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Abstract 

The global regulator Lrp plays a crucial role in regulating metabolism, virulence and 
motility in response to environmental conditions.  Lrp  has previously been shown to activate or 
repress approximately 10% of genes in Escherichia coli.  However, the full spectrum of targets, 
and how Lrp acts to regulate them, has stymied earlier study.  We have combined matched 
ChIP-seq and RNA sequencing under nine physiological conditions to map the binding and 
regulatory activity of Lrp as it directs responses to nutrient abundance. In addition to identifying 
hundreds of novel Lrp targets, we observe two new global trends: first, that Lrp will often bind to 
promoters in a poised position under conditions when it has no regulatory activity, and second, 
that nutrient levels induce a global shift in the equilibrium between non-specific and 
sequence-specific DNA binding.  The overall regulatory behavior of Lrp, which as we now show 
regulates 35% of E. coli genes directly or indirectly under at least one condition, thus arises 
from the interaction between changes in Lrp binding specificity and cooperative action with other 
regulators. 
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Introduction 
Regulation in response to changing nutrient conditions is a vital characteristic for 

free-living microbes, which must rapidly sense and respond to their environment in order to 
optimize fitness.  The frequently studied model microbe Escherichia coli (E.coli) uses a 
hierarchical regulatory architecture to coordinate responses to environmental changes, with the 
activity and actions of dozens of specific transcription factors organized by seven global 
regulators: ArcA, FNR, Fis, CRP, IHF, H-NS and Lrp [1].  E. coli Lrp is the eponymous member 
of the Lrp/AsnC protein family, and regulates 70% of the 215 genes with differential expression 
upon entrance to stationary phase [2].  It influences a variety of cellular processes: amino acid 
synthesis, degradation and transport, porin expression, and pilus formation [3,4].  The latter 
represents an example of how Lrp homologues have recently been tied to expression of 
virulence genes [5–10].  
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Lrp itself is an 18 kD protein containing a helix-turn-helix DNA binding domain and a 
regulator of amino acid metabolism (RAM) domain [11].  In vivo, it is thought to exist in an 
equilibrium between octameric and hexadecameric states [12].  Binding of leucine to the RAM 
domain is known to favor formation of octamers over hexadecamers [13] and to increase the 
nonspecific DNA binding affinity of Lrp [14].  In addition, the presence of leucine affects Lrp’s 
regulatory role.  Depending on the target, Lrp either activates or represses transcription, and in 
turn, leucine binding to Lrp either potentiates or inhibits Lrp function [15].  Recent studies also 
indicate that Lrp may respond to other amino acids, including alanine, methionine, isoleucine, 
histidine and threonine [16].  Cho et al. [15] performed chromatin-immunoprecipitation (ChIP) 
using epitope-tagged Lrp under three conditions, resulting in some expansion of the known Lrp 
regulon.  However, in comparison to other global regulators, the Lrp regulon as currently known 
is relatively small, suggesting that all targets have not been identified.  In addition, although the 
concentration of Lrp is not as high as some nucleoid-associated proteins like H-NS and HU, it is 
expressed to a similar degree as CRP [17].  Thus one might expect that their regulons would be 
of similar size; however, there is currently a dramatic discrepancy between these proteins with 
CRP annotated as regulating 572 genes, while Lrp only regulates 109 [18].  Based on estimates 
about the levels of Lrp and the percentage found free of the nucleoid [14], we estimate that 
there should be between 400 and 500 Lrp octamers bound and capable of modulating 
transcription levels under logarithmic growth in both rich and minimal media conditions. 
Additionally, we still lack a mechanistic understanding of how Lrp regulation occurs.  

Making use of a carefully refined ChIP-grade antibody for Lrp, we employed 
chromatin-immunoprecipitation followed by DNA sequencing (ChIP-seq) of native Lrp in a 
variety of media conditions and growth phases to assess the full spectrum of Lrp binding sites. 
Coupled RNA-seq experiments on both wild type (WT) and Lrp knockout (lrp::kanR) cells 
enabled us to distinguish between productive and apparently non-functional binding events, and 
between direct and indirect Lrp regulatory targets. This rich, high-confidence data set has 
allowed us to categorize hundreds of novel direct and indirect Lrp targets, expanding Lrp’s 
regulon to 35% of genes in E. coli (roughly one-fifth of which are direct targets of Lrp), 
compared to the 10% previously documented.  In addition, we identify a surprising but highly 
prevalent mode of Lrp binding in which Lrp binds to a site under many physiological conditions, 
but only alters transcription under certain conditions, similar to poised transcription factor 
binding in eukaryotes [19,20].  We show that some of Lrp’s poised regulation may be explained 
by interactions with other regulatory factors such as the nitrogen-response sigma factor, σ 54. 
Despite extensive efforts, we were unable to identify systematically enriched sequence 
determinants sufficient to either explain transitions from poised to active regulation, or predict 
Lrp activation from Lrp repression.  However, we did observe a shift in Lrp’s DNA binding 
specificity in response to varying nutrient conditions.  The conservation of Lrp across many 
species of bacteria and archaea [21] argues for its critical role in organismal survival, and here 
we provide the most comprehensive picture of the Lrp regulon in E. coli to date, establishing 
rules for Lrp behaviour that will likely illuminate study of the protein in many species. The 
general principles of Lrp’s behavior across conditions may also serve as a template for other 
bacterial global regulators.  
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RESULTS 
ChIP-seq and RNA-seq identify hundreds of novel Lrp targets 

We performed both ChIP-seq and RNA-seq on WT and Lrp knockout (lrp::kanR) cells to 
establish a global picture of Lrp binding and regulatory effects in nine physiological conditions. 
Conditions and time points will be referenced as follows: the time points are denoted X_Log 
(logarithmic phase), X_Trans (transition point), and X_Stat (stationary phase), where the X may 
be MIN (minimal media), LIV (minimal media supplemented with branched-chain amino acids), 
or RDM (rich defined media).  Overall, the combination of Lrp binding data from the ChIP-seq 
experiments and the expression data from the RNA-seq experiments resulted in identification of 
hundreds of novel Lrp targets.  We document a ten-fold range (between 65 and 668) in the 
number of Lrp peaks identified across the nine physiological conditions examined here.  Fewer 
Lrp binding sites are identified in media with higher nutrient conditions (either LIV or RDM) 
relative to the MIN (Fig 1A), in agreement with previously published Lrp ChIP data [15] and with 
Lrp’s known role as a regulator which responds to decreasing nutrient levels.  However, our 
data identifies between two- and five-fold more binding sites overall than previous studies.  In 
general, we document more Lrp binding sites at later time points (Trans and Stat) relative to Log 
(Fig 1A); again in agreement with previously published Lrp ChIP data [15] and with the known 
role of Lrp as being a critical regulator at the transition to stationary phase.  Comparing our data 
to previously published ChIP-ChIP studies [15], we identify extensive overlap in binding 
locations: 96% of sites in prior ChIP-ChIP data are reproduced in our data at MIN_Log (26.8 fold 
enrichment; p < 0.001, permutation test, r=1000; here and throughout the manuscript we use r 
to refer to the number of replicates used for resampling tests), 44% at LIV_Log (121.7 fold 
enrichment, p < 0.001, permutation test, r=1000) and 84% at MIN_Stat (15.5 fold enrichment, p 
< 0.001, permutation test, r=1000).  Comparing at the level of genes which are identified as 
having a Lrp-dependent change in expression as measured by RNA-seq, our data set overlaps 
with 78% of the known targets in RegulonDB (1.50 fold enrichment, p < 0.001, permutation test, 
r=1000), 77% of the previously identified ChIP-ChIP targets (1.49 fold enrichment, p < 0.001, 
permutation test, r=1000) [15], and 89% of the previously identified microarray targets (1.72 fold 
enrichment, p < 0.001, permutation test, r=1000) [2], showing good agreement across the 
variety of strains and media conditions present in the compared studies, despite some 
variations in precise experimental conditions.  We also identify over 900 novel Lrp binding sites, 
and 2104 genes with previously undocumented Lrp-dependent expression. 

Many well-studied Lrp targets are reproduced in our data. IlvI (b0077) is an enzyme 
critical for valine and isoleucine biosynthesis that is known to be activated by Lrp [22]. 
Consistent with prior work, we see a strong Lrp binding signal at the ilvI transcription start site 
(Fig 1B, left panel), and a Lrp-dependent activation of ilvI transcription in several media 
conditions (Fig 1B, right panel).  The extent of activation is weakened or eliminated completely 
in LIV or RDM conditions, in agreement with previous studies showing that leucine inhibits the 
Lrp-mediated activation of ilvI [23].  

A strong Lrp binding signal under MIN conditions is also evident at the promoter region 
for OppA, a protein critical for oligopeptide transport [24].  Lrp is known to repress expression of 
the oppABCDF operon in the absence of leucine [25].  Accordingly, we see Lrp-dependent 
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repression of oppA under MIN conditions (Fig 1C, right panel).  The Lrp binding signal is 
strongly attenuated, and there are no Lrp-dependent expression effects, during LIV and RDM 
conditions (Fig 1C).  
 
