

Figure 2: (a) Three-species phylogeny (and a concordant gene tree within it) and its
corresponding T matrix entries. (b) Five-species phylogeny used in coalescent simulations for PCM

analyses. Branch lengths are indicated in units of 2N generations.

Given the species tree topology in figure 2a, the expected variance in trait value
145  within any species, 4, B, or (, is also readily derived under a neutral coalescent model (for

a complete derivation, see section 1.1 in the Supplementary Text):

t t 1
VarCoal = ZN,LLO'MZ [te + (1 - e‘t/ZN) <ﬁ + 1) + (e‘t/ZN) <ﬁ +1+ §>] (2)

where t is the length of the single internal branch of the species tree measured in

generations, t. is the length of terminal branch from species A and B, N is the population
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150  size, u is the neutral mutation rate, and a;,2 is the variance of the mutational effect
distribution. This last parameter describes the effect of individual mutations, and does not
correspond to the Brownian motion evolutionary rate (which is instead equivalent to
2Nuoy? in equations 2 and 3). Following the same notation, the expected covariances in
trait values between species are (for a complete derivation, see section 1.2 in the

155  Supplementary Text):

_ t t/2N 1
COUCoal(A,B) = ZN[JO'MZ (1 — e t/ZN) 1+ (ﬁ - (1 - m)) + (Ee UZN) (3)

and

COVea (4,€) = Coveo (B,C) = 2Npoy? (5 /2 (4)
Note that the covariances between species A and € and between B and C are the same
because A and B are equally distant to species C.

160 With the expectations under BM and the coalescent in hand, we can now ask how
these quantities compare in the simple case of little to no ILS (we use the species tree and
branch lengths depicted in figure 2a, for which the probability of discordance is very low,
=0.01). It is easy to see that for any N > 0, the single-species variance under the coalescent
model will be larger than that expected under BM. For example, even in the extreme case

165  where 2N = 1 (and by setting 0,2 and u = 1), we can observe that the variance within any
of the species under the coalescent is higher (Varcoq = 6) than under the BM model (Vargm
= 5). This is a curious, yet not unexpected result: traditional phylogenetic models such as

BM do not consider the variation that exists in ancestral populations prior to speciation?°.
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Even though gene trees are always concordant with the species tree in this scenario, they

170  will also always be taller due to the waiting times for coalescence in ancestral populations.

Conversely, expected covariances between species under both models should be
exactly equivalent in the absence of genealogical discordance. First, the covariance
between species A and C should be zero in both cases: these lineages do not share internal
branches under either model when there is no ILS. Indeed, Covcoa(4, C) and Coveu(A4, C)

175  both evaluate to 0 in the absence of ILS, as specified by equation 4 and equation 1,
respectively. Second, the internal branch subtending species A and B is the same length in
both models, as the waiting time for coalescence in the ancestral population of A and B is
exactly the same as the waiting time in the ancestral population of all three species (Fig.
2a). Therefore, Covcoai(A, B) and Coveu(A, B) both also evaluate to 4 in this scenario.

180 In summary, we can model the distribution of quantitative trait values across
species under the coalescent model as a collection of contributions from many individual
genealogies that all determine the value of such a trait. However, expected trait values in
the coalescent are not exactly the same as those expected under the classical BM model,
even in the absence of genealogical discordance and given a fixed phylogeny. While

185  expected covariances will be identical between models if no genealogical discordance is
present, expected variances will still differ; this difference will be accentuated with larger
ancestral population sizes. This result will therefore affect any parameters being
estimated — such as the evolutionary rate 6?2 — that depend on expected species
variances. Below, we explore how the expectations under the coalescent and BM models

190 can further differ in the presence of ILS and discordance.

10
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Consequences of genealogical discordance to quantitative traits: the “deep
coalescence” effect and hemiplasy
We can predict from the expectations laid out above that the variances and

195  covariances under the coalescent model will change in the presence of discordance. In
contrast, the BM model will have the same expectations because it does not consider
genealogical discordance — the species tree is a fixed parameter. In order to characterize
the effects of discordance on variances within species and covariances between species,
we considered five different scenarios with increasing percentages of gene tree

200 discordance (0, 15, 30, 45 and 60% discordance, respectively). We used the three-species
phylogeny (Fig. 2a) for its mathematical tractability, and in addition to computing the
expectations of these measures (using equations 2-4), we simulated 1,000 data sets under
each of the five scenarios. This simulation procedure is illustrated in figure 3, where for
each locus underlying a quantitative trait, mutations are thrown down at random along

205 the genealogy and mutational effects of each mutation are drawn from a distribution
determined by o,,2. Simulations were repeated for different numbers of loci affecting the
trait: 5, 15, 25, 50 and 100. In keeping with the usual practice in comparative analyses of
employing a single, static species tree, levels of ILS were increased by multiplying
ancestral population sizes by incrementally larger factors — the topology and branch

210 lengths of the species tree were kept constant (see Methods for details).

11
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(@) Gene tree 1 Gene tree 2 Gene tree 3 Gene tree 4 Gene tree 5
A C B A C B B C A B C A A B C
Site 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
Mutational effect -0.8 -0.5 0.0 0.1 0.3
(b) 5 (c) Outcome

Ny N
o oo e

X
0.751 / \
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Mutational effect (-0.8-0.5 +0.3) (0.0 + 0.1 +0.3) (0.8 - 0.5 +0.3)

Figure 3: A single continuous traits controlled by five loci, four of which have discordant gene
trees. (a) Genealogies of the loci controlling the trait. Asterisks represent mutations at a given site
in each of the five loci. Ancestral alleles (0) have no effect on the trait value. Derived alleles (1)
have their random effects on the trait value drawn from a mutational effect distribution (see (b)).
(b) Mutational effect distribution of derived alleles. The distribution has a mean of zero and unit
variance. (c) The outcome of a simulation consists of one trait value per species, which correspond

to the sum of all derived allele mutational effects coming from all loci controlling the trait.

