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Abstract 
 
Interest in reconstructing demographic histories has motivated the development of methods to 1 

estimate locus-specific pairwise coalescence times from whole-genome sequence data. We 2 

developed a new method, ASMC, that can estimate coalescence times using only SNP array data, 3 

and is 2-4 orders of magnitude faster than previous methods when sequencing data are available. 4 

We were thus able to apply ASMC to 113,851 phased British samples from the UK Biobank, 5 

aiming to detect recent positive selection by identifying loci with unusually high density of very 6 

recent coalescence times. We detected 12 genome-wide significant signals, including 6 loci with 7 

previous evidence of positive selection and 6 novel loci, consistent with coalescent simulations 8 

showing that our approach is well-powered to detect recent positive selection. We also applied 9 

ASMC to sequencing data from 498 Dutch individuals (Genome of the Netherlands data set) to 10 

detect background selection at deeper time scales. We observed highly significant correlations 11 

between average coalescence time inferred by ASMC and other measures of background 12 

selection. We investigated whether this signal translated into an enrichment in disease and 13 

complex trait heritability by analyzing summary association statistics from 20 independent 14 

diseases and complex traits (average N=86k) using stratified LD score regression. Our 15 

background selection annotation based on average coalescence time was strongly enriched for 16 

heritability (p = 7×10-153) in a joint analysis conditioned on a broad set of functional annotations 17 

(including other background selection annotations), meta-analyzed across traits; SNPs in the top 18 
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20% of our annotation were 3.8x enriched for heritability compared to the bottom 20%. These 19 

results underscore the widespread effects of background selection on disease and complex trait 20 

heritability. 21 

 22 

Introduction 23 

 24 

Recently developed methods such as the Pairwise Sequentially Markovian Coalescent (PSMC)1 25 

utilize Hidden Markov Models (HMM) to estimate the coalescence time of two homologous 26 

chromosomes at each position in the genome1-6, leveraging previous advances in coalescent 27 

theory7-11.  These methods have been broadly applied to reconstructing demographic histories of 28 

human populations12-20. More generally, methods for inferring ancestral relationships among 29 

individuals have potential applications to detecting signatures of natural selection21, genome-30 

wide association studies22-24, and genotype calling and imputation25-28. However, all currently 31 

available methods for inferring pairwise coalescence times require whole genome sequencing 32 

(WGS) data, and can only be applied to small data sets due to their computational requirements. 33 

 34 

Here, we introduce a new method, the Ascertained Sequentially Markovian Coalescent (ASMC), 35 

that can efficiently estimate locus-specific coalescence times for pairs of chromosomes using 36 

only ascertained SNP array data, which are widely available for hundreds of thousands of 37 

samples29. We verified ASMC’s accuracy using coalescent simulations, and determined that it is 38 

orders of magnitude faster than other methods when WGS data are available. Leveraging 39 

ASMC’s speed, we analyzed SNP array and WGS data sets with the goal of detecting signatures 40 

of recent positive selection and background selection using pairwise coalescence times along the 41 

human genome. We first analyzed 113,851 British individuals from the UK Biobank data set29, 42 

detecting 12 loci with unusually high density of very recent coalescence times as a result of 43 

recent positive selection at these sites. These include 6 known loci linked to nutrition, immune 44 

response, and pigmentation, as well as 6 novel loci involved in immunity, taste reception, and 45 

other aspects of human physiology. We then analyzed 498 unrelated WGS samples from the 46 

Genome of the Netherlands data set30 to search for signals of background selection at deeper 47 

time scales and finer genomic resolution. We determined that SNPs in regions with low values of 48 

average coalescence time are strongly enriched for heritability across 20 independent diseases 49 
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and complex traits (average N=86k), even when conditioning on a broad set of functional 50 

annotations (including other background selection annotations). 51 

 52 

Results 53 

 54 

Overview of ASMC method 55 

We developed a new method, ASMC, that estimates the coalescence time (which we also refer to 56 

as time to most recent common ancestor, TMRCA) for a pair of chromosomes at each site along 57 

the genome. ASMC utilizes a Hidden Markov Model (HMM), which is built using the coalescent 58 

with recombination process7-11; the hidden states of the HMM correspond to a discretized set of 59 

TMRCA intervals, the emissions of the HMM are the observed genotypes, and transitions 60 

between states correspond to changes in TMRCA along the genome due to historical 61 

recombination events. ASMC shares several key modeling components with previous 62 

coalescent-based HMM methods, such as the PSMC1, the MSMC2, and, in particular, the 63 

recently developed SMC++3. In contrast with these methods, however, ASMC’s main objective 64 

is not to reconstruct the demographic history of a set of analyzed samples. Instead, ASMC is 65 

optimized to efficiently compute coalescence times along the genome of pairs of individuals in 66 

modern data sets. To this end, the ASMC improves over current coalescent HMM approaches in 67 

two key ways. First, by modeling non-random ascertainment of genotyped variants, ASMC 68 

enables accurate processing of SNP array data, in addition to WGS data. Second, by introducing 69 

a new dynamic programming algorithm, it is orders of magnitude faster than other coalescent 70 

HMM approaches, which enables it to process large volumes of data. Details of the method are 71 

described in the Online Methods section; we have released open-source software implementing 72 

the method (see URLs).  73 

 74 

Simulations 75 

We assessed ASMC’s accuracy in inferring locus-specific pairwise TMRCA from SNP array and 76 

WGS data via coalescent simulations using the ARGON software31. Briefly, we measured the 77 

correlation between true and inferred average TMRCA for all pairs of 300 individuals simulated 78 

using a European demographic model3, for a 30 Mb region with SNP density and allele 79 

frequencies matching those of the UK Biobank data set (Figure 1; see Online Methods). As 80 
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expected, ASMC achieved high accuracy when applied to WGS data (r2=0.95). When sparser 81 

SNP array data were analyzed, the correlation remained high (e.g. r2=0.87 at UK Biobank SNP 82 

array density), and increased with genotyping density. Similar relative results were obtained 83 

when comparing the root mean squared error (RMSE) between true and inferred TMRCA at each 84 

site, and the posterior mean estimate of TMRCA attained higher accuracy than the maximum-a-85 

posteriori (MAP) estimate (Supplementary Figure 1). Inferring locus-specific TMRCA is 86 

closely related to the task of detecting genomic regions that are identical-by-descent (IBD), i.e. 87 

regions for which the true TMRCA is lower than a specified cut-off; ASMC attained higher IBD 88 

detection accuracy (area under the precision-recall curve) than the widely used Beagle IBD 89 

detection method32 (Supplementary Table 1). 90 

 91 

We evaluated the robustness of ASMC to various types of model misspecification, including an 92 

inaccurate demographic model, inaccurate recombination rate map, and violations of the 93 

assumption of frequency-based SNP ascertainment. To evaluate the impact of using an 94 

inaccurate demographic model, we simulated data under a European demographic history, but 95 

assumed a constant effective population size when inferring TMRCA (see Online Methods). As 96 

expected, this introduced biases, decreasing the accuracy of inferred TMRCA as measured by the 97 

RMSE, but had a negligible effect on the correlation between true and inferred TMRCA 98 

(Supplementary Table 2). An inaccurate demographic model is thus likely to result in biased 99 

TMRCA estimates, but has little effect on the relative ranking of TMRCA along the genome. 100 

Consistent with this observation, IBD detection remained accurate when an incorrect 101 

demographic model was used (Supplementary Table 3). We used a similar approach to evaluate 102 

the impact of using an inaccurate recombination rate map (see Online Methods), observing only 103 

negligible effects on the accuracy of inferred TMRCA (Supplementary Table 4). We next 104 

tested the robustness of ASMC to violations of the assumption that observed polymorphisms are 105 

ascertained solely based on their frequency, by instead ascertaining more rare variants in certain 106 

regions (mimicking genic regions; see Online Methods). We found that the distribution of 107 

inferred TMRCA in these “genic” regions did not deviate substantially from other regions 108 

(Supplementary Figure 2). Finally, we evaluated the impact of varying the number s of discrete 109 

TMRCA intervals (i.e. states of the HMM); we observed that increasing s had only a minor 110 
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impact on posterior mean estimates of TMRCA, although the higher resolution led to noisier 111 