Global analysis reveals that Lrp has condition-specific modes of binding and regulation 

Global regulators are known to act both directly, by binding target sites and modulating 
transcription levels, and indirectly, by modulating the expression of transcription factors which 
have their own targets [1].  Previously, most focus on Lrp regulation has been at the direct 
target level.  By comparing the binding data from our ChIP-seq experiments and the 
corresponding expression data provided by our RNA-seq experiments, we are able to identify 
and categorize both direct and indirect targets under a variety of physiological conditions.  Direct 
and indirect targets are both characterized by Lrp-dependent changes in expression, but only 
direct targets have a Lrp binding signal in their regulatory regions, defined as 500 bp upstream 
and downstream of the annotated transcription start site (Fig 2A). In addition, our data shows 
many examples of a converse mode of Lrp activity, in which binding of Lrp is apparent at a 
particular promoter, but there are no Lrp-dependent changes in expression (these sites 
comprise 65-94% of all instances of Lrp binding across the conditions that we studied).  We 
refer to such cases as instances of nucleoid-associated protein (NAP) activity of Lrp, thus 
described due to the similarity of Lrp’s behavior at these locations with highly abundant, 
low-specificity NAPs such as H-NS and HU [26].  In our data set, neither NAP-type Lrp targets 
nor genes unconnected to Lrp show Lrp-dependent RNA expression changes by definition, but 
the NAP targets have a Lrp binding signal (Fig 2A).  This is apparent, for example, at the ybjN 
gene; its promoter region is always bound by Lrp, but never exhibits a significant change in 
expression, thus making it a NAP-type target under all conditions (Fig 2B).  Interestingly, YbjN is 
proposed to play a role in stress response and motility [27], areas to which many of Lrp’s targets 
are known to belong.  The consistent binding of ybjN’s promoter by Lrp coupled with the 
similarity of its role to other Lrp targets suggests that Lrp may always be poised to regulate 
YbjN, and that it may be a direct target of Lrp under conditions not tested here.  

Based on our RNA-seq data, we find that 1.7% to 29% of all E. coli genes are regulated 
by Lrp in each condition (Table 1), equaling 2320 unique Lrp-regulated genes (50% of total E. 
coli genes).  However, due to the presence of operons in E. coli, in the analysis below we only 
categorized genes (as direct, indirect or NAP-type targets) if a transcription start site exists in 
the PromoterSet dataset in RegulonDB version 9.4 within 500 base pairs upstream of the start 
of the coding region, resulting in categorization of 2875 genes out of the 4658 present in  E. coli 
MG1655.  From our analysis of that categorizable subset, we note that 35% of all E. coli genes 
are regulated by Lrp, either directly or indirectly, in at least one condition.  Out of those, about 
81% are regulated indirectly, 13% are regulated directly, and 6% are labelled as indirect and 
direct targets in different conditions.  Due to the restriction on categorizing genes noted above, 
the counts given here are an underestimate.  If we assume each transcription unit is fully 
transcribed and therefore assign the Lrp categorization of the first gene to each subsequent 
gene in the transcription unit, that increases the Lrp regulon to 49% of all E. coli genes (2289 
genes/4658  total genes), with 16% of that total being direct targets, 78% being indirect targets 
and 6% being categorized as both in different conditions.  This extended estimate matches the 
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fraction of genes that show a Lrp-dependent change in expression as measured by RNA-seq. 
In addition, since some later genes within a transcriptional unit have independent transcription 
start sites, there exists the possibility of those genes being categorized as indirect targets 
because the operon itself is Lrp-controlled even if there is no Lrp peak near the later gene in the 
operon.  Given that we do not know how often the overall operon start site is used compared to 
the internal start sites, we are not able to place those genes unambiguously as indirect targets. 
We calculated how many of these ambiguous indirect targets were present per condition and 
noted that it is a fairly small percentage of total indirect targets, ranging from 1.2% to 12.0% 
(with a median of 5.7%).  These ambiguous targets comprise 44 total genes in E. coli (Table 
S1).  Given the small size of this gene subset, we proceeded with the original categories and 
included the ambiguous indirect targets with the indirect targets in the analysis below.  

We next used hierarchical clustering to order the categorized genes (those 2875 genes 
with an annotated transcription start site) by assessing how similar their categorization 
assignments were over the nine sampled physiological conditions (Fig 2C).  We immediately 
noted that genes can transition between labels, e.g . from direct target to NAP, depending on the 
media condition and time point.  As seen with the case of YbjN above, these findings suggest 
that Lrp is often poised at a particular gene under many conditions, but must act combinatorially 
with some other factor or environmental stimulus in order to actually alter expression.  In 
addition, we see evidence for leucine-independent and leucine-dependent binding; some genes 
are always NAP-type or direct targets (i.e. Lrp bound) regardless of condition (the 
leucine-independent group) and some are only bound during MIN conditions (the 
leucine-dependent group).  There is no obvious cluster that is bound only under conditions of 
high leucine levels.  We also observe a dramatic increase in the number of indirect targets at 
MIN_Trans and RDM_Stat, going from 150 to 510 indirect targets between MIN_Log and 
MIN_Trans, and 34 to 920 indirect targets from RDM_Trans to RDM_Stat. These conditions 
likely represent points in growth at which Lrp’s regulatory activity is particularly important for 
fitness.  
 
Lrp binding is enriched among regulatory regions of the genome 

As detailed in the Methods section, our process for categorizing genes as Lrp targets 
involved testing whether there was a called Lrp peak within 500 bp upstream or downstream of 
each annotated transcription start site (TSS) in the E. coli genome.  If there were multiple 
annotated transcription start sites, we took 500 bp upstream of the most distal TSS (relative to 
the start of the gene itself) and 500 bp downstream of the most proximal TSS.  We classified 
those approximately 1000 bp windows as regulatory regions, and tested whether Lrp binding 
was significantly enriched in those regions.  Overall, 48% of the E. coli genome falls into these 
regulatory regions.  However, we observe between 62% and 86% of Lrp peaks appearing in 
regulatory regions.  A permutation test in which the same size and number of peaks were 
randomly shuffled across the genome indicated that there is significant enrichment for Lrp 
binding in regulatory regions (Table S2).  This strongly supports Lrp’s role as a specific 
regulatory protein.  

The Lrp peaks not in regulatory regions were distributed in gene coding regions, 
between genes in a transcription unit, or in truly intergenic regions at relative ratios similar to the 
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proportion of those regions on a genome-wide scale (Table S3).  We investigated whether any 
of those peaks might affect full transcription of an operon, hypothesizing that Lrp binding in the 
middle of an operon might block RNA polymerase.  From the RNA-seq data, we identified any 
genes that showed a Lrp dependent change in expression, were not classified (and so did not 
have their own transcription start site), had a Lrp response that was different from the first gene 
in the corresponding transcriptional unit, and had a Lrp peak within 1000 bp upstream or 
downstream of the gene coding region.  Due to incomplete annotation of the E. coli genome, 
some of these genes appear to be ones that should have a unique transcription start site based 
on visual inspection of the genomic context.  However, for the remaining examples, we 
compared the RNA-seq coverage to the location of the peak as identified by the Lrp ChIP 
signal.  As seen for the binding at ilvI, we again note that Lrp binding does not guarantee a 
regulatory effect.  Genes that have a strong internal Lrp binding site under all conditions do not 
evince a Lrp dependent change in expression at all times, and Lrp binding sites within an 
operon do not, in general, appear to hamper transcription (Fig S1).  These findings again 
suggest that Lrp regulation is often dependent on cooperative interaction with other regulatory 
factors.  

 
Direct Lrp targets explain the Lrp-dependent regulatory effect at some indirect targets 

Given the high proportion of indirect Lrp targets, and especially the dramatic increase in 
the number of indirect targets at MIN_Trans and RDM_Stat, we investigated whether some of 
the expression changes of those indirect targets can be explained by the activity of direct Lrp 
targets at those time points.  As Lrp is a global regulator, we expected to find that some 
percentage of the indirect targets could be explained by considering the known targets of the 
transcriptional regulators categorized as direct targets under that condition.  We would expect 
that in such cases, we should observe an enrichment among Lrp indirect targets of genes 
known to be regulated by Lrp direct targets. We observe significant, albeit small, enrichment of 
explainable indirect targets across all conditions except MIN_Stat, LIV_Stat and RDM_Trans; a 
maximum of 8% of indirect targets can be explained by the currently known targets of direct Lrp 
targets (Table S4).  Direct Lrp targets that are not currently identified as transcriptional 
regulators or regulators with incompletely documented regulons could account for why we are 
not able to explain more instances of indirect regulation, as could transcriptional units regulated 
by aspects of cellular state that are themselves Lrp-dependent.  Several key transcription 
factors that are direct Lrp targets are responsible for explaining the identified indirect Lrp targets 
across conditions: Nac, GadW, PurR, LeuO, ArgR, QseB, CysB, NagC, SlyA, SoxS, and LrhA. 
Several of these transcription factors have also previously been identified as Lrp targets [28].  