We observed an overall good match between the observed and expected variances
and covariances (Fig. 4 and Fig. 5a). Under the coalescent model, larger ancestral
population sizes make coalescent waiting times longer, and result not only in more ILS and

215 more gene tree discordance, but also in taller trees on average. As expected (equations 2-
4), data sets simulated with larger N therefore had higher variances and covariances (Fig.
4a-b). We refer to this phenomenon as the “deep coalescence” (DC) effect. The DC effect
occurs due to the increase in average gene tree height, relative to the species tree height,

under the coalescent model with large population sizes (cf. 29). We stress that (i) this effect

12
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is not due to discordance, and (ii) not only variances, but covariances among lineages that
share a history in the species tree, are affected. The latter happens because, as mentioned
above, it will take longer for any two lineages to coalesce given a larger population size
(the parameter N controls this time in equations 3 and 4). Consequently, the waiting time
for the last coalescent event (which determines the length of the internal branch) will also
be longer, leading to higher covariances between pairs of descendant species.

€)) () 454

- - Expected

—— Observed

@
- <<
Expected ; 304
—— Observed 8

401

0 15 30 45 60 0 15 30 45 60
Discordance (%) Discordance (%)

Figure 4: (a) Expected and observed variances in trait values of species A4 in each of the five ILS
conditions. Expected values come from equation 2. (b) Expected and observed covariances

between species 4 and B in each of the five ILS conditions. Expected values come from equation 3.

The number of loci did not influence variances and covariances, which is expected.
This is because the standard deviations of the mutational effect distributions used in our
simulations (o,,2) are scaled to keep trait-value variances constant with changing
numbers of loci, thus ensuring a fair comparison between models with different numbers
of loci. This follows the standard logic of the infinitesimal model, i.e., the larger the number
of loci controlling a trait, the smaller the effect each mutation should have on the trait

value3?; for more details in the context of the coalescent model, see ref. ,s.

13
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Finally, under the coalescent model, gene tree discordance does have an effect: the

235  covariance between species A and C (and between B and () increases with more ILS
relative to the covariance between species A and B (Fig. 5a). Recall that when there is no
discordance there is no covariance between non-sister species, because they do not share
an evolutionary history. Discordant gene trees offer the opportunity for non-sister species
to have a shared history, and covariance increases. As a result, there is an increased

240 similarity between non-sister species in quantitative traits due to hemiplasy in the
underlying gene trees. Ultimately, the effect of hemiplasy on continuous traits is to make
covariances between different pairs of species converge on the same value (Fig. 5b). This
makes intuitive sense, as in the limit all three topologies will be equally frequent, resulting

in equal covariances between all pairs of species.

(a) (b)

0.61
20
S &S
< - - Expected .. 04 ® Cov(AB) : Var(A)
> >
] — ) .
3 4ol Observed 3 A Cov(AC) : Var(A)
ol w
01 - . . i i 001 . i . i
0 15 30 45 60 0 15 30 45 60
Discordance (%) Discordance (%)

Figure 5: (a) Expected and observed covariances between species A and C in each of the five ILS
conditions. Expected values come from equation 4. (b) Observed covariances between a pair of
species normalized by the variance in species 4, for all five ILS conditions.

245
We emphasize that the aforementioned effects were observed despite the fact that
the concordant topology was always the most common, and that substitutions on

discordant trees and discordant branches occurred in only a fraction of the loci underlying

14
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the continuous trait. Furthermore, the number of loci does not seem to strongly affect our
250  results, as the difference between covariances were similar regardless of the number of
loci controlling the trait. This seems to suggest that if hemiplasy poses problems for
inferences about continuous traits, all traits will be affected, not just those controlled by a
small number of loci. In the next section we address how hemiplasy affects standard
phylogenetic comparative methods applied to quantitative traits.
255
Hemiplasy increases inferred evolutionary rates and decreases phylogenetic signal

We first investigated the impact of discordance and hemiplasy on estimates of a
commonly inferred parameter, the BM evolutionary rate, 62. We estimated o2 from data
simulated along a five-species asymmetric phylogeny (Fig. 2b). Simulating data for five

260  species allows for more ILS (and a greater effect of hemiplasy??) relative to the three-
species case, due to the larger number of possible gene tree topologies (105 in the former
case versus the 3 possible topologies in the latter). Again, we simulated data under five ILS
conditions with different percentages of gene tree discordance (0, 20, 40, 60 and 80%
discordant trees, respectively) by keeping the phylogeny constant and increasing

265  population sizes. As in the three-species case, we simulated continuous traits controlled
by 5, 15, 25, 50 and 100 loci.

