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Abstract	
	
Introduction.	Toxicology	needs	artificial	intelligence	tools	that	can	automate	the	
prediction	of	toxicity.	Today	we	are	at	an	interesting	nexus.	We	have	thousands	of	
chemicals	in	the	environment	that	lack	regulatory	thresholds	for	determining	risk.	
New	high	throughput	in	vitro	testing	methods	are	becoming	available	to	test	these	
chemicals.	Causal	Adverse	Outcome	Pathway	Networks	(CAOPN)	are	emerging	that	
will	allow	us	to	make	predictions	based	on	perturbations	of	specific	key	events	
within	the	network.	The	AOPOntology	was	developed	as	infrastructure	for	this	
nexus,	providing	the	ability	to	model	and	marry	the	data	from	the	in	vitro	tests	for	
the	thousands	of	chemicals	and	place	them	within	the	CAOPN	framework	to	
facilitate	adverse	outcome	predictions.	
	
Materials	and	Methods.	The	AOPN	is	a	functional	specialized	ontology	that	creates	
classes	that	model	biological	pathways	and	CAOPNs.	Adverse	outcome	predictions	
are	based	on	mathematical	determinations	of	key	events	that	are	sufficient	to	infer	
adverse	outcomes	will	occur,	or	biological	information.	These	sufficiency	
relationships	are	captured	in	the	AOPOntology	and	used	by	the	semantic	reasoners	
to	make	predictions.	
	
Results.	The	AOPOntology	version	1.0	architecture	is	in	place,	and	a	CAOPN	for	
steatosis	demonstrates	how	causal	network	theory	is	used	to	make	predictions.	The	
AOPOntology	is	available	at	https://github.com/DataSciBurgoon/aop-ontology.	
	
Discussion.	The	AOPOntology	is	a	knowledge	base	for	CAOPNs	that	one	can	use	to	
make	predictions	about	a	chemical’s	potential	toxicity	using	in	vitro	high	
throughput	and	other	assays.	
	
Conclusions.	Using	CAOPNs	and	causal	network	theory	one	is	able	to	predict	
potential	toxicity	for	chemicals	using	in	vitro	high	throughput	and	various	high	
content	screens.		
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Introduction	
Every	day	the	US	military	designs	or	acquires	new	chemicals,	or	faces	challenges	
with	existing	legacy	chemicals	on	its	fields,	ranges,	and	installations.	For	new	
chemicals,	the	challenge	is	to	create	new	materials	that	are	less	toxic	to	humans	and	
the	environment.	For	legacy	chemicals,	the	challenge	is	that	safe	exposure	levels	
may	not	be	known	due	to	a	lack	of	data.		
	
Coupling	in	vitro	high	throughput	screening	assays	with	Adverse	Outcome	Pathways	
(AOPs)	hold	the	promise	of	being	a	more	ethical	and	relevant	testing	approach	for	
identifying	potentially	toxic	chemicals.	Adverse	Outcome	Pathways	are	causal	
pathways	that	show	the	cascade	from	the	point	where	a	chemical	interacts	with	a	
receptor	(molecular	initiating	event)	through	the	key	events	that	are	necessary	for	
resulting	in	an	adverse	outcome	at	the	individual	and/or	population	level	(1).	There	
are	three	key	stipulations	to	an	AOP:	1)	it	must	be	linear,	and	2)	the	key	events	
within	an	AOP	must	be	measurable,	and	3)	the	key	events	must	be	high	level	events,	
such	that	many	assays	may	map	to	a	single	key	event.	However,	it	has	been	our	
experience	that	in	order	to	perform	predictive	toxicology	using	high	throughput	
screening	and	high	content	assays,	we	need	to	combine	several	AOPs	together	into	
networks,	and	we	need	additional	levels	of	granularity	at	the	key	event	level.	
	