Investigating at a local as opposed to global scale provides several informative 
examples.  At LIV_Log, LIV_Trans and RDM_Log, the dual regulator LrhA is a direct 
Lrp-activated target gene (Fig 3A).  LrhA activates fimE and represses flhC and flhD (Fig 3B). 
At LIV_Log, fimE is indirectly activated; at LIV_Trans, flhC is indirectly repressed, and at 
RDM_Log,both flhC and flhD are indirectly repressed (Fig 3A).  While this pattern does not show 
activity at every LrhA target in each condition, overall it suggests that indirect regulation of fimE 
and flhCD by Lrp may be explained in some cases by direct LrhA activation by Lrp.  All three 
target genes are also known to be regulated by other transcription factors, potentially explaining 
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the incomplete activity from LrhA.  Similarly, at MIN_Trans, the transcriptional regulator CysB is 
a direct Lrp-repressed target gene (Fig 3C).  CysB is known to activate tcyP and cysI, among 
other genes (Fig 3D).  Both tcyP and cysI were categorized as indirect Lrp-repressed targets, 
supporting the fact that Lrp repression of cysB is what leads to repression of tcyP and cysI.  

 
Direct and indirect Lrp targets have both shared and unique GO-term classifications 

After grouping direct and indirect targets, we used iPAGE [29] to search for enrichment 
of gene ontology (GO) terms that share mutual information with our categorization scheme.  We 
observe the general trend that pathways involved in direct synthesis or acquisition of nutrients 
(e.g. amino acid transport and L-serine biosynthetic processes) tend to be direct targets or 
NAP-type targets, whereas those involved in regulation of cellular behavior and foraging 
strategies (e.g. flagellum and motility) tend to be indirect targets, particularly under the richer 
media conditions LIV_Log and RDM_Log (Fig 4A, Fig S2A).  Interestingly, in testing for 
enrichment among the large block of indirect targets at RDM_Stat, we observe that it is depleted 
for flagellum-related genes.  Under minimal conditions, indirect targets overlap with some of the 
transport pathways otherwise mainly observed to be enriched among direct targets.  

We also see overlapping enriched GO-terms at direct and NAP-type targets, suggesting 
that Lrp may preemptively bind some target genes before conditions occur at which regulatory 
action is required (discussed in more detail below).  A particularly clear example of such poised 
regulation comes in identifying significant GO-terms among the genes that fall into the 
leucine-independent cluster from the categorization heat map; this cluster includes genes that 
are bound under almost all conditions, but only become indirect or direct targets during certain 
conditions.  Strikingly, enriched GO-terms include leucine transport, serine biosynthetic 
processes and general amino acid transport (Fig 4B).  This indicates that regardless of the level 
of leucine, Lrp’s traditionally recognized small molecular partner, Lrp remains bound to and 
poised to regulate critical genes if conditions change.  Furthermore, the key signal causing a 
transition between NAP-type activity and direct transcriptional regulation is unlikely to be leucine 
levels themselves, as NAP to direct changes occur at certain genes across the time course of 
growth under Minimal conditions (see Fig 2C). Overall, the dynamic nature of what constitutes a 
Lrp-regulated target under different media conditions and points of growth demonstrates the 
complexity of the Lrp regulon. 

In order to illuminate what distinguishes the various effects of Lrp binding on gene 
regulation, we tested whether splitting direct and indirect targets into sub-classes that are 
activated or repressed by Lrp revealed a different pattern of GO terms.  From this analysis, it is 
evident that the flagellar genes are enriched among indirect Lrp-repressed targets specifically 
(Fig S2B).  In addition, many of the genes involved in transport processes appear to be direct 
Lrp-repressed target genes, whereas the genes involved in biosynthetic processes are often 
direct Lrp-activated target genes.  Interestingly, at MIN_Trans, a condition in which we see a 
spike of indirect targets, there is a specific class of GO-terms which are enriched for either 
indirect Lrp-activated (e.g. ferrous iron binding and N-terminal protein acetylation) or indirect 
Lrp-repressed targets (e.g. NAD binding and histidine biosynthetic processes).  Those 
GO-terms do not have enrichment among indirect targets at RDM_Stat, reinforcing the notion 
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that Lrp acts on unique sub-clusters of its targets under different conditions (as seen in Fig 2C 
above).  
 
Lrp is poised at many targets to enable combinatorial regulation 

Upon filtering and categorizing genes, we noticed immediately that many genes shift 
between being a NAP-type target and a direct Lrp-activated or repressed target under different 
conditions (see Fig 2C above).  In fact, 91% of direct Lrp targets are NAP-type targets in at least 
one condition, and thus have Lrp bound to their promoter even though it has no impact on 
transcription. For example, the MIN_Trans cluster consists of genes that are bound by Lrp in all 
Minimal media timepoints, but only show Lrp-dependent changes in transcript level during the 
Trans timepoint.  This suggests that Lrp binds some promoters in a poised position under a 
broad range of conditions, but only regulates when certain additional criteria are met, perhaps 
by coordinating with a second regulatory factor to enable combinatorial logic.  Among genes 
that undergo a transition between being a NAP-type target and a direct target, 38.8% become 
activated, 47.6% become repressed and 13.6% become both activated and repressed in 
different conditions.  

For example, potF, a component of the putrescine ABC transporter [30], shows Lrp 
binding in its promoter region under all nine conditions measured in our data, but is only 
activated by Lrp during MIN, LIV_Stat, RDM_Log and RDM_Stat conditions (Fig 5A).  In 
contrast with the variable Lrp-dependent RNA expression levels, Lrp binding at potF is very 
similar across conditions, spanning a similar length of DNA, and showing maximal signal at the 
same point.  potF was previously identified as a Lrp regulated target which is repressed by Lrp 
alone, and activated when leucine is present [15].  However, those experiments employed 
glucose rather than glycerol as a carbon source, and monitored response to the addition of 10 
mM leucine alone versus 0.2% (w/v) isoleucine, valine and leucine (equivalent to 15.25 mM 
leucine) which could explain the differences in observations of Lrp’s regulatory action at potF.  

lrhA, a transcriptional regulator involved in fimbriae synthesis [31], also has Lrp binding 
signal under all conditions.  Interestingly, it is activated only at the high-leucine conditions 
LIV_Log, LIV_Trans and RDM_Log (Fig 5B), a different pattern from many other activated 
genes, which generally are activated in later time points in the growth curve or under MIN 
conditions.  Again, the Lrp binding signal at lrhA is very similar across conditions, with only slight 
variation in the signal magnitude, in contrast to the sharp differences in the Lrp-dependent RNA 
expression changes. Thus, the changes in regulatory activity cannot be due to changes in the 
location of Lrp binding. 

dadA, which encodes a critical enzyme in amino acid degradation [32], is one of the 
interesting class of examples that we see transition from a NAP-type target to being a direct 
Lrp-activated or repressed target in different conditions.  dadA expression is strongly 
Lrp-repressed at MIN_Log, whereas it is activated during LIV_Log, LIV_Trans or RDM_Trans 
(Fig 5C).  Lrp is known to repress dadA in the absence of leucine [33], a fact strongly supported 
by our data in which we see Lrp-mediated repression in minimal media and alleviation of 
repression during growth with higher levels of leucine.  This variability in regulatory effect is in 
sharp contrast to the almost identical Lrp binding signal present in all nine conditions.  Another 
gene which transitions between being a NAP-type target and being a direct Lrp-repressed target 
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while having a similar Lrp binding profile is pepD, which is repressed at MIN_Trans and 
RDM_Stat (Fig 5D).  pepD encodes Peptidase D, which cleaves a variety of dipeptides [34].  It 
is important to note that the location of the Lrp binding peak relative to the transcription start site 
does not systematically affect the direction of Lrp regulation (for example, compare ilvI and 
potF).  

 
Lrp connects with other regulatory factors 

The phenomenon outlined above -- of Lrp frequently binding to a promoter under many 
conditions but only showing regulatory activity under a few -- suggests that other regulatory 
factors, such as σ factors or transcription factors, may be important in triggering an activating or 
repressive effect secondary to Lrp binding.  If a σ factor and Lrp co-regulate some set of targets, 
we expect to see enrichment for direct targets relative to NAP-type targets within the σ factor’s 
regulon, especially at conditions when the σ factor is most active.  To establish relative σ factor 
activity, we determined the average expression of all known σ factor target genes at each of our 
nine experimental conditions (Fig 6A) [18]. One caveat of our analysis is that some data is 
missing since we do not classify all genes in relation to Lrp, as outlined above, and, likewise, it 
is not known by which σ factor all genes that are classified are regulated. Subject to these 
constraints, our analysis in this section included 1534 genes.  In addition, in some cases, 
overlap between other factors and Lrp may not indicate a direct interaction but may indicate that 
the other factor and Lrp have independent roles or functions at shared targets, here termed 
convergent regulation.  However, if Lrp does interact directly with certain σ factors to activate 
target genes at specific conditions, there are a few possible explanations for why the NAP-type 
to direct target transition occurs at those points: 1) the transition only occurs when the genes’ 
controlling σ factor is active; 2) the nature or extent of Lrp binding itself changes at that 
condition; or 3) an accessory factor needed for Lrp-σ  factor interaction is only present at that 
condition.  