As mentioned above, increasing ancestral population sizes increases both ILS and
the average height of gene trees with two main resulting patterns: (i) expected
covariances between non-sister species will increase (due to hemiplasy), and (ii) expected

270  variances within species will increase (due to deep coalescence). Because BM does not

model the number, topology, or lengths of the gene trees underlying a continuous trait, we

15
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predicted that both outcomes would be accounted for when inferring rates under the BM
model as spuriously higher evolutionary rates. Indeed, we observed a positive correlation
between the estimated 02 (which corresponds to 2Nuoy,? in the coalescent model) and ILS

275  (Fig. 6a). This pattern was the same for all data sets, irrespective of the number of loci
controlling the trait.

We also reasoned that another major consequence of hemiplasy — resulting from
the changes in expected covariances in trait values between pair of species — would be
the reduction of the average phylogenetic signal with increasing ILS. This is because the

280 effect of hemiplasy on quantitative traits is to make covariances between more closely
related species become smaller relative to covariances between more distantly related
species. The more hemiplasy, the less should the covariances resemble values that would
be observed for a trait evolving along the species tree, and thus the phylogenetic signal
should be lower. We measured the phylogenetic signal in each replicated simulation by

285  estimating a commonly used parameter, Pagel’s A (where A = 1 indicates a trait evolving
according to BM along a species tree, and A < 1 indicates lower phylogenetic signal>31). As
expected, estimates of A decreased on average with increasing ILS (Fig. 6b), reflecting the
lower phylogenetic signal of traits partly determined by discordant gene trees.

Given the results from Pagel’s A, we attempted to distinguish the contribution of the

290 DC effect (i.e., overall increase in variances and covariances) from that of hemiplasy (i.e.,
relative change in covariances) to the spurious increase in ¢2. The parameter A can be
thought of as a species tree branch-stretching parameter3: we predicted that when
estimating o2 in the presence of A, the latter would act as a “buffer” parameter absorbing

the effect of hemiplasy by becoming reduced itself (as shown in Fig. 6b).
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Figure 6: (a) Mean evolutionary rate for different number of loci controlling the simulated

continuous trait and different levels of discordance. (b) Mean value of Pagel’s A for different

number of loci controlling the simulated continuous trait and different levels of discordance. (c)

Mean evolutionary rate when 100 loci control the trait (“Without A” is the same as shown in (a); in

“With A”, the rate was estimated with Pagel’s A).

Indeed, evolutionary rates were much lower when estimated in the presence of A (Fig. 6c,

“With 1”), but still remain higher in data sets simulated with increasing levels of ILS. This

is because while A can absorb the effect of hemiplasy by shrinking internal branches, it
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cannot account for the DC effect resulting from the increased average gene tree heights in
300  higher ILS conditions.
These results suggest that both the DC effect and hemiplasy contribute to the
increase in estimates of 62. In BM model terms, understanding the impact of the DC effect
on higher estimates of 62 is straightforward: if the tree (reflected in matrix T, equation 1)
is held constant and all variances and covariances (the entries of V, equation 1) become
305 larger, then 02 must become larger. But our results also suggest that the effect of
hemiplasy is comparable to the DC effect, and possibly of even greater magnitude in the
presence of more ILS. This observation is perhaps less intuitive, but indicates that 62 must
become much higher to account for the difference between the observed covariances (i.e.,
off-diagonal entries of V) and expected covariances, given the observed variances and T.
310 Assuming that quantitative traits evolve according to the coalescent model, larger
ancestral population sizes and genealogical discordance can thus lead to an
overestimation of o2 and to lower values of A, and will likely affect comparative methods
that make use of such parameters. We point the curious reader to the supplementary text
(section 2.3) for a thorough theoretical treatment on how expected trait variances and
315  covariances under the two models should differ, and why these differences can lead to the

reported estimates of 02 and A.

Hemiplasy can increase the false positive rate in phylogenetic hypothesis testing
Many studies test the hypothesis that groups of species differ in measured traits
320  due to factors other than phylogenetic relatedness. We addressed whether hemiplasy

could also interfere with this type of phylogenetic hypothesis testing. The comparative
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method of choice we used was the phylogenetic ANOVA32. As in traditional ANOVA, this
method allows the comparison of mean trait values across groups of species. Importantly,
the phylogenetic ANOVA also corrects for the inflation of degrees of freedom caused by the
325 non-independence of data points — which results from the hierarchical nature of the
phylogenetic relationships among species*. This correction allows the approximation of
the true number of degrees of freedom through simulations of trait values along the
phylogeny (given some model of trait evolution — BM in our case). The simulations
collectively comprise an empirical F distribution that is then used in hypothesis testing3.
330 Our prediction was that increasing levels of ILS and of hemiplasy would increase
the false positive rate of phylogenetic ANOVAs. We tested this prediction by conducting
phylogenetic ANOVAs on the five-species simulations. Hypothesis testing consisted of
comparing the null hypothesis that a pair of species had the same mean trait value as the
remaining three species, against the alternative hypothesis of different means. This
335 procedure was repeated on each of the 1,000 replicates, for all possible groupings of two
species versus three species; we then recorded the average number of times per replicate
the p-value was significant (p < 0.05).
As predicted, we observed a positive correlation between ILS levels and the mean
number of times the null hypothesis was rejected in the phylogenetic ANOVA; this trend
340  was unaffected by the number of loci underlying the trait (Fig. 7). This result suggests that
an arbitrary group of species is, on average, more likely to have a spuriously (and
significantly) smaller or larger mean trait value than the remaining species in the presence

of gene tree discordance.
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Figure 7: Mean number of independent trait-value shifts (i.e., significant phylogenetic ANOVA

tests) among all possible groupings of two versus three species.