Thus,	I	developed	the	concept	of	the	Causal	Adverse	Outcome	Pathway	Networks	
(CAOPNs).	These	are	more	granular	AOP	networks	that	are	more	similar	to	
molecular	biological	disease	networks,	such	as	those	found	in	the	Kyoto	
Encyclopedia	of	Genes	and	Genomes	(KEGG),	WikiPathway,	and	Reactome.	Due	to	
their	causal	network	nature,	one	can	generally	apply	causal	network	theory,	
specifically	the	backdoor	analysis	(2),	to	identify	nodes/key	events	that	are	
sufficient	to	infer	an	adverse	outcome.	The	first	step	of	the	backdoor	analysis	
algorithm	is	to	introduce	an	edge	between	all	parent	nodes	that	share	a	child	node.	
Next,	the	algorithm	starts	at	the	adverse	outcome	and	identifies	the	shortest	path	to	
the	molecular	initiating	event	(MIE)	of	interest	(note	that	in	CAOPNs	there	may	be	
more	than	one	MIE).	The	first	causal	node	found	is	the	one	just	prior	to	the	adverse	
outcome	in	the	shortest	path.	Next,	the	algorithm	removes	the	causal	node	from	the	
pathway,	and	repeats	this	shortest	path	calculation,	and	identifies	any	other	causal	
nodes.	These	steps	are	repeated	until	there	are	no		more	paths	leading	to	the	
adverse	outcome	from	the	MIE.	
	
In	this	work,	I	was	interested	in	developing	an	artificial	intelligence	approach	that	
could	take	in	data	about	chemicals	for	specific	CAOPNs	and	then	predict	potential	
adverse	outcomes.	This	type	of	artificial	intelligence	is	termed	an	expert	system	–	it	
models	expert	knowledge	about	how	chemicals	cause	adverse	outcomes	(the	
CAOPNs).	One	can	encode	what	information	we	have	about	chemicals	into	the	
AOPOntology,	and	then	use	computational	reasoners	to	apply	first	order	logic	across	
the	data	to	make	inferences	about	whether	a	chemical	causes	particular	adverse	
outcomes.	For	this	to	work,	one	has	to	identify	the	key	event(s)	that	are	sufficient	to	
infer	the	adverse	outcome.	
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The	AOPOntology	is	available	for	download	from	Github	at	
https://github.com/DataSciBurgoon/aop-ontology.	
	

Materials	and	Methods	
The	AOPOntology	builds	on,	or	imports,	several	existing	ontologies	including	ChEBI	
(3),	human	phenotype	ontology	(4),	BioAssay	Ontology	(5),	the	uPheno	ontology	,	
and	all	of	their	associated	ontologies.	AOPOntology	also	includes	linkages	to	the	
UniProt	database	to	link	proteins	from	the	AOPOntology	with	UniProt.	The	
AOPOntology	is	an	OWL	(web	ontology	language)	ontology	built	using	Protégé	5.	
	
The	design	goal	of	the	AOPOntology	is	to	facilitate	knowledge-based	inference	of	
potential	adverse	outcomes	using	chemical	screening	and	prioritization	data	from	
high	content	and	high	throughput	assays.	I	started	with	the	AOP	Framework	as	it	
was	being	implemented	in	the	AOP-Wiki,	and	expanded	it	to	include	the	ability	to	
model	and	incorporate	toxicological	data	from	the	high	content	and	high	throughput	
assays.	Wherever	possible,	based	on	the	literature,	I	defined	sufficient	key	events	–	
that	is,	those	key	events	whose	perturbation	is	sufficient	to	infer	an	adverse	
outcome.	In	addition,	when	that	information	was	not	available,	the	backdoor	
algorithm	has	been	used	to	define	those.		
	
I	have	defined	a	small	number	of	AOPs	in	the	ontology	based	on	CAOPN	
development	in	support	of	our	military	program.	I	have	taken	some	AOPs	from	the	
AOP-Wiki,	as	well	as	others	from	the	AOPXplorer	(AOP-Wiki	and	AOPXplorer	are	
both	part	of	the	international	AOP-KB	project,	coordinated	by	the	Organisation	for	
Economic	Cooperation	and	Development).	I	am	developing	software	to	automate	
the	process	of	taking	AOPs	from	the	AOP-Wiki	and	AOPXplorer	and	encoding	them	
into	the	AOPOntology.	
	

Results	
The	AOPOntology	is	available	from	Github	at	
https://github.com/DataSciBurgoon/aop-ontology.	The	file	aopo.owl	contains	the	
actual	ontology.	The	other	.owl	files	in	the	directory	are	used	by	the	AOPOntology	
and	required	to	open	the	aopo.owl	file	in	Protégé	5.		
	