We applied a permutation test to identify any σ factors with a significant enrichment of 
overlap between their targets and all direct Lrp targets or specifically direct Lrp-activated 
targets.   All q-values and enrichment levels for the permutation test with all direct targets are 
listed in Table S5; results from the permutation test with only direct-activated targets are in 
Table S6 (r=10000 for both).  Only two σ factors had significant overlaps: σ 54 at MIN_Trans and 
σ 38 at RDM_Stat. A role for σ 38  at stationary phase is logical since it coordinates general stress 
responses in E. coli [35].  However, direct σ 38/Lrp interaction is not likely since many of the 
Lrp-σ 38 shared regulated genes at RDM_Stat are NAP-type Lrp targets in other conditions 
(MIN_Stat, LIV_Stat and RDM_Trans) when σ 38 is more active (Fig 6A,B).  Therefore, this 
overlap is likely a result of convergent regulation between Lrp, a “feast-famine” regulatory 
protein, and σ 38, a stress-response σ factor.  

In contrast with σ 38, for σ 54 we observe marked enrichment, especially of direct 
Lrp-activated targets, under the condition when σ 54 is most active.  Specifically, we document 
enrichment for direct Lrp targets with σ 54(σ N) at MIN_Trans (1.8-fold enrichment, q-value: 0.092). 
At MIN_Trans, 39% of Lrp binding sites overall are direct targets, whereas 68% of σ 54 targets 
with Lrp binding sites are direct targets.  Furthermore, as we would expect for the case where 
Lrp acts as a co-activator for a given σ factor, there is enrichment specifically for direct 
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Lrp-activated target genes among σ 54 targets at MIN_Trans (3.0-fold enrichment, q-value: 
0.022).  Overall, 20% of Lrp binding sites are direct activated targets at MIN_Trans, whereas 
Lrp-bound targets in the σ 54 regulon are direct Lrp-activated targets 59% of the time, a 3.0-fold 
increase.  σ 54 regulates many genes involved in nitrogen assimilation [36], and these results 
indicate that Lrp is likely involved in co-activating some σ 54 dependent genes, in agreement with 
Lrp’s role in sensing and responding to nutrient levels.  At MIN_Trans, Lrp actually also weakly 
represses σ 54 itself directly; σ 54 is not a direct or indirect target under any other conditions (Fig 
S3B).  

Average expression of σ 54 targets peaks at MIN_Trans (Fig 6A), in agreement with when 
we see overlap between its targets and direct Lrp-activated targets (12.5% of the direct 
Lrp-activated targets at MIN_Trans are known σ 54 targets, and conversely 21% of the classified 
σ 54 targets are direct Lrp-activated targets at MIN_Trans).  Nine out of the thirteen overlapping 
target genes only become a direct Lrp-activated target at MIN_Trans.  The remaining four genes 
(astC, hisJ, potF , yhdW) are affected at other conditions when there is a slight peak in σ 54 

activity, as measured by the overall expression of known target genes (Fig 6A), and could be 
subject to other regulatory control.  For example, astC and hisJ are also regulated by ArgR in 
some conditions [37,38].  The fact that the shared regulated genes are only direct Lrp-activated 
targets when σ 54 itself is most active supports the notion that σ 54 may require Lrp binding to 
activate transcription of certain genes. At a molecular level, this suggests that while expression 
of σ 54  itself during MIN_Trans does not require Lrp (and in fact, is slightly repressed by Lrp), its 
transcriptional activity is enhanced by the presence of Lrp (also see Fig S3A).  

To investigate the possibility that Lrp binding itself changes to facilitate interaction with 
σ 54, we visualized the Lrp-ChIP binding signal at shared direct Lrp/σ 54 targets. Changes in Lrp 
binding, either complete reversals of binding between conditions or changes in peak length, are 
evident in the cases of some genes (glnH, yeaG and yhdW), while others, such as ibpB and 
potF have almost identical binding regardless of condition (see Fig 5A for potF Lrp-binding 
signal and Supplementary Data File 1); thus, it is unlikely that changes in Lrp binding itself are in 
general responsible for the regulatory interaction with σ 54. Given that σ 54 is known to require 
activating factors, it is likely that an accessory factor may facilitate Lrp/σ 54 co-regulation.  

To identify other candidates for co-regulators acting with Lrp, just as we tested for Lrp 
co-regulation with σ factors, we investigated whether Lrp has particular correlations with any of 
the other annotated transcription factors in E. coli.  We compared the average expression of all 
annotated targets of individual transcription factors in WT and Lrp KO conditions to identify 
those transcription factor regulons that show Lrp-dependent changes.  Several transcription 
factors were identified as significant based on a permutation test (r=1000): ArcA, CsgD, EvgA, 
FlhDC, GadW, LeuO, ModE, NtrC and TorR.  We then applied the additional threshold of 
requiring an average four-fold or greater change in expression of target genes dependent on Lrp 
status (WT vs. KO) to identify the most biologically relevant interactions (Fig 6C); the 
transcription factors ArcA, CsgD and FlhDC did not pass this filter and were eliminated from 
further analysis.  EvgA, LeuO, ModE and TorR all likely represent convergent regulation due to 
the existence of no or limited overlap between transcription factor targets and direct Lrp targets. 
The transcription factor GadW’s Lrp dependency at LIV_Log is likely due to it itself being a 
direct Lrp-repressed target (Fig S3C) -- in investigating the classification of genes in its regulon, 
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we see over half are indirect Lrp-repressed genes at LIV_Log.  Like the examples of LrhA and 
CysB shown above, we again see that direct regulation of a transcription factor by Lrp can 
mediate changes in many other genes.  

The transcription factor NtrC is a notable exception to the above trends, as 33% of all its 
targets are also direct Lrp-activated targets (Fig 6D).  This number is an underestimate since it 
only accounts for the genes classified in our scheme (namely those with annotated promoters); 
if we expand our classification to include the genes that comprise the transcription units of those 
classified genes, 74% of NtrC targets are also direct Lrp-activated targets.  Two indirect 
Lrp-activated transcription units comprise the remainder of the NtrC regulon.  NtrC is one of the 
transcription factors which can serve as an activator of σ 54, so the intersection between Lrp, 
NtrC and σ 54  is interesting to consider.  Activators of σ 54  often bind at a distance from the 
promoter and so require significant DNA bending to come in physical contact with σ 54 [39]. IHF 
is a DNA bending protein known to facilitate DNA bending at some target genes, but our data 
indicates that Lrp may also have a role in DNA bending, and thus activation of NtrC/σ 54 

transcribed genes (see Discussion).  Thus, while many instances of Lrp regulation appear to 
require co-regulation with as yet unidentified regulatory factors, we are able to identify some 
likely possible mechanisms.    
 
Lrp binding sites have a condition- and time-specific motif preference 

While not as invariant as motifs for other E. coli transcription factors, a 15 base-pair motif 
comprising terminal inverted repeats and an AT-rich center was previously identified for Lrp 
[15,40].  We wanted to determine if a similar motif is apparent in our data, and how well Lrp 
binding is predicted by the presence of Lrp motifs.  We used a logistic regression model to 
classify 500 bp windows of the genome as either containing a Lrp peak or not, using as 
predictors the presence of previously documented Lrp motifs and the AT content (given the AT 
richness of the Lrp motif itself). Starting with a minimal model containing only an intercept term, 
we created more complex models by adding a single predictor at a time and scoring each new 
model with the Bayesian Information Criterion (BIC) as displayed in Fig 7A; n.b. a lower BIC 
indicates a more parsimonious model.  A minimal model was chosen by adding to the new 
model the predictor with the largest decrease in BIC from the intercept-only model and iterating 
this process until the change in BIC switched sign (indicating that additional terms were no 
longer informative).  A similar analysis was done in which we started with a full model containing 
all of the predictors and removed the predictor with the largest increase in BIC until the change 
in BIC switched sign (Fig S4).  In both cases we arrived at the same set of minimal models for 
each condition.   Intriguingly, among the minimal models for each condition, we see a shift 
between a non-specific preference for AT-rich regions at Log points and specific motif 
preference at later time points across all conditions (Fig 7A).  In each condition, from early to 
late timepoints, there is a decrease in how much information is provided by the AT-content in 
terms of predicting Lrp binding.  While their relative importance to the model shifts, the minimal 
variables needed to explain most of the data include a combination of AT-content and 
established Lrp motifs across all conditions.  This suggests that Lrp binding is more non-specific 
in earlier phases of growth, and only gains specificity upon nutrient limitation and entrance into 
stationary phase, which also agrees with our observed increase in the number of peaks in later 
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time points.  Additionally, this pattern of specificity agrees with Lrp’s proposed position of 
importance as a regulator of the transition to stationary phase.  However, since we see the 
same lack of specificity in LIV_Log and MIN_Log (two conditions with dramatically different 
leucine concentrations), we can conclude that leucine level alone is not sufficient to shift the 
binding specificity of Lrp, but rather, that other signals (such as, potentially, energy/carbon 
source availability) must also be integrated somehow into Lrp’s binding.  