345 The sharing of similar trait values by non-sister species is an expected byproduct of
higher expected covariances among those species when there is gene tree discordance.
Such changes in expected covariances between pairs of species trait values are a symptom
of hemiplasy (Fig. 5), but not of the DC effect. We thus believe that hemiplasy not only
contributes to the incorrect estimation of parameters such as the evolutionary rate, but

350 canalso play a major role in increasing the false positive rate of phylogenetic comparative

methods.

Threshold traits are strongly affected by hemiplasy
As demonstrated above, the magnitude of the effect of hemiplasy on phylogenetic
355 inferences is consistently proportional to the observed levels of gene tree discordance in a
data set. Our results also suggest that the number loci underlying a quantitative trait does
not matter to the expected trends from such inferences. One remaining question, however,
is whether hemiplasy can have an effect on a threshold trait — i.e., a discrete trait that has
a continuous character as its liability?627, and if the genetic architecture of such trait is

360 relevant to this effect.
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Addressing this question is straightforward, as we only need to treat our simulated
continuous traits as the underlying liability of a threshold character. By choosing an
arbitrary threshold of one standard deviation above the mean continuous trait value (over
all replicates and all species), we coded all simulated trait values as either “0” (if below the

365  threshold), or “1” (if above). Defining a threshold using a dispersion measure such as the
standard deviation, instead of a fixed value, allows us to account for the higher variances
expected in replicates under higher ILS conditions.

Before laying out our predictions for how the effect of hemiplasy on threshold
characters should be manifested, we first define a few terms used in the discussion that

370  follows. A “trait pattern” consists of the threshold character states (from a single replicate)
observed at the tips of the tree. Given tree ((((4,B),C),D),E) (the tree we used in the
simulations; Fig. 2b), trait pattern “11000” signifies species A and B sharing state “1” (both
had liabilities above the threshold) and species C, D and E sharing state “0” (the three
species had liabilities below the threshold). A congruent (informative) trait pattern can be

375  produced by character-state transitions occurring on internal branches that are present in
the species tree; thus trait patterns “11000” and “11100” are congruent. Conversely, an
incongruent trait pattern is the result of either homoplastic or hemiplastic evolution:
multiple true character-state transitions, or transitions on internal branches of discordant
gene trees that are absent from the species tree, respectively. Trait patterns such as

380 “01100” and “11010”, for example, are incongruent.

If hemiplasy affects threshold traits as it does continuous traits, we predicted that
higher ILS levels would lead to a larger number of incongruent trait patterns, and to a

lower number of congruent trait patterns. As expected, counts of incongruent informative
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trait patterns increased with increasing ILS levels (Fig. 8); congruent trait patterns

385 likewise decreased. Furthermore, the same trend was observed from simulations where
the liability character was underlain by few or many loci (Fig. 8). This suggests that even
in the case of threshold traits, larger numbers of loci comprising the genetic architecture

will not mitigate the effect of hemiplasy.
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Figure 8: Frequency of incongruent trait patterns (out of all informative trait patterns) for

threshold traits. Each combination of level of discordance and number of loci was simulated 1,000

times.

390 Incongruent trait patterns are interesting because they can be suggestive of
convergent evolution, or of correlated evolution when more than one trait exhibits similar
patterns. While we do not further investigate the behavior of phylogenetic comparative
methods applicable to discrete characters here, it is clear nonetheless that in the presence
of gene tree discordance inferences from incongruent patterns can be misleading about

395  the number of times a trait has evolved. This will be particularly true when the
reconstruction of character-state transitions is carried out under maximum parsimony.
Furthermore, regardless of whether branch lengths are taken into account,
misidentification of the branches along which character states are inferred to change will

be more likely in the presence of gene tree discordance. Overall, the more genealogical
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400 discordance is present in a data set, the more likely it is that a discrete trait will exhibit an
incongruent pattern by chance, simply as a result of the stochasticity of the coalescent

process.

Discussion

405 In the present study, we addressed whether genealogical discordance and
hemiplasy can affect phylogenetic inferences about quantitative traits. We considered ILS
to be the sole cause of gene tree discordance, and used the coalescent to model the
evolution of a quantitative trait along a phylogeny. By employing coalescent theory, we
demonstrate that in the absence of ILS the coalescent and BM models are equivalent with

410 respect to the expected covariances between species trait values, but differ in terms of the
species expected trait variances. In the presence of ILS, hemiplasy causes the expected
covariance in trait values between pairs of more distantly related species to increase.

The increased covariance due to hemiplasy leads to error in estimates of two

parameters commonly studied under the BM model, namely, the evolutionary rate, 62, and

415  Pagel’s A. Hemiplasy consistently led to an overestimation of ¢2, and to lower A estimates.
Moreover, errors were also observed when conducting comparative analyses such as the
phylogenetic ANOVA, whose false positive rate was increased by greater levels of
genealogical discordance and hemiplasy. Finally, by treating quantitative traits as a
liability character underlying a threshold trait, we found that hemiplasy affects the

420 number of times such traits appeared incongruent with the species tree. All of the
aforementioned results held irrespective of the number of loci controlling the quantitative

trait.
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Phylogenetic comparative methods aimed at quantitative traits traditionally

employ the BM model, which is equivalent to a quantitative genetics model in which many
425 genes have small effects on a selectively unconstrained character3334; both BM and some

extensions of it can include certain forms of selection (e.g., the Ornstein-Uhlenbeck model

35). Nonetheless, these models do not explicitly incorporate the number of loci, their gene

trees, nor the effects of each locus on a quantitative trait of interest. More importantly,

because BM models do not explicitly model genealogical discordance they are vulnerable
430  to hemiplasy, which can lead to inaccurate phylogenetic inferences.

