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Fig. 6. Fertile hybrids. Mytilus mussels exhibit complex patterns of mitochondrial and nuclear 
introgression, reflecting multiple historical and recent hybridization events, some following 
introduction of non-native species for aquaculture. F1 hybrids are fertile even though parental 
species differ by 10-20% in COI nucleotide sequence. This supports view that mtDNA clustering 
is not due to species-specific adaptations.  
 
The average pairwise difference of the COI barcode in modern humans is 0.1%, i.e., about 
average for the animal kingdom. However, the most extreme differences between individual 
humans approach 1%. This difference is as great as many distinctions among neighboring 
species. Modern humans are a single population. Darwin made this point with respect to visible 
phenotypes and it applies even more strongly when neutral variants are considered: 
 
Hereafter, we shall be compelled to acknowledge that the only distinction between species and 
well-marked varieties is, that the latter are known, or believed, to be connected at the present 
day by intermediate gradations, whereas species were formerly thus connected [107]. 
 
The possibility of preferred combinations of nuclear and mitochondrial alleles within a species is 
intriguing and there is one example of experimental support. An inbred strain of mouse was 
shown to have non-optimal physiology when the mitochondrial genome from a different inbred 
line was crossed in (10 backcrosses to the nuclear line all using the female descendent from the 
first mitochondrial donor) [108]. This finding has been extrapolated as justification to urge 
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studies of nuclear-mitochondrial compatibility in human three-parent IVF (in vitro fertilization) 
[109]. On the other hand, human mitochondrial transfer experiments have found no analogous 
effect [110], arguably, owing to the different genetic structure of our species when compared to 
inbred mouse strains [111]. The differences in the two mouse mitochondrial genomes at issue 
include missense in the coding region, tRNA alterations and ori-region changes as well as 
synonymous codon changes. There are no data to pinpoint which sequences make a difference, in 
particular no evidence for a phenotype of synonymous codon changes, which the authors mark as 
“silent” (Extended Data Table 1 in [108]).  
 
This line of work and controversy adds evidence that in some cases mitochondrial-nuclear 
incompatibility may interfere with mating or health of offspring. However, the work does not 
show any effect of synonymous codon changes. No matter which mechanism for speciation is 
responsible in any specific case, the 0.0%-0.5%  accumulation of synonymous variance 
independent of population size or apparent species age is a biological fact. The variable distance 
between the most closely related living species presumably reflects differing numbers of extinct 
intermediate sequences. 
 

 
 
Fig. 7. Kimura’s equilibrium model alone is insufficient to account for usual levels of 
intraspecific variation in animal species. APD and census population size for 112 bird species 
without phylogeographic clusters are shown. Dashed line is expected APD limit due to lineage 
sorting (AVP = 2 N µ, where N = population size, and µ = mutation rate, using 10^-8 
substitutions/site/generation, or 1% per My, assuming generation time is 1 y). Average effective 
population size in the birds shown is 70 thousand (range 0-300 thousand); average census 
population size is 30 million (range 5 thousand to 500 million). Human mitochondrial variation 
(population 7.5 billion, APD 0.1%) is typical of that in other animal species.  
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Conditions that favor clonal uniformity are frequent in biology. Bottlenecks, founder effects, 
lineage sorting, and gene sweeps decrease genetic diversity in a population [112]. The question is 
how widespread these effects are in the context of defining animal species and if it is possible 
distinguish them in other than a rhetorical manner. Here we emphasize the overlap—in fact the 
near congruence—in the conditions that favor each of these mechanisms. 
 
Based on contemporary mitochondrial sequence data alone it is impossible to distinguish an 
organismal bottleneck from mitochondrial and Y chromosome specific lineage sorting since both 
mechanisms make the same prediction of a uniform mitochondrial sequence in the past [113].  
 