The performance of the derived models is relatively good; the receiver operator curves, 
which show the recall for every potential false positive rate, trend toward the upper left corner 
where a perfect model would be (Fig 7B; quantified by area under the curve, ROC-AUC, in 
Table S7).  In addition, the Matthews correlation coefficient (MCC), a combined measure of 
precision and recall which has potential values from 0 to 1, ranges from 0.25 to 0.60 (Table S7). 
These performance metrics were robust to withholding of shuffled subsets of the data, as 
indicated by minimum and maximum values found in five-fold cross-validation (values in 
parenthesis in Table S7).  Overall the specificity of these models is much better than their 
sensitivity, indicating that they perform well in rejecting locations where Lrp does not bind. 
However, there is still substantial room for improvement in calling Lrp bound sequences. 
Interestingly, the sensitivity drops in the conditions where specific sequence motifs are more 
informative. It is likely that we are missing additional features that would improve the sensitivity 
in these conditions; however, efforts to discover additional sequence determinants of Lrp 
binding were unsuccessful.  This could simply indicate that sequence independent mechanisms, 
such as the well-established observation of Lrp cooperativity in binding [41], or recruitment of 
Lrp by binding of additional factors, could play a role in determining Lrp binding locations.  
 
Discussion 
Lrp regulates hundreds of genes in distinct categories by direct and indirect mechanisms 

By investigating Lrp activity under several media conditions and timepoints, and 
integrating binding data with changes in RNA expression, we are able to present an enhanced 
view of the Lrp regulon.  Our use of a high-quality antibody against native Lrp removes any 
possibility of epitope tagging hindering native behavior in our experiments, and the use of 
modern sequencing-based methods provides us with a high resolution snapshot of both Lrp’s 
binding and regulatory activity.  We document hundreds of novel targets, and note the 
especially important effect of indirect regulation at MIN_Trans and RDM_Stat.  The differences 
between direct and indirect targets are borne out by the GO-term analysis in which we see a 
shift between GO-terms at direct targets (more transport and biosynthesis related genes) and 
those at indirect targets (flagellum associated genes among others).  This could point to 
organization at a temporal level; the genes needing most urgent regulation (such as those 
involved directly in importing or generating needed nutrients) may be under direct Lrp control, 
while genes requiring less urgent modulation and instead governing foraging strategies may be 
indirectly regulated by Lrp.  

In the most straight-forward transcriptional regulatory system, indirect targets should be 
traceable to a direct target.  However, the complicated, interconnected nature of the regulatory 
system of E. coli may explain why we are unable to find connections explaining all Lrp indirect 
targets.  In some cases, there may be another layer of regulation before indirect Lrp targets are 
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affected, or intracellular signaling pathways may be triggered, leading to broader downstream 
effects, such as changes in metabolite levels.  The cases of CysB, LrhA and GadW cleanly 
illustrate how some indirect regulation is accomplished. Other cases of missed identification 
may also arise simply due to our incomplete knowledge of the regulons of all E. coli transcription 
factors. 
 
Primed Lrp binding argues for interaction with co-regulatory factors 

From our experiments, we identify many points at which Lrp binds the regulatory region 
of a gene without producing an effect on transcription, and even points at which an apparently 
identical Lrp binding pattern has no effect on transcription in one condition, but has a substantial 
effect under another.  Given that Lrp binding is enriched in regulatory regions relative to other 
locations in the genome, this argues against a purely DNA-organizing role for these NAP-type 
sites.  If that was the case, we would expect Lrp binding sites (the majority of which are 
NAP-type sites in any condition) to be distributed more evenly across the genome.  This poised 
regulation is also seen for some eukaryotic transcription factors such as the tumor suppressor 
p53 in binding to the mdm2 gene [20].  Therefore, while Lrp itself is not conserved in 
eukaryotes, its ability to bind without regulating may have parallels to eukaryotic regulation, 
suggesting convergent evolution to a similar regulatory scheme.  There are several possibilities 
for why Lrp may not have regulatory function in all cases where it binds, including 1) Lrp acts as 
a scaffold to interact directly with other proteins which are only present at certain conditions and 
modulate transcription, 2) Lrp wraps DNA in order to control DNA accessibility of other 
regulators, reminiscent of eukaryotic histone-like behavior, and/or 3) the presence of Lrp 
octamer or hexadecamer may control or influence the regulatory behavior of Lrp.  We 
investigated the first possibility by analyzing if certain σ factors or transcription factors might be 
responsible for the condition-dependent regulation on a global scale.  Although we do not see 
strong global evidence, gene-level studies have previously implicated Lrp in interacting with σ 38 
[42,43].  While many potential connections appear to be cases of convergent regulation, we 
identified a few specific cases where Lrp appears to play a direct role in modulating the effects 
of other regulators. 

There are several data points that indicate direct interaction between Lrp and σ 54 at 
MIN_Trans.  First, σ 54 is most active globally at MIN_Trans, in agreement with when we see 
many of the overlapping regulated genes transition from NAP-type to direct targets.  As noted 
above, σ 54  is unique among the E. coli σ  factors in that it requires an activator, such as NtrC or 
PspF [44].  We also document enrichment for NtrC targets at MIN_Trans which argues for a role 
for Lrp in the nitrogen-limitation response.  Known NtrC targets account for 33% of genes in the 
σ 54 regulon, and almost all of those targets are in operons directly controlled by Lrp.  Activators 
of σ 54, such as NtrC, often bind to an upstream site and require precise looping of the DNA in 
order to bring the activator in contact with σ 54; in previous studies, the bending has been 
documented as being intrinsic to the region or looping mediated by IHF [45].  In accordance with 
the possibility of intrinsic bending, the average AT content upstream of σ 54 target genes is 70%, 
with the lowest being at 50% [36].  As previously reported and seen in our data, Lrp is known to 
bind AT-rich regions preferentially [46].  Lrp induces bending of 52° to 135° depending on the 
size of the binding sites [47].  Thus, we hypothesize that Lrp may play a role in bending DNA to 
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coordinate NtrC-σ 54 interaction at NtrC targets.  This would agree with the connection between 
Lrp and nitrogen metabolism regulation seen previously in genome-wide studies [48]. 
Analogous interactions with other transcription or regulatory factors may explain other 
NAP-type/direct target transitions.  For example, Lrp interaction with H-NS is important for 
regulating rRNA promoters [49], and Lrp competition with DNA adenine methyltransferase is 
critical in regulating expression of the pap operon, which produces pili [50].  In addition, 
non-protein small molecules like ppGpp are known to affect some Lrp-regulated target genes 
[51]. Further studies are needed to investigate Lrp’s interactions with other regulatory factors 
and the alternate mechanisms proposed above.  
 
Lrp binding activity is partially predicted by known sequence motifs 

While we identify a preference for Lrp binding at several related motifs and AT-rich 
regions, there are still a significant subset of peaks that are not predicted by these models. 
Attempts to improve Lrp binding prediction from additional sequence determinants were not 
successful despite application of several state-of-the-art motif finders.  As mentioned above, this 
could be due to Lrp binding initially at a sequence-specific location, and subsequent Lrp 
molecules binding due to cooperativity and the high local concentration of Lrp molecules 
provided by Lrp’s oligomeric nature.  Alternatively, Lrp itself may be recruited by other proteins. 
Due to Lrp’s relatively high non-specific DNA binding affinity, especially under rich conditions 
[14], it is reasonable to find that not all of its binding locations can be predicted based on 
sequence alone.  It is again important to note that the switch in DNA-binding specificity occurs 
regardless of the levels of leucine, suggesting that other small molecule regulators [16] or 
potentially post-translational modifications [52,53] may play a role in Lrp regulatory activity. 
Additionally, despite extensive effort, we were unable to identify any sequence determinants 
capable of reliably explaining Lrp regulatory activity, either through predicting transitions from 
poised to active regulation, or distinguishing Lrp activation from Lrp repression. Possible 
mechanisms for this behavior include interactions with condition-specific factors that bind near 
the multifunctional Lrp sites (many potential partners have likely not yet been characterized), 
condition-dependent DNA looping triggered by the binding of Lrp to nearby sites or by 
octamer-hexadecamer transitions, or post-translational modifications to Lrp itself. Dissecting the 
detailed molecular mechanisms underlying the binding and regulatory landscape that we have 
revealed here will be a fruitful area for future research.  

 
Methods 
Strains and media 

The WT strain used in this study was E. coli K-12 MG1655 (ATCC 47076).  The Lrp 
deletion strain was constructed by homologous recombination resulting in the insertion of 
kanamycin resistance cassette [54].  Primers used for strain construction and validation are 
listed in Table S8.  The lrp::kanR strain was validated by sizing of the P965/P1568/P1569 
products and Sanger sequencing.  