The	AOPOntology	models	Adverse	Outcome	Pathways	(AOPs)	as	a	parent	class	that	
contains	classes	for	several	different	child	AOP	groupings.	Currently,	the	
AOPOntology	contains	the	DevelopmentalToxicologyAOP,	the	DiseaseAOP,	the	
LiverToxicityAOP,	and	the	ReproductiveToxicologyAOP.	Each	of	these	classes	have	
different	AOPs	associated	with	them,	such	as	the	NeuralTubeDefect	AOP	(under	
DevelopmentalToxicologyAOP)	and	DiabetesMellitusType2	(under	DiseaseAOP).	
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From	there,	I	developed	specific	instances	of	the	different	types	of	AOPs,	for	
example,	“AOP	Neural	Tube	Defect	via	Hoxb1”	is	a	specific	instance	of	the	
NeuralTubeDefect	AOP.		
	
Members	of	the	AdverseOutcomePathway	class	share	characteristics.	These	include	
the	fact	that	they	must	have	exactly	1	adverse	outcome,	exactly	1	chemical	
molecular	initiating	event	relationship		(CMIER),	and	they	can	have	any	number	of	
various	types	of	AOP	relationships	(Figure	1).	AOP	relationships	include	the	CMIE	
relationship	and	key	event	relationships	(KERs).	Figure	2	shows	an	example	of	how	
the	linear	components	of	the	aromatase	inhibition	leading	to	loss	of	fecundity	AOP	
are	modeled	by	the	AOPOntology.	
	
Bioassay	data	can	also	be	modeled	within	the	AOPOntology.	I	have	extended	the	
BioAssay	Ontology	(BAO)	to	help	us	accomplish	this.	An	example	will	make	this	
clearer.	I	created	an	instance	of	oxidoreductase	activity	assay	(from	BAO)	and	called	
it	hsd17b4_bioassay.	Since	I	am	using	data	from	PubChem	Assay	ID	893,	I	have	
annotated	hsd17b4_bioassay	as	having	a	PubChemAID	of	893.	Our	instance	of	
hsd17b4_bioassay	also	has	object	properties	of	“has	participant”	HSD17B4,	“has	
participant”	BkF	(the	chemical	of	interest	in	this	example),	“has	measure	group”	and	
“has	endpoint”.		Since	it	has	a	participant	of	HSD17B4	this	allows	us	to	connect	the	
assay	directly	to	a	key	event	within	any	of	our	CAOPNs.		
	
In	addition,	the	AOPOntology	has	assay	calls.	The	has_chem_bio_assay_call	object	
property	has	a	ChemBioAssayCall,	which	can	be	one	of	either	ActivatedAssayCall,	
InactivatedAssayCall,	or	NoChangeAssayCall.	In	our	example,	BkF	results	in	an	
inactivated	assay	call.	That	inactivated	assay	call	instance,	BkF15umBayesNSMRCall	
has	an	object	property	of	has_inactivated_key_event	HSD17B4.	
	
One	can	begin	to	make	predictions	using	the	assay	calls.	For	this	to	work,	the	
AOPOntology	must	have	sufficiency	arguments	for	as	many	of	our	CAOPNs	as	
possible.	When	there	is	a	lack	of	biological	information,	then	one	should	use	the		
backdoor	algorithm	to	make	an	educated	guess	based	on	causal	network	theory.	In	
this	case,	I	have	defined	inactivation	of	HSD17B4	activity	as	sufficient	to	result	in	
steatosis	(6).	The	reasoners	and	query	engines	that	use	OWL	are	smart	enough	to	
understand	that	any	time	an	instance	contains	“has_inactivated_key_event	some	
HSD17B4”	–	in	other	words,	any	time	one	has	a	chemical	that	inactivates	HSD17B4	
activity	according	to	one	of	our	assays	–	then	that	chemical	will	lead	to	steatosis.	
Thus,	we	would	predict	that	this	chemical	may	cause	steatosis	(assuming	ADME	
properties	allow	the	liver	to	be	exposed	to	the	chemical).	
	

Discussion	
The	AOPOntology	is	a	functional	ontology	geared	at	making	computational	
toxicology	predictions	for	hazard	identification.	Unlike	other	ontologies	that	the	
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reader	may	be	familiar	with,	the	AOPOntology	is	not	intended	to	be	an	encyclopedic	
reference.	The	AOPOntology	is	solely	intended	to	make	it	possible	to	integrate	high	
content	and	in	vitro	high	throughput	assays	with	CAOPNs	to	perform	hazard	
identification.		
	