MAP estimates (Supplementary Table 5). 112 

 113 

We next evaluated the running time and memory cost of ASMC. Letting s be the number of 114 

discrete TMRCA intervals (i.e. states of the HMM) and m be the number of observed 115 

polymorphic sites, ASMC has asymptotic running time O(sm). In comparison, the SMC++ 116 

method, which was shown to be more computationally efficient than other coalescent-based 117 

methods3, has asymptotic running time O(s3m). Accordingly, we observed that the running time 118 

of ASMC was 2 to 4 orders of magnitude faster than SMC++ when applied to simulated WGS 119 

data, depending on the number of discrete TMRCA intervals (Figure 2). For example, analysis 120 

of a pair of simulated genomes using 100 discrete time intervals required 7.4 seconds on a single 121 

processor for ASMC, compared to 3.3 hours for SMC++. This speedup does not involve a 122 

significant loss in accuracy (Supplementary Figure 3). The memory cost of ASMC was also 123 

efficient compared to SMC++, scaling linearly with s (Supplementary Figure 4). 124 

 125 

Application to 113,732 samples from the UK Biobank reveals signals of recent positive selection 126 

ASMC’s computational efficiency enables its application to analyses of TMRCA in large data 127 

sets. We thus used ASMC to infer locus-specific TMRCA in 113,732 unrelated individuals of 128 

British ancestry from the UK Biobank, typed at 678,956 SNPs after QC and phased using 129 

Eagle33 (see Online Methods); we note that phasing accuracy in this data set is very high, with 130 

average switch error rate on the order of 0.3% (one switch error every �10 cM33). We partitioned 131 

the data into batches of approximately 10,000 samples each and inferred locus-specific TMRCA 132 

for all haploid pairs within each batch, analyzing a total of 2.2 billion pairs of haploid genomes. 133 

 134 

We sought to identify genomic regions with an unusually high density of very recent inferred 135 

TMRCA events (i.e. within the past several thousand years). Such signals are expected at sites 136 

undergoing recent positive selection, since a rapid rise in frequency of a beneficial allele causes 137 

all individuals with the beneficial allele to coalesce to a more recent common ancestor than 138 

under neutral expectation34; approaches to detect selection based on distortions in inferred 139 

coalescence times have been recently applied at different time scales21. We thus computed a 140 

statistic, DRCT, reflecting the Density of Recent Coalescence (within the past T generations), 141 
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averaged within 0.05 cM windows. To compute approximate p-values, we noted that the DRCT 142 

statistic under the null is approximately Gamma-distributed. We thus obtained approximate p-143 

values for the DRCT statistic by fitting a Gamma distribution to the null 18% of the genome 144 

obtained by conservatively excluding 500Kb windows around regions previously implicated in 145 

scans for positive selection (see Online Methods). Using coalescent simulations, we determined 146 

that DRC150 is highly sensitive in detecting signals of positive selection within the past ~20,000 147 

years, as compared to other methods35,36 (see Online Methods, Supplementary Figure 5).  148 

 149 

Analyzing 63,103 windows of length 0.05cM in the UK Biobank data set, we detected 12 150 

genome-wide significant loci (p < 0.05 / 63,103 = 7.9 x 10-7; see Figure 3A and Table 1). The 151 

loci that we detected exhibited strong enrichment of recent coalescent events spanning up to the 152 

past 20,000 years (Figure 3B, 3C and Supplementary Figure 6), consistent with our 153 

simulations (Supplementary Figure 5). Of the 12 loci, 6 are loci known to be under recent 154 

positive selection, harboring genes linked to nutrition (LCT37), immune response (HLA38, TLR39, 155 

IGHG40), eye color (GRM540), and skin pigmentation (MC1R40). We also detected 6 novel loci, 156 

harboring genes involved in immune response (STAT441, associated with autoimmune disease42-157 
44); mucus production (MUC5B45 within cluster of mucin genes, involved in protection against 158 

infectious disease43, associated with several types of cancer46 and lung disease47); taste reception 159 

(PKD1L348, associated with kidney disease49,50); cardiac and fetal muscle (MYL4, associated 160 

with atrial fibrillation51); blood coagulation (ANXA352, associated with cancer53 and immune 161 

disease54); and brain-specific expression and immune response (FAM19A555). We note that 162 

suggestive loci implicated by the DRC150 statistic (p < 10-4; Supplementary Table 6) include 163 

known targets of selection linked to eye color (HERC256,57), retinal and cochlear function 164 

(PCDH1540), celiac disease (SLC22A457,58) and skin pigmentation (SLC45A257). 165 

Background selection annotation and heritability enrichment for complex traits 166 

We next sought to detect signals of background selection at deeper time scales. To accomplish 167 

this, we used ASMC to estimate locus-specific TMRCA for all ~0.5 million pairs of haploid 168 

genomes from unrelated individuals in the Genome of the Netherlands (GoNL) WGS data set 169 

(498 samples and 19,730,834 variants after QC; see Online Methods); we note that WGS data 170 

are required to achieve accurate resolution at deeper time scales (Figure 1A). Motivated by the 171 

fact that background selection reduces the effective population size at affected regions34,59, we 172 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/276931doi: bioRxiv preprint 

https://doi.org/10.1101/276931
http://creativecommons.org/licenses/by-nc-nd/4.0/


estimated its strength by measuring the average pairwise TMRCA at each site, which is 173 

proportional to effective population size60. We refer to this background selection annotation as 174 

ASMCavg. The genome-wide average of ASMCavg in the GoNL data was 17,399 generations (s.d. 175 

= 9,957 generations); we thus expect the ASMCavg annotation to reflect background selection 176 

occurring within the past several hundred thousand years. As expected, ASMCavg was highly 177 

correlated with other measures of background selection, including nucleotide diversity (r=0.50), 178 

the McVicker B-statistic59 (r=-0.28), and allele age predicted by ARGWeaver6, quantile-179 

normalized within 10 minor allele frequency bins61 (r=0.26, see Supplementary Table 7).  180 

 181 

Analyses using stratified LD score regression (S-LDSC)62 have shown that regions under 182 

background selection are enriched for disease and complex trait heritability61; enrichment was 183 

observed for the nucleotide diversity, McVicker B-statistic, and ARGWeaver predicted allele age 184 

annotations, as well as three other annotations linked to LD and recombination. We evaluated the 185 

ASMCavg background selection annotation for heritability enrichment by applying S-LDSC to 186 

summary association statistics from 20 independent diseases and complex traits (Supplementary 187 

Table 8, average N=86k). We performed both an unconditioned analysis using only the 188 

ASMCavg annotation, and a joint analysis conditioned on the 75 annotations from the baselineLD 189 

model61 (which includes a broad set of functional annotations, in addition to the six annotations 190 

linked to background selection and LD), in order to specifically assess whether our annotation 191 

provides additional signal. Focusing on the ASMCavg annotation, we computed the τ* metric61, 192 

defined as the proportionate change in per-SNP heritability resulting from a 1 standard deviation 193 

increase in the value of the annotation, conditional on other annotations included in the model. 194 

 195 

In the unconditioned analysis, lower ASMCavg was associated with higher per-SNP heritability 196 

for all 20 traits analyzed (Figure 4A), confirming that regions under background selection are 197 

enriched for disease heritability. Meta-analyzed across the 20 traits, the τ* for ASMCavg had a 198 

value of -0.81 (s.e. = 0.01; Z-test p < 10-300). After conditioning on the baselineLD model, the τ* 199 

for ASMCavg remained strongly significant at -0.25 (s.e. = 0.01; Z-test p = 7×10-153), implying 200 

that ASMCavg remains informative for disease heritability after conditioning on other annotations 201 

linked to background selection as well as a broad set of functional annotations. Furthermore, 202 

ASMCavg attained a larger value of τ* than each of the other six annotations linked to 203 
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background selection (Figure 4B), implying that it was the most disease-informative background 204 

selection annotation in this analysis; we note that adding ASMCavg to the baselineLD model 205 

reduced the |τ*| of the nucleotide diversity annotation from 0.13 to 0.00 and reduced the |τ*| of 206 

the ARGWeaver6 predicted allele age annotation from 0.25 to 0.13, indicating that ASMCavg 207 

subsumes signals from these annotations. We computed the proportion of heritability explained 208 

by each quintile of the ASMCavg annotation, which provides a more intuitive interpretation of the 209 

strength of the annotation’s effect (Figure 4C). We observed that SNPs in the smallest quintile 210 

of the annotation explained 33.1% (s.e. 0.5%) of heritability, 3.8x more than SNPs in the highest 211 

quintile (8.7%, s.e. 0.5%), the largest ratio among annotations linked to background selection 212 

(Supplementary Table 9) (tied with the nucleotide diversity annotation, whose effect was 213 

however subsumed by the ASMCavg annotation; Figure 4B). Annotations constructed based on 214 

average pairwise TMRCA conditional on the allele present on each chromosome were further 215 

informative for disease heritability (Supplementary Figure 7 and Supplementary Figure 8; see 216 

Online Methods). 217 
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Discussion 218 