All routine cell growth during cloning was done in LB medium (10 g/liter tryptone, 5 g/liter 
yeast extract, 5 g/liter NaCl) or on LB plates (LB medium plus 15 g/liter Bacto agar) 
supplemented with 50 μg/mL kanamycin or 100 μg/mL ampicillin (both from US Biological; 
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Salem, MA) as required.  For the ChIP-seq and RNA samples, a single colony of wild type E. 
coli or the lrp::kanR strain was inoculated into MOPS media (Teknova; Hollister, CA) with 0.04% 
glucose [55] and grown overnight. The cells were then back-diluted to OD600=0.003 in 100 mL 
of the appropriate target media.  Experiments were performed in MOPS with 0.2% glycerol (the 
MIN media condition), MOPS with 0.04% glycerol and 0.2% (weight/volume) each leucine 
(Amresco; Solon, OH), isoleucine (Alfa-Aesar; Haverhill, MA) and valine (Amresco; Solon, OH; 
the LIV condition), or MOPS plus 0.4% glycerol, ACGU and EZ supplements (Teknova; 
Hollister, CA; the RDM condition).  Media conditions are summarized in Table S9. 

The cells were grown at 37°C with shaking (200 rpm) until the OD600 was between 0.15 
and 0.25 (for log phase samples), between 1.8 and 2.2 (for transition point in MIN  or LIV 
media), between 2.3 and 2.7 (for transition point in RDM), or 12 hours past the log point (for 
stationary phase samples).  The OD600 range for transition point harvest was determined by 
monitoring the growth of cells grown in conditions identical to the experiment and selecting the 
point in the OD600 range during which exponential growth becomes non-linear when visualized 
on a log scale.  
 
ChIP-seq 

At the appropriate time, either WT or lrp::kanR cells were cross-linked by adding 
formaldehyde (37% Sigma-Aldrich; St. Louis, MO)  to a final concentration of 1% (vol/vol) and 
incubated with shaking for 15 minutes at room temperature.  Formaldehyde cross-linking was 
quenched by addition of Tris (pH 8) to a final concentration of 280 mM and incubation with 
shaking at room temperature for 10 minutes. The culture was then immediately centrifuged for 5 
minutes at 5500 xg at 4°C.  The pellet was washed twice with 30 mL ice cold TBS  (50 mM Tris, 
150 mM NaCl, pH 7.5) before being resuspended in 1 mL TBS. Following a 3 minute 
centrifugation at 10,000xg at 4°C and removal of the supernatant, the pellet was flash-frozen in 
a dry ice/ethanol bath and then stored at -80°C.  Two biological replicates, grown on different 
days, were prepared for each condition.  

The cell pellet was resuspended in lysis buffer (PBS, 0.1% Tween 20, 1 mM EDTA, 1x 
Complete Mini EDTA-free Protease Inhibitors (Roche; Basel, Switzerland), 0.6 mg lysozyme 
(Amresco; Solon, OH)), vortexed for 3 seconds, and incubated at 37°C for 30 minutes. The 
sample was then sonicated in 3 bursts of 10 seconds each at 25% power (Branson Digital 
Sonifier). Cellular debris was removed by centrifugation at 16,000xg for 10 minutes at 4°C.  As 
an input sample, 50 uL of the supernatant was removed and mixed with EDTA to 8.6 mM and 
235 uL Elution Buffer (50 mM Tris (pH 8), 10 mM EDTA, 1% SDS (vol/vol)).  The remainder of 
the lysate was added to 50 uL pre-washed SureBeads Protein G magnetic beads (Bio-Rad; 
Hercules, CA) and rocked for 1 hour at room temperature for pre-clearing.  A separate aliquot of 
100 uL of pre-washed SureBeads Protein G magnetic beads was incubated with 10 ug Lrp 
monoclonal antibody (Neoclone; Madison, WI) for 10 minutes at room temperature with rocking 
and then washed thrice with PBS/0.1% Tween-20 before the pre-cleared supernatant was 
added.  The bead/lysate mixture was again incubated with rocking for 1 hour at room 
temperature.  The beads were then washed thrice with PBS/0.1% Tween-20. To elute the 
cross-linked Lrp/DNA complexes, the beads were resuspended in 285 uL of Elution Buffer and 
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incubated at 65°C for 20 min, vortexing every 5 minutes. The resulting eluate was incubated 
overnight at 65°C to reverse the cross-links. 

The sample was treated with 0.05 mg RNase A (Thermo Fisher; Waltham, MA) for 2 
hours at 37°C, then 0.2 mg Proteinase K (Thermo Fisher; Waltham, MA) for 2 hours at 50°C 
before the DNA was isolated by phenol-chloroform extraction and ethanol precipitation.  The 
samples were quantified (QuantiFluor dsDNA Kit, Promega; Madison, WI) and prepared for 
sequencing using the NEBNext Ultra DNA Library Prep Kit for Illumina (NEB; Ipswich, MA).  The 
library was checked for quality by 2% agarose gel electrophoresis using GelRed stain (Biotium; 
Fremont, CA). Samples were pooled and the sequencing performed on an Illumina NextSeq 
-500, with 38x37 bp paired end reads. We obtained at least three million reads that passed all 
filters and aligned properly to the genome per biological replicate with an average of nine million 
reads per replicate (Table S10). Input samples were treated identically to the ChIP extracted 
samples beginning at the RNase A treatment. 
 
RNA-seq 

For RNA-seq samples in both WT and lrp::kanR cells, 2.5 ml of culture was removed 
when cells had reached the appropriate OD and mixed with 5 mL Qiagen RNAProtect Bacteria 
Reagent  (Qiagen; Hilden, Germany), vortexed, incubated 5 minutes at room temperature, and 
then centrifuged for 10 minutes at 5,000 xg in a fixed angle rotor at 4°C.  The supernatant was 
removed and the pellet was flash-frozen in a dry ice/ethanol bath before being stored at 
-80°C.The pellet was resuspended in TE and treated with 177 kilounits Ready-Lyse Lysozyme 
Solution (Epicentre; Madison, WI) and 0.2 mg Proteinase K (Thermo Fisher; Waltham, MA) for 
ten minutes at room temperature, vortexing every two minutes. The RNA was purified using the 
Zymo RNA Clean and Concentrator kit (Zymo; Irvine, CA), treated with 5 units Baseline Zero 
DNase (Epicentre; Madison, WI), in the presence of RNase Inhibitor (NEB; Ipswich, MA), for 30 
minutes at 37°C, and then again purified with the Zymo RNA Clean and Concentrator kit.  RNA 
quality was assessed by electrophoresis in a denaturing agarose-guanidinium gel [56]. rRNA 
depletion was performed using the Ribo-Zero rRNA Removal Kit for Bacteria (Illumina; San 
Diego, CA), halving all reagent and input quantities but otherwise following the manufacturer’s 
instructions.  cDNA synthesis and sequencing library preparation were performed following the 
NEBNext Ultra Directional RNA Library Prep Kit (NEB; Ipswich, MA).  The library was checked 
for quality by 2% agarose gel electrophoresis using GelRed stain (Biotium; Fremont, CA). 
Samples were pooled and the sequencing performed on a NextSeq -500 at the University of 
Michigan’s DNA Sequencing Core Facility. 
 
Preprocessing of ChIP-seq data 

Sequencing adapters were removed from all sequences using CutAdapt version 1.8.1 
[57] with parameters -a AGATCGGAAGAGC -A AGATCGGAAGAGC -n 3 -m 20 --mask-adapter 
--match-read-wildcards. Low quality reads were trimmed with Trimmomatic version 0.32 [58] 
using the parameters TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:20. The quality of the raw 
and preprocessed fastq files was assessed using FastQC version 0.10.1 [59] and MultiQC 
version 1.2 [60]. The number of raw and surviving reads for each sample are described in Table 
S10. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/276808doi: bioRxiv preprint 

https://paperpile.com/c/kzibf6/IbMTu
https://paperpile.com/c/kzibf6/R4FXq
https://paperpile.com/c/kzibf6/yutSH
https://paperpile.com/c/kzibf6/aP5Xn
https://paperpile.com/c/kzibf6/o0yM2
https://doi.org/10.1101/276808


 
Alignment of ChIP-seq data 

All samples were aligned to the MG1655 U00096.2 genome modified to match the 
insertions and deletions for the ATCC 47076 variant of E. coli MG1655 as reported by [61]. 
Alignments were performed using bowtie version 2.1.0 [62] and arguments: -X 2000 -q 
--end-to-end --very-sensitive -p 5 --phred33 --dovetail in order to maximize the sensitivity of the 
alignment.  Final alignment rates for each sample are described in Table S10. 
 