Here we demonstrated that the multispecies coalescent can be used to model
quantitative traits evolving across a phylogenetic tree. Though not as simple as BM, the
coalescent includes multiple parameters that can more realistically model biological
processes. These extra parameters include those whose values we either fixed or varied in

435  this study, such as the number of loci controlling the trait, mutation rate, distribution of
mutational effects, and population size. Most importantly, this model can incorporate
relationships between lineages not found in the species tree by modeling gene tree
discordance. While we showed that the coalescent can produce accurate expectations of
phylogenetic variances and covariances — even in the presence of discordance — more

440 work is necessary to explore the inference of such parameters from data using this model.

The purpose of this study was to test whether phylogenetic inferences might be
misled by gene tree discordance and hemiplasy for traits with complex genetic
architectures, much as similar analyses of simple discrete traits areé. We found that
discordance strongly affects phylogenetic methods, and believe that the results from our

445  simple simulations are likely to be conservative. This is because we assumed only
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additivity of mutations and a Gaussian mutational effect distribution. The presence of
dominance, epistasis, and broader or skewed mutational effect distributions are likely to
compound the effects of hemiplasy.
Moreover, while our assessment of phylogenetic methods is by no means

450 exhaustive, it is unlikely that the trends we report here are exclusive to the approaches we
investigated. Methods that compare models with one versus multiple evolutionary rates
across a tree39, or that estimate branch lengths from quantitative traits?8, for example,
could be affected by hemiplasy in the same way that nucleotide substitution models are?0.
Similarly, methods addressing the correlation between discrete traits (e.g., ref37) could

455 also have increased false positive rates if hemiplasy acts on multiple traits in similar ways.
Hemiplasy is also expected to broaden the confidence intervals around ancestral state
reconstructions of quantitative traits38, making it harder to infer significant shifts in trait
means and to place such shifts on internal branches of the species tree. While recently
proposed methods that study BM models over species networks do represent a step

460 forward in the presence of discordance due to hybridization and introgression (e.g, refs.
39,40), these methods do not account for either deep coalescence or the full spectrum of
genealogical discordance.

Given our results, it is reasonable to ask whether and when traditional

phylogenetic comparative methods for quantitative traits are appropriate. ILS is expected

465  to act when there are short internode distances in a species tree, regardless of how far in
the past the rapid succession of speciation events has occurred. This implies that the
effects of hemiplasy will be greatest for species radiations, as these are defined as periods

of rapid speciation*!. Conversely, many phylogenetic studies include species trees without
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much discordance, either because none has occurred or because taxa have been chosen to
470 minimize discordance. This latter approach — thinning species from analyses in order to
minimize or remove discordance — can improve the accuracy of inferences about
molecular changes?0. We have also purposely considered small trees where every lineage
is involved in ILS; the set of internal nodes in such clades have been collectively referred
to as “knots”?342. The fewer and the “looser” the knots in larger trees (i.e., the longer the
475  internal branches), the safer it should be to use BM-based methods. It may also be useful
simply to conduct a post hoc examination of the lineages evolving most rapidly or the
lineages involved in convergence when carrying out traditional analyses: if these coincide
with knots in a larger tree, this may provide evidence of spurious results.
Good models are able to strike a balance between biological realism and
480  tractability. While the coalescent model has the potential of being more realistic than the
family of models based on BM, the inferential machinery for the coalescent is less well-
developed. It is thus still unclear how tractable the coalescent model would be in terms of
phylogenetic inference. On the other hand, numerous comparative methods making use of
BM’s simplicity and tractability (e.g., the existence of analytical solutions for maximizing
485  the likelihood of parameters of interest) have been developed, implemented, and tested
over the years, and so we do not expect a complete shift away from such methods in the
near future. Indeed, we have shown how including Pagel’s A in analyses aimed at
estimating evolutionary rates under the BM model can make inferences more accurate,
even in the presence of hemiplasy. Moving forward, we nonetheless believe it worthwhile

490 to further develop and explore models with the potential of being more realistic and more
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robust to problems such as those described here. At the least, phylogenetic analyses using

the BM model on trees with underlying discordance must be examined carefully.

Methods

495  Simulations under the multi-species coalescent model for quantitative traits
In order to simulate a quantitative trait evolving along a species tree, we extended the
population model put forward in ref. 25 into a phylogenetic model (Fig. 3), and modified
the tools made available by these authors accordingly. As in traditional phylogenetic
models, the trait value simulated for a species was treated as the mean of its populations34.

500 Each species trait value corresponded to the sum of the effects of derived alleles (ancestral
alleles had no effect on trait values) at variant sites from all loci controlling the trait. The
effect of each derived allele was drawn from a normal mutational effect distribution with
mean zero and standard deviation scaled by the number of loci underlying the trait (e.g.,
Fig. 3b).