 219 

We have introduced a new method for inferring pairwise coalescence times, ASMC, that 220 

can be applied to either SNP array or WGS data and is highly computationally efficient. 221 

Exploiting ASMC’s speed, we analyzed ~2.2 billion pairs of haploid chromosomes from 222 

113,851 British samples within the UK Biobank data set, and detected strong evidence of 223 

recent positive selection at 6 known loci and 6 novel loci linked to immune response and 224 

other biological functions. We further used ASMC to detect background selection at 225 

deeper time scales, estimating the average TMRCA at each position along the genome of 226 

498 WGS phased samples from the Netherlands. Using this annotation in a stratified LD 227 

score regression analysis of 20 diseases and complex traits, we detected a strong 228 

enrichment for heritability in regions predicted to be under background selection; our 229 

annotation had the largest effect among available annotations quantifying background 230 

selection. 231 

 232 

High-throughput inference of ancestral relationships has a number of applications beyond 233 

those related to recent positive selection and disease heritability that we have pursued in 234 

this work. Genotype calling and imputation methods25-28, for instance, infer unobserved 235 

genotypes relying on ancestral relationships, which are usually estimated using 236 

computationally efficient approximations of the coalescent model (e.g. the copying 237 

model63). Related ideas have been applied to detect phenotypic associations22-24. The 238 

processing speed achieved by the ASMC approach, on the other hand, enables making 239 

minimal simplifications to the full coalescent process, while retaining high computational 240 

scalability. In addition, accurate detection of very recent common ancestors (IBD 241 

regions) across samples is a key component of several other types of analysis, including 242 

long-range phasing33,64,65, estimation of recombination rates using haplotype 243 

boundaries66-68, haplotype-based association studies69, estimation of mutation and gene 244 

conversion rates70, and inference of fine-scale demographic history within the past tens of 245 

generations71-73. 246 

 247 
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Although the ASMC offers new opportunities for inference of pairwise coalescence 248 

times, we note several limitations. First, the ASMC can operate either on pairs of 249 

unphased chromosomes within a single diploid individual, or on pairs of phased 250 

chromosomes across individuals. The latter application requires the availability of phased 251 

haplotypes, which may not be easy to obtain. We note, however, that recently developed 252 

methods for computational phasing attain sufficiently low switch error rates as to be 253 

considered negligible in most applications33,64,74. Second, ASMC assumes a demographic 254 

model that includes a single panmictic population, and does not allow for the presence of 255 

samples from multiple ethnic backgrounds. Analyses of multi-ethnic samples will require 256 

extending the current approach so that it can accommodate demographic models 257 

involving multiple populations. Third, ASMC is not currently applicable to imputed data. 258 

We have shown that higher genotyping density leads to higher accuracy in the inference 259 

of coalescence times. It may be possible to extend ASMC to incorporate information on 260 

imputation accuracy, enabling its application to imputed data. Fourth, our approach to 261 

assess the statistical significance of loci under recent positive selection is based on 262 

approximate p-value calculations. The use of approximate p-values has previously been 263 

adopted in detecting signals of positive selection36, and is more conservative than the 264 

widespread approach of simply ranking top loci35; nonetheless, the construction of an 265 

improved null model is a desirable direction of future development75. Finally, we note 266 

that although ASMC’s speed enables the analysis of large data sets, the computational 267 

costs of inferring pairwise coalescence times scale quadratically with the number of 268 

analyzed individuals. It may be possible to improve on this quadratic scaling given that at 269 

each location in the genome the ancestral relationships of a set of n samples can be 270 

efficiently represented using a tree-shaped genealogy containing n-1 nodes. The task of 271 

efficiently reconstructing a samples’ ancestral recombination graph (ARG)6,24,76, 272 

however, is substantially more complex than that of estimating pairwise TMRCA, and 273 

remains an exciting direction of future research. Despite these limitations and avenues for 274 

further improvement, we expect that ASMC will be a valuable tool for computationally 275 

efficient inference of pairwise coalescence times using SNP array or WGS data. 276 

  277 
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Online Methods 278 

 279 

We provide an overview of the main components of the ASMC approach. An extended 280 

description can be found in the Supplementary Note. 281 

 282 

ASMC model overview. The ASMC is a coalescent-based HMM1-3,5 (see 283 

Supplementary Note for background on related methods). At each site along the 284 

genome, hidden states represent the time at which a pair of analyzed haploid individuals 285 

coalesce, which we also refer to as their time to most recent common ancestor (TMRCA). 286 

In this model, time is discretized using a set of s user-specified time intervals, each 287 

representing a possible hidden state. The TMRCA may change between adjacent sites 288 

whenever a recombination event occurs along the lineages connecting the two individuals 289 

to their MRCA. The transition probability between states is modeled using a Markovian 290 

approximation11 of the full coalescent process. Observations are obtained using 291 

genotypes of the pair of analyzed samples, as well as a set of additional samples, as 292 

detailed below, and emission probabilities reflect the chance of observing a specific 293 

genotypic configuration, conditional on the pair’s TMRCA at a site. Calculations of the 294 

initial state distribution, the transition, and the emission probabilities consider the 295 

demographic history of the analyzed sample, which is separately estimated (e.g. using 296 

other coalescent HMMs run on available WGS data for the analyzed population) and 297 

provided as input. The main goal of the ASMC is to perform high-throughput inference 298 

of posterior TMRCA probabilities along the genome for many pairs of haploid 299 

individuals genotyped using either WGS or SNP array platforms. 300 

 301 

Emission model. ASMC’s emission probability calculations rely on the recently 302 

developed Conditioned Sample Frequency Spectrum (CSFS)3, which is extended to 303 

handle non-randomly ascertained genotype observations (e.g. SNP array data). Consider 304 

a sample of n individuals, and define 2 of them as distinguished, (n-2) of them as 305 

undistinguished. We are interested in estimating posterior TMRCA probabilities at a set 306 

of observed sites in the genome of the 2 distinguished samples. At each site, the CSFS 307 

model3 allows computing the HMM emission probability P(d,u|τ), i.e. the probability that 308 
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d�{0,1,2} derived alleles are carried by the distinguished pair of samples, while u�[0, 309 

n-2] derived alleles are observed in the (n-2) undistinguished samples, conditioned on the 310 

fact that the distinguished pair’s TMRCA (the HMM’s hidden state) is τ. Intuitively, this 311 

approach enables exploiting the relationship between an allele’s frequency and its age, 312 

which is modeled using the set of undistinguished samples and used to improve the 313 

inference of TMRCA for the distinguished pairs3. Because the set of undistinguished 314 

samples is solely used to obtain allele frequencies, their ancestral relationships need not 315 

be tracked, leading to a substantially simplified and tractable model. In the ASMC, this 316 

approach is extended to accommodate the fact that the observed sites may not be a 317 

randomly ascertained subset of polymorphic variants in the sample. To this end, we write 318 

the emission probability as P(obs|d+u)×P(d,u|τ), where the additional term P(obs|d+u) 319 

represents the probability that a site with (d+u)�[0, n] carriers of the derived allele is 320 

observed in the ascertained data. In the ASMC, this probability is estimated using the 321 

ratio between the empirical allele frequency spectrum obtained from the analyzed data 322 

and the allele frequency spectrum that is expected under neutrality for the demographic 323 

model provided in input. Details are provided in the Supplementary Note. The emission 324 

model enables handling both major/minor and ancestral/derived genotype data encoding. 325 

We verified using coalescent simulation (see Simulations), that the number of 326 

individuals used when computing the CSFS model does not have a substantial impact on 327 

accuracy (Supplementary Table 10). 328 

 329 

Transition model. The transition model describes the probability of transitioning along 330 

the genome between any pair of the s possible time intervals for the TMRCA of the two 331 

analyzed samples (which we referred to as distinguished individuals in the emission 332 

model). These transition probabilities are computed using the conditional Simonsen-333 

Churchill model (CSC)11,77. In contrast to previously proposed Markovian 334 

approximations of the coalescent process, such as the SMC9 and the SMC’10, the CSC 335 

model remains accurate even if the observed genotypes are distant from one another11. 336 

This is an important requirement in the analysis of SNP array data, as markers in this type 337 

of data are separated by substantially larger genetic distances than in the case of WGS 338 

data. Details on the calculation of transition probabilities can be found in the 339 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/276931doi: bioRxiv preprint 

https://doi.org/10.1101/276931
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Note. ASMC supports variable recombination rates along the genome 340 

through a genetic map provided in input. 341 

 342 

Inference. The standard HMM forward-backward algorithm to perform posterior 343 

inference has computational cost O(s2m) for analysis using s hidden states in a sequence 344 

of length m78. Current analyses making use of coalescent HMMs to infer demographic 345 

histories utilize a number of hidden states in the order of 102. When human WGS data is 346 

analyzed, the number of observed sites is in the order of 109. Thus, the computational 347 

cost of applying the standard HMM approach is very high, and a number of solutions to 348 

speed up the inference have been proposed (see Supplementary Note for an overview). 349 