Calculation of ChIP-seq summary signal 

The coverage  of paired-end reads at every tenth base pair  across the genome, wasc n  
calculated from the alignments for the ChIP-extracted and input tracks for each sample and 
replicate separately using custom python scripts.  The raw coverage for extracted and input 
signals was then scaled using the median coverage across the genome for each individual 
track. The raw enrichment (RE) was calculated using the log2 ratio of scaled extracted to input 
coverage separately for each pair of extracted and input samples as shown below: 
 

E  og ( ) log ( )R (n) = l 2
cE(n)

median(c )E
−  2

cI(n)

median(c )I  
 

 
Where E and I denote the extracted and input samples, respectively. Since the Lrp WT and 
lrp::kanR samples are not paired, each combination of raw Lrp enrichment for a Lrp WT 
replicate and a lrp::kanR replicate was used to generate a raw subtracted enrichment signal 
(RSE) for the Lrp WT - lrp::kanR  signal, resulting in four possible subtracted replicates for each 
condition and time point.  The lrp::kanR signal was subtracted only if it was positive.  
 

SE  E  max(RE , 0)  R (n) = R WT (n) −  lrp::kanR(n)   
 

 For each replicate pairing, the raw subtracted Lrp enrichment signals were converted to robust 
Z-score estimates (RZ) using the following formula:  
 

ZR (n) =
RSE − median(RSE)(n)

median(  RSE  −median(RSE)  ) · 1.4826| (n) |  

 
The RZ replicates were then averaged to generate the final occupancy signal for downstream 
analysis. Reproducibility of both the RE and RSE for each replicate can be seen in Fig S5A. 
 
Determination of high-confidence Lrp binding sites 

In order to determine regions of high-confidence Lrp binding we required three criteria for 
Lrp enrichment to be satisfied: 1. The enrichment must be technically reproducible. 2. The 
enrichment must be above the input background. 3. The enrichment must be biologically 
reproducible. The following paragraphs detail how each of these criteria were determined. 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/276808doi: bioRxiv preprint 

https://paperpile.com/c/kzibf6/vkt3J
https://paperpile.com/c/kzibf6/6NoRR
https://doi.org/10.1101/276808


Assessment of technical reproducibility of Lrp enrichmen t. To assess the technical 
reproducibility of the Lrp enrichment, we used custom python scripts to sample with replacement 
from the aligned reads separately for each paired extracted and input sample. The RSE for 
each of the four possible subtracted Lrp WT vs. lrp::kanR replicates was calculated, as 
described above, for each of 1000 bootstrap replicates. To test for technically reproducible 
enrichment, we considered a null hypothesis that the RSE is normally distributed centered at 0. 
A Z-score for each location  was then determined as followsn   
 

Z (n) =
RSE(n)0

median(  RSE −median(RSE )  ) · 1.4826| B(n)(m) B(n) |  

 
Where  is the unsampled dataset and  represents the bootstrap replicates for whichSE  R 0 SE  R B  

. The resulting Z score was converted to a p-value using a one-sided Z test through000  m = 1 : 1  
the scipy.stats normal cumulative distribution function [63]. These p-values were FDR corrected 
using the procedure described by Benjamini and Hochberg [64]. A region was considered to be 
technically reproducible if its q-value was less than 0.001.  
 
Assessment of Lrp-specific enrichment. To assess enrichment of ChIP signal above the input 
background and to differentiate from off-target antibody enrichments seen in pulldowns using 
the lrp::kanR strain, an RZ score (see above) was calculated for each combination of 
WT-lrp::kanR replicates, yielding positive signal only when the WT pulldown value was 
substantially above that of the lrp::kanR signal. We then tested for enrichment of the RZ score 
above the median signal for that track through the use of a one-sided Z-test using scipy.stats 
normal cumulative distribution function and FDR correction of the resulting p-value to a q-value. 
To be considered enriched above background, a region was required to have an enrichment 
qvalue less than 0.001. 
 
Assessment of biological reproducibility. To assess the biological reproducibility of each region 

, the irreducible discovery rate [65] was calculated for each data point between the RZ signalsn  
for each of the four Lrp WT - lrp::kanR  combinations for each condition and timepoint. Starting 
parameters for the IDR calculation for each condition included and.0, σ .4826, ρ .1  μ = 0  = 1  = 0  
an associated weight based on the estimated number of bound Lrp octamers for each nutrient 
condition  as estimated in [14]: x   
 

63968W = 10bp
250bp·Lx · 4  

  
Where 84, L 16, L 88  Lmin = 6  LIV = 6  RDM = 1  

 
A region was considered to be biologically reproducible if the FDR-corrected IDR q-value was 
less than 0.01 for both combinations of RSE replicates.  
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Combining enrichment and reproducibility into final peaks 
Final peaks were determined if a region  passed the biological reproducibility filter andn  

at least one of the four subtracted replicate combinations passed both the technical and 
enrichment filters. Adjacent passing regions were consolidated into one region if they were 
within 30 base pairs. The applied cutoffs and other thresholds were confirmed to be reasonable 
through manual inspection of called peaks and candidate peaks that narrowly missed one or 
more cutoffs. An example peak in comparison to a non-Lrp-specific peak can be seen in Fig 
S5B,C. 
 
Preprocessing of RNA-Seq data 

Similar to the ChIP-Seq reads, sequencing adapters were removed from all sequences 
using CutAdapt version 1.8.1 [57] with parameters --quality-base=33 -a AGATCGGAAGAGC -A 
AGATCGGAAGAGC -n 3 -m 20 --mask-adapter --match-read-wildcards. Low quality reads were 
trimmed with Trimmomatic version 0.32 [58] using the parameters LEADING:3 TRAILING:3 
SLIDINGWINDOW:4:15 MINLEN:20. The quality of the raw and preprocessed fastq files was 
assessed using FastQC version 0.10.1 [59] and MultiQC version 1.2 [60].  The number of raw 
and surviving reads for each sample are described in Table S11. 

 
Filtering highly abundant RNAs from analysis 

In some, but not all, of our samples as much as 70% of our RNA-seq reads were 
ribosomal reads or the highly abundant RNA products from ssrA and ssrS. (Table S11). To filter 
highly abundant RNA reads and thus avoid having variations in ribosome depletion efficiency 
interfere with proper normalization, all RNA-seq reads were aligned using bowtie2 version 2.1.0 
[62] to the same ATCC 47076-modified version of the U00096.2 genome used for the ChIP-Seq 
data. The following parameters were used for bowtie2: -q --end-to-end --very-sensitive -p 5 
--phred33 --dovetail. The subsequent alignments were parsed for reads that overlapped with 
ribosomal reads in a strand specific manner using custom python scripts. New fastq files were 
written that only included reads that did not overlap ribosomal reads, and these files were used 
for downstream gene expression analyses. In all replicates at least two million reads survived 
this final filter with the smallest size replicate containing 2.6 million reads after filtering (Table 
S11). 
 
Gene-centric quantification of RNA-Seq Data 

Gene-centric quantification of RNA expression for all samples was performed using 
kallisto version 0.43.0 [66] with the arguments: quant -t 4 -b 100 --rf-stranded. The appropriate 
transcriptome file needed for alignment was created through converting the GeneProductSet 
dataset from RegulonDB version 9.4 [18] to the appropriate ATCC 47076 coordinates and input 
file format for kallisto using custom python scripts. 
 
Determination of Lrp-dependent changes in Transcription 

To determine Lrp-dependent changes in transcription, we used kallisto’s companion 
post-processing data analysis software, sleuth [67] to model the transcript abundance for each 
condition and time point. We tested for differential expression between the WT and lrp::kanR 
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strains separately for each condition and time point by using a Wald test on the genotype term 
of the simple model: transcript abundance ~ genotype; here the lrp::kanR is the baseline 
condition. Transcripts that passed both an FDR corrected p-value of less than 0.05 and a 
genotype term magnitude of greater than 0.5 were considered as having a significant 
Lrp-dependent RNA expression change under that condition. 
 
Visualization of Lrp-dependent changes in Transcription 

In order to visualize the Lrp-dependent changes in transcription data in a more intuitive 
manner, for all RNA expression bar graphs, we reported the following estimate of the log2 ratio 
of WT transcripts per million (TPM) over lrp::kanR TPM: 
 

og2( ) og2( ) log2( )l KO
WT = l R

PM∑
R

r
T r

WT

−  R

PM∑
R

r
T r

lrp::kanR

 
 
Where the total replicates in all cases. To generate the error bars on all RNA expression R = 2  
bar plots, the log2(WT/KO) TPM was calculated as above for all 100 bootstrap replicates from 
kallisto, and a percentile based 95% confidence interval from these bootstrap replicates was 
taken to be the lower and upper bounds of the ratio. 
 
Antibody development and testing  

The monoclonal antibody used in these experiments was developed via a contract with 
NeoClone (Madison, WI).  Using purified His-tagged Lrp, several rounds of potential antibodies 
were developed.  The potential antibodies were tested for cross-reactivity with the known Lrp 
homologues AsnC and  YbaO by ELISA at NeoClone.  We used an in vitro DNA pull-down 
assay to ensure that the potential antibodies did not inhibit Lrp-DNA binding (Fig S6A).  In 
addition, we tested the antibody for use in Western blotting (Fig S6B), and confirmed that the 
antibody did not bind the oligomerization interface by observing bands corresponding to Lrp 
octamers and hexadecamers in native Western blots.  
 