505 Simulations were conducted with the coalescent simulator ms*3 along species trees
((A:1,B:1):4,C:5) and ((((A:1,B:1):4,C:5):4,D:9):4,E:13). We simulated traits underlain by
varying numbers of loci (5, 15, 25, 50 and 100), each under five ILS conditions with
increasing amounts of gene tree discordance (1,000 replicates per condition). Gene tree
discordance was introduced by simulating larger ancestral populations; we did so by

510 multiplying the size of these populations by an increasingly larger factor while keeping
species tree branch lengths constant. In the three-species phylogeny case, the five ILS
conditions differed by increments of 15% in gene tree discordance (where N was

multiplied by factors of 1, 5.2, 9.6, 19.5 and 50), with the lowest and highest ILS conditions
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exhibiting 0% and 60% discordance, respectively. In the five-species phylogeny case,
515 increments in gene tree discordance were of 20% (factors were 1, 3.6, 5.6, 8 and 14), with
0% and 80% of gene trees being discordant in the lowest and highest ILS condition,

respectively. We fixed ¢ =4 in all simulations.

Parameter estimation and hypothesis testing under Brownian motion

520 Parameter estimation was carried out for each of the 5,000 replicated simulations
along the five-species phylogeny (1,000 per ILS condition). We estimated the evolutionary
rate, 0%, and A parameters with the “fitContinuous” function of R’s geiger package**. We
further inferred 02 in the presence of A (“With A” in Fig. 6¢) using the same function in
geiger.

525 Phylogenetic ANOVA was also conducted on all simulations from the five-species
phylogeny to test the hypothesis that a pair of species shared the same mean trait value,
while the other three species had a different mean. We performed one test for each
possible pair of species (versus the remaining three species), and repeated these tests for
each replicated simulation under all ILS conditions. We then counted for each replicate

530 how many of these tests yielded a significant p-value (p < 0.05). Again, phylogenetic

ANOVA was carried out with the geiger package.

Discretization of quantitative trait values using the threshold model
In order to characterize the effect of hemiplasy on threshold traits, we treated the
535 quantitative trait simulated with the five-species phylogeny as a continuous liability26:27.

Each species liability value was then compared to a threshold to generate the species’
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corresponding trait value: “0” if below the threshold, and “1” if above. Exact threshold
values were adjusted between ILS conditions to account for the fact that data sets with
more gene tree discordance should have greater expected variances in liability values. We
set the threshold of a given ILS condition to the value at one standard deviation above the
mean of the liability value distribution (from all species and all replicates) for that ILS
condition. ILS conditions with more gene tree discordance thus had higher threshold
values. We then tabulated all different informative trait patterns in which two species
shared state “1”, and the remaining three species shared state “0”, and classified them as

either congruent or incongruent (see main text).
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SUPPLEMENTARY TEXT

1 Deriving expected variances and covariances in

quantitative trait values under the coalescent model

1.1 Variance in the three species case

Given a three-species phylogeny S, the variance in values of trait X within a diploid

species i is defined as:
Var(X;) = 2Npuo3, x Bioot,is (S.1)

where N is the constant population size along the phylogeny, y the mutation rate, and 0%,
the variance of the mutational distribution. (Note that o2, is not the Brownian motion
evolutionary rate, o2, which is instead equivalent to po3;.) Bioot; is the expected total
length of all branch paths from the root to species ¢ coming from all gene trees generated
by S.

We can further expand B, ; as:

Brootyi = te + (1 - e*t/QN) (% + 1) + (e*t/2N> (% +1+ %) (S.2)

where ¢ and ¢, are internal and terminal branch lengths from S in generations, 1 — e~*/?V is
the probability that the sister lineages coalesce in their ancestor (i.e., a concordant gene
tree is observed), and e~'/?N the probability that they do not (i.e., the three lineages enter
their MRCA and then a concordant or discordant gene tree can be observed). These
probabilities then multiply the contributions of their corresponding gene trees to the total

path length. Concordant gene trees whose lineages sort in their immediate ancestor
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contribute a path length of ¢, + 55 + 1, while all other trees (concordant or discordant)
contribute t. + 55 + 1+ 3.

We can now arrive at equation 2 from the main text:

E(Var(X;)) = 2N uo?, {te (1) (% + 1) + (e7/2N) (% +1+ %)} . (S:3)

1.2 Covariances in the three species case

Following the same notation, the covariance between trait values of species ¢+ and j
is:

Cov(X;, X;) = 2N 1103, X Broot MRCA,, ) » (S.4)

where Bioot MRC Ai is the expected total length of all gene tree branch paths from the root
to the most recent common ancestor of species ¢ and j.
Given § = ((A,B),C), and if we let i = A and j = B, we can expand Broot MRCA .,

into:

B t t/2N 1
Buwsmcnan = (1=) (14 (g = (1- 7)) + (377 x1). 69

—t/2N is multiplied by % because species A and B are sister taxa in only one of

where term e
the three possible equifrequent topologies. Again, concordant gene trees in which the A
and B lineages coalesce in their most recent common ancestor occur at frequency

1 — e ¥?N but we must now subtract the waiting time for their coalescence from their
branch length contribution to Bioot,Mrc Acap)- This waiting time is given by 1 — % and
has been derived elsewhere (Mendes and Hahn, 2018). Note that concordant gene trees in

which both coalescent events happen in the MRCA of the three species contribute to
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Bioot MRC Aam) with a branch that is 2N generations long (the expected time to coalescence
. 1, —t/2N ; R t
of two lineages), so ze /2N is multiplied by 2N x 5 = 1.