Here, we devise a new approach that uses dynamic programming to reduce the 350 

computational dependence on the number s of hidden states from quadratic to linear, 351 

resulting in a gain of 2 orders of magnitude for the average analysis compared to the 352 

standard algorithm. A related procedure exists for the SMC transition model79, but cannot 353 

be applied to the more accurate and more complex CSC approach used in this work. The 354 

speed-up in the HMM forward algorithm is obtained by simplifying the key operation of 355 

computing an updated α′ vector of forward probabilities using the current forward vector, 356 

α, and the transition matrix, T, which is obtained from the CDC model. Computing the i-357 

th entry of this vector normally requires performing the summation !"# = ∑ !&'&,")
&*+ , 358 

which has computational cost O(s). This operation, however, can be rewritten as a linear 359 

combination of three terms, each of which can be recursively computed in time O(1), 360 

reducing the cost of computing the entire forward vector from O(s2) to O(s) (see the 361 

Supplementary Note for a detailed derivation). An equivalent speed-up can be obtained 362 

for the backward algorithm. Furthermore, to reduce the dependence of ASMC’s running 363 

time on sequence length when WGS data are analyzed, we make the following 364 

approximation. Consider two polymorphic sites separated by a stretch of n monomorphic 365 

sites. Computing an updated forward probability vector α′ using the standard approach 366 

would require performing the operation α′ = α(TE0)nTEp, where E0 is a diagonal matrix 367 

with emission probabilities for a monomorphic site in its diagonal entries and Ep is the 368 

equivalent matrix for the emission at the next polymorphic site in the sequence. For short 369 

genetic distances that are observed between polymorphic sites, the matrix T is close to 370 
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diagonal, and we can thus effectively approximate this product as αTnEn0TEp (see 371 

Supplementary Figure 3). Using the previously described dynamic programming 372 

approach, this operation can be computed in time O(s), and only needs to be performed at 373 

a subset of polymorphic sites, resulting in a further speedup of 2-3 orders of magnitude 374 

compared to the standard forward/backward approach operating on all sites. This 375 

approximation is not needed when SNP array data are analyzed, as we need not integrate 376 

over large stretches of monomorphic sites, treating instead all sites between a pair of 377 

genotyped SNPs as unobserved. In addition to this, most quantities involved in the O(ms) 378 

forward/backward operations can be precomputed and stored in a cache, substantially 379 

reducing constant terms in the computation. 380 

 381 

ASMC simulations. We performed extensive coalescent simulations to assess the 382 

accuracy of the ASMC method. Unless otherwise specified, all simulations use the setup 383 

described in this section (standard setup). We used the ARGON simulator31, 384 

incorporating a human recombination rate map (see URLs) and a recent demographic 385 

model for European individuals3. We simulated 300 haploid individuals and a region of 386 

30Mb. To simulate SNP array data, we subsampled polymorphic variants to match the 387 

genotype density and allele frequency spectrum observed in the UK Biobank data set 388 

(described below). We used recombination rates from the first 30Mb of Chromosome 2, 389 

whose average rate of 1.66 cM/Mb well represents the recombination rates observed 390 

along the genome (mean 1.45 cM/Mb, s.d. 0.33 cM/Mb across autosomes). The 391 

demographic model and genetic map used to simulate the data were used when running 392 

ASMC, unless otherwise specified. 393 

 394 

Time discretization. We ran ASMC using different numbers of discrete time intervals, 395 

which were chosen to correspond to quantiles of the pairwise coalescence distribution 396 

induced by the demographic model. To achieve increased resolution into the recent past, 397 

some simulations utilized 160 discretization intervals chosen as follows: 40 intervals of 398 

length 10 between generations 0 and 400, 80 intervals of length 20 between generations 399 

400 and 2,000, and 40 intervals corresponding to quantiles of the coalescence 400 

distribution, starting at generation 2,000. While using a larger number of time intervals 401 
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provides increased resolution, the choice of time discretization should take into account 402 

that a larger number of time intervals typically results in noisier MAP estimates of 403 

TMRCA (see Supplementary Table 5).   404 

 405 

Accuracy evaluation. ASMC’s inference accuracy was evaluated using two metrics. For 406 

a given region, and for all pairs of samples in a simulated data set, we computed the 407 

squared correlation (r2) between the true and inferred sum of TMRCA at each site within 408 

the region. This metric captures the accuracy of inferred genetic kinship, but is 409 

unchanged by potential scaling factors and possible systematic biases in the TMRCA 410 

estimates. We thus also measured the root mean square error (RMSE) between true and 411 

inferred TMRCA at individuals sites, which we usually report as a percent difference 412 

compared to analysis of WGS data for improved readability. For our analysis of IBD 413 

detection accuracy, we defined as true IBD regions all sites for which pairwise TMRCA 414 

were lower than a specified time threshold. We ran Beagle32 (v4.1) providing the true 415 

genetic map and using default parameters, and used threshold values for the output LOD 416 

score (ibdlod) to select the set of inferred IBD sites. To detect IBD using ASMC, we 417 

obtained MAP estimates of TMRCA at all sites using 160 discretization intervals (see 418 

Time discretization), and used thresholds on the inferred TMRCA values to select the 419 

set of inferred IBD sites. For both methods, we computed accuracy using the precision-420 

recall curve. Neither Beagle nor ASMC enable obtaining recall values in the full [0,1] 421 

range, due to the presence of a lower bound for Beagle’s admissible LOD threshold 422 

values, and ASMC’s time discretization. To compare the two methods’ accuracies in each 423 

simulation, we computed the area under the precision-recall curve (auPRC) only within 424 

the range in which the accuracy of both methods could be measured, and reported the 425 

percent difference between the two methods’ auPRC (see Supplementary Figure 9 for 426 

an illustration). The PRC curve between observed points was interpolated using the 427 

method of ref 80. 428 

 429 

Model misspecifications. To test ASMC’s robustness to an accurate demographic model 430 

we simulated data under a European demographic history, but ran ASMC assuming a 431 

constant population size of 10,000 diploid individuals (see Supplementary Table 2). To 432 
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mimic inaccuracies in the genetic map we simulated data using a human recombination 433 

map for the simulated region, but run ASMC using a map with added noise. To introduce 434 

noise, the recombination rate between each pair of contiguous markers in the map was 435 

altered by randomly adding or subtracting a fraction of its true value (see 436 

Supplementary Table 4). To test whether deviations from the assumption of frequency-437 

based ascertainment introduce significant biases, we mimicked over-ascertainment of rare 438 

variants in genic regions of the genome. To this end, we randomly sampled ~25% of the 439 

markers from 10Kb-long genes placed every 200Kb, while the remaining variants were 440 

sampled to match the UK Biobank frequency spectrum as in standard simulations, and 441 

compared the distribution of coalescent times within over-ascertained regions and the rest 442 

of the genome (Supplementary Figure 2). 443 

 444 

UK Biobank (UKBB) data set. The UK Biobank interim release data comprise 152,729 445 

samples, from which we extracted 113,851 individuals of British ancestry (as described 446 

in ref. 81). 95 trio parents were excluded and used to assess phasing quality with the 447 

Eagle33 software, leaving a total of 113,756 samples. From these, we created 11 batches 448 

with 10,000 samples and 1 batch with the remaining 3,756 samples, which we analyzed 449 

using ASMC. Out of the original ~800k variants (for basic quality control details see 450 

URLs: UK Biobank Genotyping and QC), we analyzed a total of 678,956 SNPs that were 451 

autosomal, polymorphic in the set of analyzed samples, biallelic, with missingness ≤10%, 452 

and not included in a set of 65 variants with significantly different allele frequencies 453 

between the UK BiLEVE array and the UK Biobank array. We divided the genome in 39 454 

autosomal regions from different chromosomes or separated by centromeres. 455 

 456 

Detection of recent positive selection. To detect the occurrence of recent positive 457 

selection, we computed a statistic related to the Density of Recent Coalescence events 458 

within the past T generations (DRCT statistic). The DRCT statistic was measured as 459 

follows. At a given site along the genome, we first averaged all posterior TMRCA 460 

estimates obtained from all analyzed pairs of samples and renormalized these averages to 461 

obtain an average pairwise coalescence distribution at the site. The DRCT statistic was 462 

then obtained by integrating this distribution between generations 0 and T. The statistic 463 
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was measured in windows of 0.05 cM, reporting an average of all SNPs within each 464 

window.  465 

 466 

Null model calibration. Given n samples from a population of recent effective size N, 467 

the DRCT statistic is approximately Gamma-distributed under the null for sufficiently 468 

small values of T and n�N. The rationale of this approximation is that for n�N, a small 469 

number of coalescence events will have occurred within the short time span of T 470 

generations. In this regime, the coalescence time of each pair of lineages may be modeled 471 

as independent and exponentially distributed, which allows approximating the total 472 

number of early coalescence events as a Gamma-distributed random variable. Similar 473 

approximations have been recently used elsewhere36,82. We thus computed approximate 474 

p-values for our selection scan in the UKBB data set using the following approach. We 475 

first extracted a subset of “neutral” genomic regions, spanning a total of 18% of the 476 

genome, and defined as any genotyped site at a distance greater than 500Kb from regions 477 

contained in a recent database of positive selection83 (see URLs: database of positive 478 

selection). We then built an empirical null model by fitting a Gamma distribution (using 479 