Filtering of genes into Lrp-dependent categories 

For gene target filtering, we established four categories through a two-level filtering 
scheme (Fig. 2A).  We first tested whether the gene had a Lrp-dependent change in RNA 
expression by comparing the target gene’s expression in WT and lrp::kanR strains using a Wald 
test as described above. We next asked if the gene had a high confidence Lrp binding site, as 
defined above, within the regulatory region (defined as 500 bp upstream and downstream from 
the annotated transcription start site (TSS; annotations from RegulonDB [18]).  If multiple TSSs 
were annotated for a gene, the regulatory region included 500 bp upstream of the most distal 
TSS and 500 bp downstream of the most proximal TSS.  

Using our high confidence Lrp binding regions, we then determined which regulatory 
regions fell within a high-confidence Lrp binding site; any regulatory region that overlapped with 
a high-confidence Lrp binding site was classified as bound by Lrp.  Genes were thus 
categorized as either a direct target (RNA expression change and Lrp binding), an indirect 
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target (RNA expression change but no Lrp binding), a NAP target (no RNA expression change 
but Lrp binding), or unconnected to Lrp (neither RNA expression change or Lrp binding).  

For comparing enrichment of Lrp targets with σ factor targets, we used permutation tests 
as noted in the text, implemented using custom python scripts and 1000-10000 permutations. 
When testing for enrichment across several different  factors, we corrected for multipleσ  
hypothesis testing using the statsmodels.sandbox.stats.multicomp.multipletests module using 
the Benjamini-Hochberg method [64,68].  

All plots except where noted were created using ggplot2 [69] or Matplotlib [70].  
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Figure 1: ChIP-seq data shows agreement with previous data and reveals novel Lrp binding 
sites. A. Total number of non-overlapping high-confidence Lrp binding sites identified in each 
condition. B. ChIP robust Z-score (left) and RNA-seq expression change (log2(WT/KO); right) 
for known Lrp activated target ilvI. Dashed vertical lines on the ChIP robust Z-score graph mark 
the start and end of the gene coding region.  Error bars for the RNA-seq data indicate a 
percentile based 95% confidence interval from 100 bootstrap replicates of TPM estimates. 
Stars indicate a significant difference in RNA abundance between WT and lrp::kanR strains 
(Wald Test qvalue of < 0.05 and a genotype log fold change coefficient magnitude of > 0.5; see 
Methods for details).  C. ChIP robust Z-score (left) and RNA-seq expression change 
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(log2(WT/KO); right) for known Lrp repressed target oppA, panels as in B.  

 
Figure 2: Lrp regulates genes both directly and indirectly. A. Schematic showing how genes 
were categorized: direct targets of Lrp (Lrp-bound regulatory region and with a significant RNA 
expression change between WT and lrp::kanR cells), indirect targets (not bound but with a 
significant RNA expression change), NAP targets (bound but with no significant RNA expression 
change), or not linked (not bound and no significant RNA expression change).  Filtering was 
done independently for each condition. B. ChIP robust Z-score (left) and RNA-seq expression 
change (log2(WT/KO); right) for Lrp NAP-type target ybjN (as in Fig 1B). C. Heat map indicating 
how each gene was classified in the nine experimental conditions.  Genes with no Lrp link in 
any condition were removed from visualization.  Genes were hierarchically clustered using a 
Manhattan distance metric and average linkage clustering.  Black boxes mark out notable 
clusters of genes: those with leucine-dependent or -independent binding and those that are 
direct targets only under MIN_Trans.  
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Figure 3: Known targets of direct Lrp targets explain the mechanism of indirect Lrp regulation at 
some genes. A. ChIP density and RNA-seq expression change (log2(WT/KO)) for direct Lrp 
target LrhA and its known target genes, FimE, FlhC and FlhD [18]. Error bars for the RNA-seq 
data indicate a percentile based 95% confidence interval from 100 bootstrap replicates of TPM 
estimates.  Stars indicate a significant difference in RNA abundance between WT and lrp::kanR 
strains (Wald Test qvalue of < 0.05 and a genotype log fold change coefficient magnitude of > 
0.5; see Methods for details).  B. Proposed model of Lrp/LrhA mediated regulation of LrhA 
targets. C. ChIP density and RNA-seq expression change (log2(WT/KO)) for direct Lrp target 
CysB and some of its known target genes, TcyP and CysI [18], as in A. D. Proposed model of 
Lrp/CysB mediated regulation of CysB targets.  
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Figure 4: Enriched GO-terms differ for direct and indirect Lrp targets .  A. A subset of 
GO-terms enriched or depleted within various conditions and groups of targets are listed 
to the left. Abbreviations are as follows: D - direct targets, I - indirect targets, N - 
NAP-type targets, X - no Lrp link genes.  B. GO-terms enriched or depleted in the 
leucine independent cluster seen in Fig 2C. + indicates genes in the cluster and - 
indicates genes outside of the cluster. Boxes around a specific GO-term/condition/target 
group indicates a significant enrichment or depletion as indicated by a hypergeometric 
test (p-value < 0.01). Color inside the box specifies the magnitude of enrichment (red) or 
depletion (blue) as indicated by the color bar.   
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Figure 5: Lrp sits at genes in poised position in preparation for regulatory activity. 
ChIP robust Z-score (left) and RNA-seq expression change (log2(WT/KO); right) for four Lrp 
targets. potF (A)  and dadA (C) are previously known targets, and lrhA (B) and pepD (D) are 
novel targets.  Dashed vertical lines on the ChIP robust Z-score graph mark the start and end of 
the gene coding region.  Error bars for the RNA-seq data indicate a percentile based 95% 
confidence interval from 100 bootstrap replicates of TPM estimates.  Stars indicate a significant 
difference in RNA abundance between WT and lrp::kanR strains (Wald Test qvalue of < 0.05 
and a genotype log fold change coefficient magnitude of > 0.5; see Methods for details).  
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Figure 6: Lrp interacts with other regulatory factors to control some targets’ expression. A. 
Average expression (TPM) of known targets of each σ factor  in WT cells at each condition. B. 
Heatmap showing classification of a subset of σ 38 targets which are direct Lrp-activated targets 
at RDM_Stat.  Abbreviations on the color bar are as follows: DD - direct downregulated targets, 
DU - direct upregulated targets, ID -  indirect downregulated targets, IU - indirect upregulated 
targets, N - NAP-type targets, X - no Lrp link.  C. Average log2(WT/KO) expression ratio of 
known transcription factor targets for selected transcription factors at each condition. D. 
Heatmap showing classification of those NtrC targets which have an annotated transcription 
start site and thus are classified in our analysis.  Abbreviations as for B.  
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Figure 7: Lrp exhibits condition-dependent sequence-preference. A. Change in BIC for 
add-one-in logistic regression models. The y axis displays the Position Weight Matrix (PWM) 
used to create a particular feature. PWMs were obtained from the publication indicated above 
the PWM [15,40,71], RegulonDB [18] or, in the case of SR motifs, the SwissRegulon [72]. 
Features were created from a given PWM by dividing the count of matches within a sequence 
(as obtained by FIMO [73] with p-value < 0.0001) by the length of the sequence. AT-stretch 
indicates the longest stretch of continuous As and Ts normalized by the length of the sequence. 
AT-content indicates the number of As and Ts normalized by the length of the sequence. Colors 
then indicate the change in BIC when a given term is added to a minimal model containing only 
an intercept term.  Heavy boxes indicate a feature was included in the final model for that 
condition. For both this panel and panel B, the positive class of sequences was obtained by 
taking 500 bp around the center of each peak for each condition. The negative class of 
sequences was obtained by taking three times the number of equal-sized random sequences 
from the subset of the genome that was not in a peak for that condition. B. Receiver Operator 
Characteristic curves for each final model by condition. Curves were calculated at 0.01 
increments from 0 to 1 for a predicted probability cutoff from the logistic regression. Full 
statistics including five-fold cross-validation are included in Table S7.  
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Condition Total Genes Significantly 
Upregulated by Lrp 

Total Genes Significantly 
Downregulated by Lrp 

MIN_Log 164 (3.52%) 162 (3.48%) 

MIN_Trans 423 (9.08%) 590 (12.67%) 

MIN_Stat 63 (1.35%) 63 (1.35%) 

LIV_Log 109 (2.34%) 217 (4.66%) 

LIV_Trans 87 (1.87%) 123 (2.64%) 

LIV_Stat 80 (1.72%) 68 (1.46%) 

RDM_Log 36 (0.77%) 84 (1.80%) 

RDM_Trans 58 (1.25%) 21 (0.45%) 

RDM_Stat 728 (15.63%) 622 (13.35%) 

Table 1: Genes with significant Lrp-dependent changes in expression.  Percentage is out of the 
total number of genes in E. coli (4658).  
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