A positively selected allele has the potential to sweep through a population and by hitchhiking 
[114, 115] or genetic draft [116] carry the entirety of the linked genome along thereby resetting 
mitochondrial variation to zero. This scenario requires a single maternal lineage replace all 
others	[114]. It is reasonable to hypothesize that somewhere on the entire mitochondrial genome 
there arises a positively selected amino acid substitution leading to the replacement of the entire 
linked genome in the entire population. One should not mince words about what a mitochondrial 
genome sweep requires: the entire population’s mitochondrial genome must re-originate from a 
single mother.  	
 
These three pathways toward sequence uniformity should not be thought of as enemies because 
they converge in both cause and effect. Lineage sorting is most efficient when the population is 
small, when the number of different mitochondrial genotypes is small, and when the population 
is either stable or shrinking [117]. An extreme diminishment of population size followed by 
population expansion is the definition of a bottleneck. Lineage sorting is diminished during 
periods of population growth and does not occur at all during exponential growth when all 
neutral lineages leave progeny [118, 119]. The same conditions that favor lineage sorting also 
favor gene sweeps, which in the context of a totally-linked genome means one mitochondrial 
genome. The concept of “gene sweeps” emphasizes positive selection whereas “lineage sorting” 
emphasizes neutral events. Bottlenecks are extreme forms of the same conditions.  
 
Bottlenecks followed by expansion are the dominant mechanism for evolution in the microbial 
majority of life and it might seem odd to think animals should be exceptional	[120]. Ever since 
Koch, microbiologists have streaked out their bacteria to begin experiments with pure, i.e., clonal 
cultures [121]. The first experiments showing evolution of new mutants from clonal starting 
populations were the classical cases of proof that bacterial genes follow the patterns expected 
from random mutation that grow indistinguishably from sibs when unselected ([118, 122-124]). 
Clonal outgrowth and replacement of the inoculating population was inferred from the earliest 
chemostat [125] as well as later serial transfer experiments [126]. Epidemiology shows that 
repeated bottlenecks play dominant roles in the natural evolution of microbial pathogens 
including protists, bacteria and viruses [127-133]. A visually impressive demonstration of 
successive clonal selection and population outgrowth is seen in time lapse studies of bacteria 
serially mutating to new heights of antibiotic resistance [134]. On the host side of the equation, 
the clonal selection theory of immune system development was controversial when first 
proposed but its logic and experimental support proved compelling [135, 136]. 
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Mayr made a specific proposal for the role of extreme bottlenecks in speciation that followed 
from a founder effect (originally 1942, here quoted from a reprise based on interviews in 2004 
[137]): 
 
The reduced variability of small populations is not always due to accidental gene loss, but 
sometimes to the fact that the entire population was started by a single pair or by a single 
fertilized female. These “founders” of the population carried with them only a very small 
proportion of the variability of the parent population. This “founder” principle sometimes 
explains even the uniformity of rather large populations, particularly if they are well isolated 
and near the borders of the range of the species.   
 
Eldredge and Gould used this idea of allopatric speciation in small isolated populations that then 
rapidly expanded to account for the abrupt transitions seen in the broad range of the fossil record 
[138].  
 
Models of allopatric or peripatetic speciation invoke a bottleneck with an additional feature: 
What emerges from the bottleneck looks or acts differently, i.e., it is a bona fide new species. It 
may be more frequent that what emerges from a bottleneck looks and acts like a middling 
representative of what went in.  
 
If mitochondria are considered “honorary prokaryotes” then their dominant mode of frequent 
processes that lead to clonal selection and outgrowth are not counterintuitive. Whether sequence 
uniformity occurred via differential growth of 100%-linked organelle genomes, linked genomes 
within organelles, organismal bottlenecks, lineage sorting through many generations of an 
organismal population the result is the same: The mitochondrial sequence frequently becomes 
uniform.  
 