Python’s Scipy library, see URLs) to these putatively neutral regions, and used this 480 

model to obtain approximate p-values throughout the genome. We analyzed 63,103 481 

windows, using a Bonferroni significance threshold of 0.05 / 63,103 = 7.9 x 10-7. One of 482 

the genome-wide significant signals that we detected (PKD1L3 locus, chr16:70.89-483 

71.80Mb) fell within the putatively neutral portion of the genome. We thus iterated this 484 

procedure, excluding this locus from the set of putatively neutral loci. 485 

 486 

Selection simulations. We used the simulation setup recently adopted by Field et al.36 to 487 

test the sensitivity of the DRCT statistic in detecting recent positive selection, and its 488 

specificity to recent time scales. We simulated several replicates for a region of 10Mb 489 

and 6,000 haploid individuals from a European demographic model19, using the COSI2 490 

coalescent simulator84. An allele at the center of the region was simulated to undergo 491 

recent positive selection, reaching a high present-day frequency of 0.7. We used the 492 

simuPOP85 software to obtain allele frequency trajectories under additive selection 493 

models, for several values of the selection coefficient. To test for specificity to recent 494 
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time scales, we varied the period during which selection was active, posing no constraints 495 

on whether selection acted on a novel allele or on standing variation. 496 

 497 

To assess power, we simulated 50 independent replicates for positive selection occurring 498 

in the past 200 generations (or ~6,000 years), using selection coefficients S=0.01, 0.03, 499 

0.05, 0.1. We detected positive selection using either iHS (ref. 35), SDS (ref. 36), or 500 

DRC150 (Supplementary Figure 5a). The iHS statistic was computed using the Selscan 501 

software86 with default parameters. We computed the iHS statistic at either the sequenced 502 

causal variant (iHSsequence), or averaged at SNPs within a 0.05 cM window around the 503 

causal variant in simulated SNP array data (iHSarray), which we obtained from simulated 504 

sequencing data as detailed above for neutral simulations. The DRC150 statistic was 505 

similarly computed by averaging within a 0.05 cM window on SNP array data. The SDS 506 

statistic was computed at the sequenced causal variant (SDSsequence). We found the 507 

DRC150 statistic computed on SNP array data to be highly sensitive to recent positive 508 

selection starting at S=0.03. Similar results for DRC20 are also reported in 509 

Supplementary Figure 10a. 510 

 511 

To assess the specificity of DRC150 to recent time scale, we simulated selection starting at 512 

time -∞ and ending at a generation in 0, 50, 100, 200, 400, 600, 800, 1000, 1500, 2000 513 

(Supplementary Figure 5b). We observed the DRC150 statistic to be mostly sensitive to 514 

selection acting during the past ~700 generations (or ~20,000 years), a similar time-span 515 

compared to the iHS statistic computed at the sequenced causal variant, which was 516 

however generally less sensitive, while the SDS statistic computed at the sequenced 517 

causal variant was only sensitive to extremely recent positive selection, as previously 518 

shown36. We also report DRC20 results in Supplementary Figure 10b. 519 

 520 

We performed additional simulation to evaluate the calibration of the null model. We 521 

observed an excellent fit for the DRC20 statistic (Supplementary Figure 11a), and only 522 

moderate inflation for the DRC150 statistic (Supplementary Figure 11b). The amount of 523 

inflation observed in the empirical null model obtained using the DRC150 statistic within 524 

the UKBB data set was consistent with our coalescent simulations (Supplementary 525 
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Figure 11c,d). We note that for very small values of T the independence assumption is 526 

more accurately met, so that the DRCT statistic is well approximated using a Normal 527 

distribution (see Supplementary Figure 12 for DRC20). We expect the moderate amount 528 

of inflation observed in neutral simulations for the DRC150 statistic to be counterbalanced 529 

in real data analysis by the conservative use of a Bonferroni significance threshold and 530 

the fitting of null model parameters using an empirical distribution of test statistics, 531 

which is likely to result in over-dispersion of the null model due to signals of positive 532 

selection that are too weak to be detected. Consistent with this hypothesis, genome-wide 533 

significant loci (Table 1) and suggestive loci (Supplementary Table 6) contain several 534 

regions of known recent adaptation. 535 

 536 

Genome of the Netherlands (GoNL) data set. The data set consists of 748 individuals 537 

who passed quality control and were sequenced at an average of ~13x (quality control 538 

details for the Release 4 data are described elsewhere30). We analyzed 19,730,834 539 

sequenced variants for 498 trio-phased unrelated parents, excluding centromeres and 540 

dividing the genome in the same 39 autosomal regions used for analysis of the UKBB 541 

data set. 542 

 543 

ASMCavg annotation. We set out to estimate the strength of background selection by 544 

measuring variation in local effective population size along the genome59. We used 545 

ASMC to estimate the posterior mean TMRCA at all sites and for all pairs of haploid 546 

individuals in the GoNL data set. We averaged these estimates at each site to obtain an 547 

annotation of background selection, which we refer to as ASMCavg. We similarly 548 

computed other annotations, conditioning on whether either or both individuals at a site 549 

carried a mutated allele. The ASMChet annotation (Supplementary Figure 7), was 550 

obtained by averaging at each site the posterior mean TMRCA estimates for all pairs of 551 

individuals that were found to be heterozygous at each site. Other annotations were 552 

similarly computed using only pairs carrying e.g. minor/major alleles at each site (see 553 

Supplementary Figure 8). 554 

 555 

Stratified LD Score (S-LDSC) analysis 556 
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We investigated whether large values of our annotations related to background selection 557 

corresponded to an enrichment in heritability for 20 complex traits and diseases listed in 558 

Supplementary Table 8. The S-LDSC analysis was run on data sets containing 559 

European individuals using standard guidelines62. The sets of LD-score, regression, and 560 

heritability SNPs were defined as follows. LD score SNPs were set to be 9,997,231 561 

biallelic SNPs with at least 5 minor alleles observed in 489 European samples from the 562 

1000 Genomes Phase 3 data set12 (see URLs); regression SNPs were set as 1,217,312 563 

HapMap Project Phase 3 SNPs; and Heritability SNPs, used to compute trait heritability, 564 

were chosen as the 5,961,159 reference SNPs with MAF ≥ 0.05. The MHC region (2Mb 565 

25-34 on Chromosome 6) and SNPs with ,2>80 or 0.0001N were excluded from the 566 

analysis. Annotations contained in the baselineLD model, which we included in our joint 567 

analyses, can be found in Supplementary Table S9 of ref. 61. To avoid minor allele 568 

frequency (MAF)-mediated effects, all ASMC-related annotations used in the S-LDSC 569 

analysis were quantile-normalized with respect to MAF of regression SNPs. Specifically, 570 

we used 10 MAF ranges specified in the baselineLD model, corresponding to 10 571 

frequency quantiles for the regression SNPs. For each range, we ranked values of an 572 

annotation for the corresponding SNPs, and mapped them to quantiles of a Standard 573 

Normal distribution. Annotation effects, τ*, were obtained from the output of S-LDSC, as 574 

described in ref. 61. Independent traits were selected on the basis of low genetic 575 

correlation, as previously described62. Meta-analysis of τ* values across independent 576 

traits was performed computing a weighted average of individual estimates of τ*, 577 

weighted using 1/(hi2εi2), where hi2 represents heritability for the i-th trait, and εi 578 

represents the standard error of the trait’s τ* estimate. 579 
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URLs 
 

• The ASMC program will be released prior to publication as a publicly available, 
open source software package at http://www.palamaralab.org/software/ and 
https://github.com/pierpal/ASMC 

• UK Biobank website: http://www.ukbiobank.ac.uk/ 
• Genome of the Netherlands website: www.nlgenome.nl 
• UK Biobank Genotyping and QC: http://www.ukbiobank.ac.uk/wp-

content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf 
• Human genetic maps: http://www.shapeit.fr/files/genetic_map_b37.tar.gz 
• The dbPSHP database of positive selection: 

ftp://jjwanglab.org/dbPSHP/curation/dbPSHP_20131001.tab 
• Python’s Scipy library: http://www.scipy.org/ 
• 1000 Genomes Project Phase 3 data: 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502 
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Tables 
 
Table 1. Genome-wide significant signals of recent positive selection. We report genomic 
locations, minimum p-value (capped at 10-16) across 0.05cM windows, SNP corresponding to 
signal peak, and candidate gene for the 12 genome-wide significant signals of recent positive 
selection (p < 0.05 / 63,103 = 7.9 x 10-7).  Novel loci are denoted in bold font. 
 