We now arrive at equation 3 from the main text:

E(Cov(Xa, X5)) = 2N po?, {(1 - e_t/2N> (1 + (% . (1 - etfﬁ—]il))) + (%e‘t/w)} .
(S.6)

Finally, if we let i = A (or ¢ = B) and j = C, Broot,MRrCA,, ;) 18 defined as:

1
—t/2N
Bioot MRCA (5 o) = Broot, MRCA 5 c) = 3¢ 2N x 1. (S.7)

As in equation S.5, each discordant gene tree contributes with a branch that is 2/V
generations long, and so its probability %e*t/ 2N is multiplied by 2N x ﬁ = 1. From this

equation, we can then derive equation 4 from the main text:

E(Cov(Xa, X¢)) = E(Cov(Xp, X¢)) = 2N uo3, <%6_t/2N). (S.8)

2 An alternative derivation for variances and
covariances in quantitative traits, with further
considerations

As in the previous sections, we embed our derivations in a phylogenetic context by
assuming that we have n tips in a species tree and exactly one sample per species. For the
sake of simplicity in terms of notation, we measure branch lengths in generations instead of
units of 2N generations (as above and in the main text); this accounts for missing factors

of 2N in all equations below relative to equations in the main text and above. Given a
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trait controlled by L independent loci, and letting X;; be the contribution of locus [ to X;

(the value of trait X in species i) we assume an additive model, i.e. that

L
Xi=> Xi. (S.9)
=1

Because the loci are independent and identically distributed, the variance and

covariance of the trait can be computed by summing over loci,

L
Var(X;) = ZVar(XiJ)
I=1

(S.10)
= LVar(X;,)
and
L L
COV(XZ', XJ) = Z Z COV(XZ'J, Xj,lc)

=1 k=1
- S.11
= Z COV()(Z',Z7 Xj,l) ( ) )

l

LCOV(X“, Xj,l)

1

where the second line follows because Cov(X;;, X;x) = 0 if k # [ by assumption that the

loci are independent.

2.1 The variance of a single sample from a species

Consider the contribution of a single locus to the trait X in species . We proceed
by first computing the variance of this measurement by conditioning on the random
genealogy underlying that locus, and then average over all possible genealogies at the locus.

In this context, the only thing that matters is the overall height of the genealogy. Given
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the genealogy at the locus, G;, we have:
Var(X|Gi) = poiy Taroa (S.12)

where Tyirca, is the (random) coalescence time of the most recent common ancestor
(MRCA) at this locus. Note that Tyrca, occurs in the ancestral population of all species

(see Fig. S.1 for an example of the three species case).

T

—¢ ’ (AB)Cl T MRCAL
(AB)C~ “MRCA™™TTTTTTTTI TN

t

Figure S.1: Divergence times, ¢;; (tap, tapyc and tyrca for the species tree depicted in
gray), and coalescence times, Tj;; (Tap,, Tiapycy and Tyrea, for genealogy [ depicted in
black).

Let pp be the probability that k lineages enter the population of the MRCA of all
species. (Note that for the three-species phylogeny, py = (1 — e™#/2V) and p3 = e /2",
which are defined in equations S.3 and S.6.)

Then, we use the law of total variance to get:

Var(X;;) = E(Var(X;,|G)) + Var(E(X;,|G))
= E(Var(Xi,l|Ql))

= E(uo3, Tvrca)

u 1
= poy (tMRCA + 4NZ (1 - E) pk)

k=2

"2
= o2, |t AN —2N Y =
MUM<MRCA+ 2#%

(S.13)

where tyrca is the time to the root of the species tree (Fig. S.1). The second line follows
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because we set the ancestral value to 0 and have no directionality to the mutational effects.
In the fourth line, the total height of the genealogy, T\irca , is expressed as the time to the
root of the species tree, tyrea, plus the expected height of a genealogy whose k lineages
enter the MRCA of all species, 4N Y} _, (1 — %) pr- The second term of this sum follows
because 4N (1 — 1/k) is the expected time to the MRCA for a sample of size k from a
population of size 2N (and we sum over all possible probabilities p; that k lineages enter
the population of the MRCA of all species).

Computing p, can be done through a dynamic programming algorithm, and it
depends only on the overall species tree, i.e., it is not specific to any taxon.

Finally, we use this in the formula for the total variance of trait X to get:
"2
Var(X;) = Luo?, (tMRCA +4N —2N ) Epk) . (S.14)
k=2

Given the same phylogeny, equation S.14 and equation S.3 evaluate to the same result.

2.2 The covariance between samples from two species

Now consider the covariance between a single sample from each of the two species.
Again, we first condition on the genealogy underlying locus [, G;, and then average over it

to find the contribution to the variance. We have:
Cov(Xi1, X;uG)) = posy (Tareas — Tii1), (S.15)

where T;;; is the coalescence time of the common ancestor of the lineages from species ¢
and the sample from species j (e.g., Tap, in figure S.1). We again denote by pj the
probability that k lineages enter the population of the MRCA of all species. We then use

the law of total covariance to get:
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COV(X“, Xj,l) = E(COV(XZ',Z, Xj7l|gl)) + COV(E(X“), E(X] l)
= E(COV(XH, Xj7l|gl))

= poy B (Turcay — Tija)

<tMRCA + Z4N (1 — %) pk> — (tij + 2N)

k=2

(S.16)

2
= HOm

2
— 2 . — E Z
= U0 <tMRCA - tzj + 2N 2N £ k’pk)

with ¢;; being the time of divergence between species ¢ and j (e.g., tap in figure S.1). The
fourth line follows from replacing Tyirca,; and Tj;; with their expectations.