One	of	the	advantages	to	using	the	AOPOntology	is	that	it	will	allow	us	to	develop	
mathematically	defensible	and	biologically	sound	assay	batteries	that	minimize	the	
total	number	of	assays	required	to	test	for	a	full	suite	of	adverse	outcomes.	By	
focusing	on	only	those	assays	that	are	mathematically	or	biologically	sufficient	to	
infer	adversity,	one	can	decrease	the	overall	testing	burden	while	maximizing	
information	content.	This	will	lead	to	a	net	economic	boost	(through	decreased	
testing	requirements)	and	a	net	increase	in	chemical	testing	efficiency.		
	
This	paper	briefly	introduced	some	of	the	concepts	that	underlie	the	AOPOntology,	
and	demonstrate	its	utility.	Moving	forward,	I	intend	to	populate	the	AOPOntology	
with	the	contents	from	the	AOPXplorer,	the	AOP-KB,	as	well	as	data	sources	such	as	
the	Integrated	Chemical	Environment	(ICE;	
https://ntp.niehs.nih.gov/pubhealth/evalatm/resources-for-test-method-
developers/ice/),	ToxCast,	and	PubChem.	
	
Future	work	will	include	the	development	of	graphical	user	interfaces	to	facilitate	
end-user	querying	of	our	systems,	as	well	as	the	ability	for	users	to	upload	their	own	
data	into	the	system.	I	see	these	as	necessary	next	steps	to	make	the	AOPOntology	
useful	to	toxicologists.		
	
In	addition,	I	am	using	lessons	learned	from	developing	the	AOPOntology	to	help	
develop	foundational	ontologies	for	developmental	toxicology	and	zebrafish	
toxicity.	These	foundational	ontologies	will	be	more	focused	on	being	the	
encyclopedic	ontologies	that	biologists	are	more	familiar	with,	and	will	be	less	
focused	on	artificial	intelligence	applications.	
	

Conclusions	
The	AOPOntology	facilitates	the	development	of	minimal	assay	batteries	and	
connecting	in	vitro	high	throughput	screening	and	high	content	assay	data	to	
CAOPNs.	This	allows	toxicologists	to	more	quickly	make	mathematically	defensible	
and	biologically	plausible	hazard	identifications	in	a	more	objective	fashion.		
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Figure	1:	Overview	of	Adverse	Outcome	Pathway	modeling	in	the	AOPOntology.	The	
AOPOntology	models	an	Adverse	Outcome	Pathway	as	a	collection	of	
AopRelationships,	where	an	AopRelationship	defines	a	key	event	relationship	(i.e.,	a	
relationship	between	upstream	and	downstream	key	events).	Each	
AdverseOutcomePathway	object	also	needs	to	have	only	one	
ChemicalMIERelationship	–	this	is	the	relationship	between	a	chemical	and	a	
molecular	initiating	event.	The	chemical	can	be	left	as	an	unknown,	but	it	is	essential	
that	the	ChemicalMIERelationship	exists	to	demarcate	the	molecular	initiating	event	
(MIE).	Each	AdverseOutcomePathway	object	also	must	have	only	1	
AdverseOutcome.	The	Confidence	in	an	Adverse	Outcome	Pathway	is	optional	
(denoted	by	0..n).	
	
Figure	2:	Example	of	how	Key	Event	Relationships	are	modeled	in	the	Inhibition	of	
Aromatase	Leads	to	Decreased	Fecundity	AOP.	Here	we	can	see	that	the	
Decreased_Fecundity	AOP	is	a	subclass	of	the	ReproductiveToxicologyAOP,	which	is	
itself	a	subclass	of	AdverseOutcomePathway.	Here	we	are	only	showing	the	
AOPRelationships,	which	include	the	ChemicalMIERelationship,	and	several	
KeyEventRelationships	(note	that	ChemicalMIERelationship	and	
KeyEventRelationships	are	both	subclasses	of	AopRelationship).	This	demonstrates	
how	the	linear	AOP	itself	is	captured	in	the	AOPOntology.		
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