Chromosome Region (Mb) Min. p-value SNP Candidate gene(s) 

2 134.44-139.01 <10-16 rs10206673 LCT37 
2 191.73-192.07 1.81×10-7 rs7556924 STAT4 
4 38.44-38.97 <10-16 rs7660745 TLR gene gamily39 
4 79.11-79.51 5.90×10-7 rs2867461 ANXA3 
6 25.18-33.82 <10-16 rs2104362 HLA38 
11 1.08-1.23 4.21×10-9 rs11019228 GRM540 
11 88.21-90.55 1.20×10-10 rs72636988 MUC gene family 
14 106.35-107.12 9.49×10-9 rs10142951 IGHG40 
16 70.89-71.80 7.73×10-8 rs141399030 PKD1L3 
16 89.12-90.14 3.78×10-7 rs62052682 MC1R40 
17 42.64-45.18 2.87×10-7 rs75229873 MYL4 
22 48.98-49.08 4.94×10-7 rs78014641 FAM19A5 
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Figure 1. ASMC accuracy in coalescent simulations. (A) Sample posterior decoding of TMRCA along a 3 Mb segment for a pair of 
simulated individuals with ASMC run on WGS data (top) and on SNP array data (bottom). Red lines represent the true TMRCA, 
while the heat map represents the inferred posterior distribution. Posterior density tends to concentrate more tightly around the true 
TMRCA when WGS data are analyzed, due to the higher density of polymorphic variants. Posterior estimates using SNP array data 
are more dispersed for distant TMRCA, but remain highly concentrated for recent TMRCA. (B) Accuracy (r2 between true and 
inferred average TMRCA) as a function of marker density. TMRCA are inferred using the posterior mean obtained by ASMC at each 
site. ASMC-seq represents the accuracy obtained using ASMC on WGS data. The red vertical line indicates marker density in the UK 
Biobank data set. Errors bars represent standard errors. Numerical results are reported in Supplementary Table 11. 
  



 
 
Figure 2. Running time of ASMC. We report the running time required to analyze a pair of simulated haploid genomes (extrapolated 
from running times in 5Mb regions) as a function of the number of discrete TMRCA intervals. Both SMC++ and ASMC-seq were run 
on WGS data. Numerical results are reported in Supplementary Table 12. 
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Figure 3. Genome-wide scan for recent positive selection in the UK Biobank data set. (A) 
Manhattan plot with candidate gene labels for 12 loci detected at genome-wide significance (p < 
0.05 / 63,103 = 7.9 x 10-7; dashed red line). Numerical results for top loci are reported in Table 
1; additional suggestive loci are reported in Supplementary Table 6. (B) Enrichment for recent 
coalescence events at the LCT locus (Chromosome 2). (C) Enrichment for recent coalescence 
events at the TLR locus (Chromosome 4). y-axis labels assume a 30-year generation time.  
Analogous plots for other top loci are provided in Supplementary Figure 6.
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Figure 4. S-LDSC analysis of ASMCavg background selection annotation and disease 
heritability. (A) τ* value of the ASMCavg annotation for 20 independent diseases and complex 
traits. (B) Absolute values of τ* values (meta-analyzed across 20 independent diseases and 
complex traits) in joint analysis conditioned on baselineLD annotations. Dashed bars reflect 
values for six baselineLD annotations linked to background selection before the introduction of 
the ASMCavg annotation. (C) Proportion of heritability explained by SNPs within different 
quintiles of ASMCavg annotation (in joint analysis conditioned on baselineLD annotations). Error 
bars represent standard errors. Numerical results are reported in Supplementary Table 13. 
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Supplementary Figure 1 – ASMC performance in simulations as a function of marker 
density. (A) r2, as a function of marker density, between true average TMRCA within the 
simulated region and average TMRCA inferred using the maximum-a-posteriori (MAP) of the 
posterior distribution computed by ASMC. ASMC-seq represents the accuracy obtained using 
ASMC on WGS data. Error bars represent standard errors. (B) We measure RMSE between true 
TMRCA at each site, and the TMRCA inferred by ASMC using the posterior mean on either 
SNP array or WGS data. We report the percent difference in per-site RMSE between analysis of 
SNP array data and WGS data (C) We measure RMSE between true TMRCA at each site, and 
the TMRCA inferred by ASMC using the MAP on either SNP array or WGS data. We report the 
percent difference in per-site RMSE between analysis of SNP array data and WGS data.



 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 2 - Robustness to deviations from frequency-based ascertainment. 
Approximately 25% of the variants found on the UK Biobank Axiom Array were selected based 
on their functional relevance, particularly in coding regions, while the remaining ~75% were 
ascertained based on frequency. To mimic this ascertainment scheme in our simulations, we 
randomly sampled ~25% of the markers from 10Kb-long genes placed every 200Kb, while the 
remaining variants were sampled to match the UK Biobank frequency spectrum as in standard 
simulations. Simulations were performed using the standard setup and 30 discretization intervals 
for TMRCA inference. Shaded regions indicate 95% confidence intervals. We observed minimal 
deviation between coalescence densities inferred within and outside the simulated gene regions.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 3 – Effects of ASMC-seq transition approximation. When computing 
forward-backward probabilities in WGS data, ASMC-seq makes the approximation (TE$)& ≅
T&E$&, where n is the number of sites between two consecutive observations in the sequencing 
data, E0 is a diagonal matrix reflecting emission probabilities for n monomorphic sites, and T is 
the transition matrix between two sites at distance n, which is close to diagonal with off-diagonal 
entries growing with n. Exact calculations are obtained for n=1 (or when ASMC is run on SNP 
array data), while an approximation is made for n>1. To measure the extent to which this 
approximation affects inference accuracy, we measured the per-site RMSE between true 
TMRCA and TMRCA inferred using either maximum-a-posteriori (MAP) or posterior mean. We 
simulated 100 European samples in a 10 Mb region at the beginning of Chromosome 2 (with 
recombination rate 2.18 cM per Mb), and randomly inserted monomorphic sites along the 
genome to measure accuracy at different values of n, running ASMC-seq with 30 time intervals. 
We report RMSE for different values of n, as a percentage of the RMSE measured for n=10. The 
red vertical bar represents the genotyping density observed for the GoNL data set (n=136). For 
MAP inference, the error linearly increased at a rate of ~0.01% per base pair, remaining below 
2% for a genotyping density similar to the GoNL data set. For posterior mean inference, a 
negligible difference in accuracy was observed for n<100, followed by a linear increase at an 
approximate rate of ~0.008% per base pair, and increased error below 0.5% at GoNL genotyping 
density. 
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Supplementary Figure 4 – Memory use of ASMC-seq and SMC++. Memory usage for the 
analysis of coalescence times in a 5Mb region using WGS data from 100 haploid individuals. 
Bars represent standard errors.
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Supplementary Figure 5 – Selection simulations for DRC150. (A) Simulation of different 
strengths of recent positive selection starting 200 generations in the past: iHS score35 run on 
array data (iHSarray); iHS score35 on causal variant from sequencing data (iHSsequence); SDS 
score36 on causal variant from sequencing data (SDSsequence); DRC150 score on array data. Scores 
of each method are standardized with respect to corresponding scores obtained in neutral 
simulations. Bars indicate standard deviations. (B) Specificity to recent past for iHS and SDS run 
son sequencing data, and for DRC150. Simulation of selection starting at time -∞ stopping at the 
specified generation, followed by neutral drift. The DRC150 statistic is mostly sensitive to 
selection that has been active within the past ~700 generations (or ~20,000 years). Bars represent 
standard errors.
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Supplementary Figure 6 – Enrichment of coalescence density in the past 20,000 years. At 
each site along the regions (horizontal axis) we plot the enrichment for the density of 
coalescence events in the past ~20,000 years, computed as ()*+,-.)-	0123,2153

()*+,-.)-	63785391:3,2153
. Time axes 

assumes a 30-year generation.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 7 - S-LDSC analysis of ASMChet background selection annotation 
and disease heritability. We built an annotation, ASMChet, reflecting the average coalescence 
time for heterozygous individuals (i.e. chromosomes carrying discordant alleles) at each site. As 
for the ASMCavg annotation, ASMChet is quantile normalized using 10 MAF bins. ASMChet is 
expected to be proportional to the age of polymorphic alleles in the sample. Consistent with this 
expectation, in a joint S-LDSC analysis using the ASMChet annotation and the baselineLD 
model, we observed that the meta-analyzed τ* for the quantile normalized ARGWeaver allele 
age annotation was reduced from 0.250 (s.e. 0.012) to -0.046 (s.e. 0.018). 
 