Once again, we can substitute the last line into the formula for the total covariance
to get:

k=2

"2
Cov(X;, X;) = Luoy, (tMRCA —tij + 2N — 2N Z Epk> - (S.17)

Note that in equation S.16 (and S.17), we compute the trait covariance between any
pair of species (for any species tree) without enumerating the individual contributions and
probabilities of each and all possible genealogies under the species tree. This is possible
because all genealogies having coalescences before tyrca are jointly (and implicitly) dealt
with by the recursive computation of p;, which we do not lay out here for the sake of
brevity.

Finally, given phylogeny ((A,B),C), and letting species i = A, equation S.17

evaluates to the same results as equations S.6 and S.7 for j = B and j = C, respectively.
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2.3 A comparison of the covariance structure under the

Brownian motion and coalescent models

Now, let us examine how the covariance structure derived above relates to the
covariance that is usually assumed under a Brownian motion (BM) model of trait evolution.
We first show that the variance-covariance matrix under the coalescent model can be
represented in terms of the Brownian variance-covariance matrix. We then provide bounds
that reveal important properties of the impact of incomplete lineage sorting (ILS). Finally,
we explore the asymptotic behavior of the variance-covariance matrix when one approaches
no internal coalescences, that is, when all coalescences occur in the MRCA of all lineages.

Let Luo2, = o? (02 is the evolutionary rate in the BM model), to see that
Luc?tyrea = 0tyrea is the variance of a single species under BM with rate o2, and that
Luo?,(turea — tij) = 02 (tmrea — ti;) is the covariance between two species under BM with
rate o2. This shows that there is a component of the covariance that is identical to a
Brownian model, assuming rate 0. We can then combine our results from the previous two

sections to see that the ijth entry of the variance-covariance matrix under the coalescent

model is:
— 2
Sy =S5 4 <2N(1 +0y)Luot, — 2NLuo, Y Ep’“> : (S.18)
k=2
where ZE}BM) is the covariance under Brownian motion, and d;; is Kronecker’s delta. Term

(2N (1 + 6;5)Lpo3; — 2N Luo, >, 2py) is the contribution of ILS relative to SBM) which

]
affects all entries of ¥;; equally. Interestingly, in this derivation no term indicating which

trees contribute to each X;; entry (or how likely these trees are) is necessary.
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2.3.1 The covariance structure of the BM and coalescent models in the

limiting cases of no ILS vs. maximum ILS

What can be determined about the limiting cases of (i) all sister lineages sorting in
their MRCA (no ILS), and (ii) all coalescent events occurring in the MRCA of all taxa
(maximum ILS)?

First, note that >, _, %pk =E (%), where K is the random number of lineages that

enter the MRCA population. Letting E(K') be the expected number of lineages that enter

the most recent common ancestor population, Jensen’s inequality shows that:

(3):

>

‘ “

(K) (S.19)

Sl =

because E(K) < n. This is a tight lower bound on ) ;_, %pk because when there are no
coalescences until the MRCA population of all samples, p, = 1 and p, = 0 for

2 <k <n-—1, and in that case:

2
PE = (S.20)

On the other hand, observe that:

Zn: zpk < 2": 2pk
k=2 k 2

_ ipk (S.21)

=1.

This is a tight upper bound because when all coalescences happen during the
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internal branches of the species tree (i.e., no ILS), p, = 1 and p; = 0 for 3 < k < n, so:

Thus, we see that:

2
(Maximum ILS) — <
n
Using these facts, we we can bound:

2
(No ILS) SPM12Ns;Luo?, < By < S 12N Luo?, (1 -S4 (L-j) (Maximum ILS).
n
Together, these results reveal several important aspects about the impact of ILS.
First, it shows that when there is no ILS, 2N (1 + 6;;) Lo}, is cancelled out by
2N Lpos >, %pk, and X;; reduces to EZ(-]BM) for i # 7 (see main text for a simple worked
example). The diagonal entries of ¥;; (i.e., the trait variances in different species),

)

however, will be larger than the corresponding entries of EE}BM even in the absence of ILS.

Second, as long as there is any ILS, covariances will be increased relative to Brownian
motion. And importantly, because the off-diagonal terms that are added to EE}BM) are

independent of ¢ and j, we see that the impact of ancestral polymorphism cannot be

modeled by simply changing the rate of Brownian motion.

2.3.2 Asymptotic behavior when internal coalescence is rare

When the frequency of internal coalescence approaches zero, the variance-covariance
matrix converges to a matrix where all diagonal entries are identical and all off-diagonal
entries are identical (convergence can be seen for up to 60% discordance in Fig. 5b, main

text). Here, we derive the form of the limiting variance-covariance matrix.
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Consider that no internal coalescence results in p, =1 and ppy =0 for 2 <k <n—1,

SO.

2

i
[\
El N )

So then,

2
2 = El(-f}M) +2N(1+ 5ij)L,Uz0_12M — 2NL;L012W—
n
2
=" 4 2N Luo?, (1 -+ 5@-) (S.24)

2
n

where the asymptotics follow because in order for there to be very low amounts of internal
coalescence, N must be extremely large compared to any of the internal branch lengths.
Thus, the Brownian component of the covariance is negligible.

This formula shows that even in the regime of maximal ILS, in which all coalescences
happen in the MRCA of all species and there is no phylogenetic signal, the data are still
correlated. This is because in this regime, every pair of lineages will be subtended by the
same total (i.e., over all genealogies) expected branch length path, and as a result will
share the same non-zero correlation. This pattern is not possible under Brownian motion,

where lineages from a star phylogeny will be independent and identically distributed.
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