Purifying selection in linked genomes slows but does not stop the accumulation of neutral 
variation. Drift and lineage sorting during population stasis or shrinkage decrease variation.  The 
efficiency of decrease depends on the number of haplotypes in the population, as well as the 
numbers and distributions of female offspring among parents with different haplotypes[10]. A 
key prediction of naïve neutral theory that does not hold up against extensive barcode data from 
across the animal kingdom is that larger populations or older species should harbor more neutral 
variation [20, 139, 140].	The key incompatibility of naïve neutral theory with biological fact is 
that the theory considers populations at equilibrium in the sense that the population be at stable 
numbers for approximately as many generations as the mutation rate per generation. The 
evolution of modern humans offers a specific solution to the animal-kingdom-wide dilemma of 
missing neutral mutations. 	
 
Modern humans. More approaches have been brought to bear on the emergence and outgrowth 
of Homo sapiens sapiens (i.e. the modern human population) than any other species including 
full genome sequence analysis of thousands of individuals and tens of thousands of 
mitochondria, paleontology, anthropology, history and linguistics [62, 141-143]. The congruence 
of these fields supports the view that modern human mitochondria and Y chromosome originated 
from conditions that imposed a single sequence on these genetic elements between 100,000 and 
200,000 years ago [144-146]. Contemporary sequence data cannot tell whether mitochondrial 
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and Y chromosomes clonality occurred at the same time, i.e. consistent with the extreme 
bottleneck of a founding pair, or via sorting within a founding population of thousands that was 
stable for tens of thousands of years [117]. As Kuhn points out unresolvable arguments tend 
toward rhetoric.  
 
Summary and conclusion. Science greedily seizes simplicity among complexity. Speciation 
occurs through via alternative pathways distinct in terms of the number of genes involved and 
the abruptness of transitions [147]. Nuclear variance in modern humans varies by loci in part due 
to unequal selection [148] and the linkage of neutral sites to those that undergo differential 
selection. Complexity is the norm when dealing with variance of the nuclear ensemble [149-
153]. It is remarkable that despite the diversity of speciation mechanisms and pathways the 
mitochondrial sequence variance in almost all extant animal species should be constrained within 
narrow parameters.    
 
Mostly synonymous and apparently neutral variation in mitochondria within species shows a 
similar quantitative pattern across the entire animal kingdom. The pattern is that that most—over 
90% in the best characterized groups—of the approximately five million barcode sequences 
cluster into groups with between 0.0% and 0.5% variance as measured by APD, with an average 
APD of 0.2%.  
 
Modern humans are a low-average animal species in terms of the APD. The molecular clock as a 
heuristic marks 1% sequence divergence per million years which is consistent with evidence for 
a clonal stage of human mitochondria between 100,000- 200,000 years ago and the 0.1% APD 
found in the modern human population	[37, 154, 155]. A conjunction of factors could bring 
about the same result. However, one should not as a first impulse seek a complex and 
multifaceted explanation for one of the clearest, most data rich and general facts in all of 
evolution. The simple hypothesis is that the same explanation offered for the sequence variation 
found among modern humans applies equally to the modern populations of essentially all other 
animal species. Namely that the extant population, no matter what its current size or similarity to 
fossils of any age, has expanded from mitochondrial uniformity within the past 200,000 years. 
Nonhuman animals, as well as bacteria and yeast, are often considered “model systems” whose 
results can be extrapolated to humans. The direction of inference is reversible. Fossil evidence 
for mammalian evolution in Africa implies that most species started with small founding 
populations and later expanded	[156] and sequence analysis has been interpreted to suggest that 
the last ice created widespread conditions for a subsequent expansion [157]. The characteristics 
of contemporary mitochondrial variance may represent a rare snapshot of animal life evolving 
during a special period. Alternatively, the similarity in variance within species could be a sign or 
a consequence of coevolution [158]. 
 
Mitochondria drive many important processes of life[159]	[160]	[161]. There is irony but also 
grandeur in this view that, precisely because they have no phenotype, synonymous codon 
variations in mitochondria reveal the structure of species and the mechanism of speciation. This 
vista of evolution is best seen from the passenger seat. 
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