  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 8 - S-LDSC analysis of several annotations related to background 
selection. We built several annotations related to average coalescent time at each site, 
conditioning on the allele present on each analyzed chromosome from the GoNL data set. In 
addition to the ASMCavg annotation (see Online Methods), we computed average coalescence 
time for carriers of a minor allele (ASMCminor), carriers of a major allele (ASMCmajor), and an 
annotation containing the value of log(Tminor/Tmajor) at each site, i.e. the logarithm of the ratio of 
average coalescence time for individuals carrying a minor allele and individuals carrying a major 
allele (ASMCminor/major). All annotations were quantile normalized with respect to 10 MAF bins, 
as done for the ASMCavg annotation. We performed a joint S-LDSC analysis including these 
annotations, the SDS annotation from ref. 36, and all annotations from the baselineLD model, 
excluding the nucleotide diversity annotation, whose effects are subsumed by the ASMCavg 
annotation (see Figure 4). ASMChet was also excluded, as it was subsumed by ASMCavg. We 
report |τ*| values meta-analyzed across 20 independent traits. Dashed lines for the baselineLD 
annotations represent meta-analyzed |τ*| values in a joint S-LDSC analysis that does not include 
annotations represented in red.



 
 
Supplementary Figure 9 – Illustration of auPRC measure for IBD detection accuracy. We 
measured accuracy of IBD detection for ASMC and Beagle using the area under the precision-
recall curve (auPRC) for both programs. For both methods, recall can only be estimated within a 
limited precision range, due to the time-discretization used by ASMC, and the limited range of 
LOD-score thresholds allowed by Beagle. We thus compare the auPRC within the region where 
the precision and recall of both methods can be measured. In this example, ASMC’s  recall can 
be measured for values greater than 0.05, while Beagle’s recall can be measured for values 
smaller than 0.85. We thus compare the auPRC for the two methods in the range [0.05, 0.85] 
(blue vertical lines). Interpolation between pairs of observed precision/recall values was obtained 
using the method of ref. 80. 
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Supplementary Figure 10 – Selection simulations for DRC20. (A) Simulation of different 
strengths of recent positive selection starting 200 generations in the past: iHS score35 run on 
array data (iHSarray); iHS score35 on causal variant from sequencing data (iHSsequence); SDS 
score36 on causal variant from sequencing data (SDSsequence); DRC20 score on array data. Scores 
of each method are standardized with respect to corresponding scores obtained in neutral 
simulations. Bars indicate standard deviations. (B) Specificity to recent past for iHS and SDS run 
son sequencing data, and for DRC20. Simulation of selection starting at time -∞ stopping at the 
specified generation, followed by neutral drift. Error bars represent standard errors.
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Supplementary Figure 11 – Empirical null model. (A) QQ plot for the DRC20 statistic in 
2,000 independent neutral coalescent simulations using the European demographic model of 
Tennessen et al.19. (B) QQ plot for the DRC150 statistic in 2,000 independent neutral coalescent 
simulations using the European demographic model of Tennessen et al.19. (C) Empirical 
distribution and Gamma-fit for the DRC150 statistic in the putatively neutral portion of the 
genome in the UKBB data set (11,221 observations from 0.05 cM windows). (D) QQ plot for the 
DRC150 statistic in the putatively neutral portion of the genome in the UKBB data set (11,221 
observations from 0.05 cM windows). All models are fit using a Gamma distribution with shape, 
location and scale parameters, using Python’s Scipy library (see URLs).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 12 – Empirical null model for the DRC20 statistic. QQ plot for the 
DRC20 statistic in 2,000 independent neutral coalescent simulations using the European 
demographic model of Tennessen et al.19, fit using a Normal distribution.



Supplementary Table 1 – IBD detection. We report the difference in accuracy between ASMC- and Beagle-based IBD detection. 
IBD regions are defined using several time thresholds. We report the percent improvement for the area under the precision-recall 
curve (auPRC) of ASMC over Beagle. For both methods, precision can only be estimated within a limited recall range, due to the 
time-discretization used by ASMC, and the limited range of LOD-score thresholds allowed by Beagle. We thus compare the auPRC 
within the region where the precision and recall of both methods can be measured (“Average precision range” column, also see 
Supplementary Figure 9). Numbers in round brackets represent standard errors. 
 

IBD time 
threshold 

Average 
recall range 

auPRC within recall range Percent auPRC improvement: 
100 × $auPRC	+,-. auPRC	/01230⁄ − 16 ASMC Beagle 

25 [0.26, 0.98] 0.44 (0.01) 0.38 (0.01) 17.79 (2.18) 
50 [0.12, 0.95] 0.54 (0.01) 0.44 (0.01) 21.71 (1.22) 
75 [0.07, 0.90] 0.54 (0.01) 0.44 (0.01) 22.66 (1.11) 

100 [0.04, 0.86] 0.52 (0.00) 0.43 (0.00) 21.47 (0.95) 
150 [0.02, 0.77] 0.49 (0.00) 0.41 (0.00) 19.04 (0.81) 
200 [0.01, 0.70] 0.46 (0.00) 0.39 (0.00) 17.58 (0.53) 
400 [0.00, 0.49] 0.37 (0.00) 0.31 (0.00) 17.78 (0.39) 
600 [0.00, 0.36] 0.29 (0.00) 0.24 (0.00) 19.99 (0.37) 

 



Supplementary Table 2 – Effects of demographic model misspecification. We simulated 
batches of 300 haploid samples from the first 30Mb of a human Chromosome 2 and a European 
demographic model, and ran ASMC using 160 discretization intervals (see Online Methods, 
Discretization Intervals). ASMC was ran assuming a constant effective population size of 10,000 
diploid individuals, rather than the European model used to generate the data. We report percent 
difference in accuracy (RMSE and r2), compared to using the appropriate demographic model. 
We observed an increase in RMSE error compared to ASMC analysis using the correct 
demographic model, and no significant difference in r2. Numbers in round brackets indicate 
standard errors from 10 independent simulations. 
 

 % difference when using 
wrong demographic model 

RMSE of posterior mean estimate of TMRCA +29.18 (1.21) 
RMSE of maximum-a-posteriori estimate of TMRCA +82.29 (0.99) 
r2  of posterior mean estimate of TMRCA -0.43 (0.49) 
r2  of maximum-a-posteriori estimate of TMRCA +1.28 (1.29) 
 



Supplementary Table 3 – IBD detection when ASMC demographic model is incorrect. We report the difference in accuracy 
between ASMC- and Beagle-based IBD detection. IBD regions are defined using several time thresholds. We report the percent 
improvement for the area under the precision-recall curve (auPRC) of ASMC over Beagle. For both methods, precision can only be 
estimated within a limited recall range, due to the time-discretization used by ASMC, and the limited range of LOD-score thresholds 
allowed by Beagle. We thus compare the auPRC within the region where the precision and recall of both methods can be measured 
(“Average precision range” column, also see Supplementary Figure 9). Numbers in parethesis represent standard errors. Data were 
simulated under a European demographic model, but ASMC was run assuming a constant effective population size of 10,000 diploid 
individuals. This had negligible effects on accuracy, although the TMRCA bias introduced by this model misspecification slightly 
shifted the average precision range where ASMC’s AuPRC could be measured. 
 

IBD time 
threshold 

Average 
recall range 

 auPRC within recall range Percent AuPRC improvement: 
100 × $auPRC	+,-. auPRC	/01230⁄

− 16 
ASMC Beagle 

25 [0.32, 0.98] 0.38 (0.01) 0.32 (0.01) 19.83 (2.92) 
50 [0.15, 0.94] 0.51 (0.01) 0.41 (0.01) 24.80 (1.40) 
75 [0.08, 0.90] 0.53 (0.01) 0.42 (0.01) 26.72 (1.55) 

100 [0.05, 0.85] 0.53 (0.01) 0.42 (0.01) 26.94 (1.09) 
150 [0.03, 0.77] 0.51 (0.00) 0.40 (0.00) 25.49 (0.80) 
200 [0.02, 0.70] 0.48 (0.00) 0.39 (0.00) 23.79 (0.44) 
400 [0.01, 0.49] 0.37 (0.00) 0.31 (0.00) 18.88 (0.49) 
600 [0.00, 0.36] 0.28 (0.00) 0.24 (0.00) 17.68 (0.58) 



Supplementary Table 4 – Effects of noise in the recombination rate map. To mimic 
inaccuracies in the genetic map we simulated data using a human recombination map, and ran 
ASMC using a map with added noise. The recombination rate between each pair of contiguous 
markers in the map was altered by randomly adding or subtracting a specified percentage of its 
true value (% noise). We report accuracy using RMSE and r2. RMSE is measured between true 
and inferred TMRCA at each site, and “RMSE %” refers to the percent difference in RMSE 
between TMRCA inferred in SNP array data (UKBB density) using the indicated genetic map 
and TMRCA inferred in WGS data using the correct genetic map. Error attained using the true 
map is reported at the top for comparison. r2 indicates squared correlation between true and 
inferred average TMRCA in the simulated region. Each simulation involved a single batch of 
300 haploid samples from the first 30Mb of a human Chromosome 2 and a European 
demographic model. ASMC was run using 160 discretization intervals (see Online Methods, 
Discretization Intervals). 
 

Map type MAP RMSE % Post. mean RMSE % MAP r2 Post. Mean r2 
True map +49.46 +45.15 0.85 0.90 
10% noise +51.74 +48.95 0.85 0.88 
20% noise +50.62 +48.08 0.86 0.89 
30% noise +51.16 +46.94 0.84 0.90 
40% noise +51.74 +45.55 0.85 0.89 
50% noise +53.89 +50.61 0.85 0.89 
60% noise +53.95 +50.55 0.85 0.88 
70% noise +50.09 +49.36 0.84 0.89 
80% noise +53.70 +52.18 0.84 0.87 
90% noise +55.72 +57.21 0.83 0.87 
100% noise +53.25 +52.76 0.83 0.88 

 
  



Supplementary Table 5 – Effects of the number of time discretization intervals. We 
estimated coalescence times at each locus within 30Mb regions simulated using the standard 
setup using either the maximum-a-posteriori (MAP) or the posterior mean of the inferred 
coalescence distributions. In each simulation, we run ASMC using a different number of 
discretization intervals, which are chosen such that the coalescence distribution is expected to be 
uniform in all intervals (see Online Methods, Discretization intervals). For each value, we report 
the percent difference in RMSE accuracy between coalescence times inferred in SNP array data 
and WGS data, and the r2 between true and inferred average TMRCA in the regions. 
   

Discretization 
intervals 

MAP 
RMSE % 

Post. mean 
RMSE % MAP r2 Post. mean r2 

25 +11.47 +0.40 0.85 0.89 
50 +19.80 -1.42 0.85 0.90 
100 +33.63 +0.04 0.85 0.90 
200 +46.86 +0.79 0.83 0.89 
400 +58.29 +1.63 0.81 0.88 



Supplementary Table 6 – Suggestive selection loci. We report loci under suggestive selection (p < 10-4), as well as additional loci 
with elevated values of the DRC150 statistic in the UK Biobank data set (10-4 < p < 10-3). 
 
Chromosome Region (Mb) Min. p-value Top SNP Candidate gene(s) 

1 5.76-5.91 5.55×10-6 rs12144662 NPHP4, KCNAB2, CDH5, RPL22 
1 223.71-223.86 6.07×10-6 rs7525446 CAPN2, CAPN8 
1 235.15-235.17 6.47×10-4 rs35894003 RBM34, ARID4B, TOMM20 
1 236.69-236.91 2.30×10-5 rs2297860 ACTN2, HEATR1, LGALS8 
1 248.12-248.62 6.59×10-6 rs28625479 OR2L2, OR2L3, OR2L5, OR2M2, OR2M3, OR2M4, OR2M5, 

OR2M7, OR2T1, OR2T2, OR2T4, OR2T6, OR2T7, OR2AK2, 
OR2L13, OR2T12, OR2T33, OR14C36, LOC105373279 

3 48.48-50.34 1.89×10-4 rs146587089 CYB561D2, CACNA2D2, AMT, BSN, APEH, DAG1, GPX1, MST1, 
NAT6, QARS, RBM5, RBM6, RHOA, TCTA, TMA7, UBA7, UCN2, 
USP4, WDR6, ARIH2, ATRIP, CAMKV, CDHR4, GMPPB, GNAI2, 
GNAT1, HYAL1, HYAL3, IFRD2, IP6K1, IP6K2, LAMB2, 
MON1A, MST1R, NICN1, P4HTM, TRAIP, TREX1, USP19, 
AMIGO3, CCDC36, CCDC71, CELSR3, COL7A1, DALRD3, 
IMPDH2, LSMEM2, PFKFB4, QRICH1, RNF123, SEMA3F, 
SHISA5, TMEM89, UQCRC1, ARIH2OS, C3orf62, C3orf84, 
FAM212A, KLHDC8B, NCKIPSD, NDUFAF3, PRKAR2A, 
SLC26A6, SLC25A20, RP11-3B7.1, CTD-2330K9.3 

3 94.28-94.65 7.20×10-4 rs114565822  
4 3.80-3.88 6.13×10-6 rs28615087 ADRA2C, LINC00955 
4 24.96-24.98 3.58×10-4 rs74870548 LGI2, LOC102723675, CCDC149 
5 33.68-34.36 2.76×10-5 rs114118675 SLC45A257 
5 129.56-131.81 4.69×10-6 rs739718 SLC22A457 
5 180.02-180.10 5.24×10-4 rs6601131 FLT4 
6 139.41-139.55 6.37×10-4 rs76157938 HECA 
7 62.90-63.74 5.94×10-4 rs118009401 ZNF679, ZNF727 
8 11.70-11.87 1.37×10-4 rs4841682 CTSB, DEFB134, DEFB135, DEFB136, RP11-481A20.11 
8 17.95-18.22 1.48×10-4 rs28556847 NAT1 
8 73.99-74.03 3.89×10-4 rs6472748 SBSPON 
9 136.99-137.02 2.11×10-4 rs28650068 WDR5 
10 55.92-56.32 2.32×10-4 rs12762168 PCDH1540 
11 120.16-120.17 7.95×10-4 rs2282537 POU2F3 
12 33.07-36.36 7.91×10-6 rs4579984 ALG10, SYT10 



12 53.17-53.17 9.71×10-4 rs1873647  
12 54.35-54.58 9.49×10-5 rs111779723 HOXC4, HOXC5, HOXC6, HOXC8, HOXC9, SMUG1, HOXC10, 

HOXC11, HOXC12, RP11-834C11.12 
12 55.44-55.97 1.17×10-4 rs61411633 OR6C1, OR6C2, OR6C3, OR6C4, OR6C6, OR9K2, OR10A7, 

OR2AP1, OR6C65, OR6C68, OR6C70, OR6C74, OR6C75, OR6C76 
12 111.72-113.21 2.16×10-4 rs10492023 ATXN2, SH2B3 
12 123.40-124.01 1.30×10-4 rs61742326 ABCB9, SBNO1, SETD8, OGFOD2, RILPL1, RILPL2, ARL6IP4, 

CDK2AP1, PITPNM2, SNRNP35, C12orf65, MPHOSPH9 
14 20.47-20.52 3.63×10-4 rs11158599 OR4Q2, OR4K13, OR4K14 
14 24.62-24.90 5.18×10-5 rs4982912 IPO4, IRF9, MDP1, NOP9, REC8, TGM1, ADCY4, CBLN3, CIDEB, 

DHRS1, GMPR2, LTB4R, NEDD8, PSME2, RIPK3, RNF31, TINF2, 
TSSK4, CHMP4A, LTB4R2, NFATC4, NYNRIN, TM9SF1, 
RABGGTA, NEDD8-MDP1, RP11-468E2.2, RP11-468E2.4, RP11-
934B9.3 

15 27.83-28.26 2.74×10-5 rs145242923 HERC2, OCA257 
16 0.20-0.32 6.89×10-4 Affx-80252323 HBM, HBZ, HBA1, HBA2, HBQ1, ITFG3, LUC7L, RGS11, 

ARHGDIG 
16 55.84-55.88 4.01×10-5 rs4784598 CES1, CES5A 
16 88.15-88.30 6.25×10-5 rs80193813  
17 7.33-7.61 2.69×10-4 rs62062590 CD68, FXR2, SAT2, SHBG, TP53, FGF11, MPDU1, SENP3, 

SOX15, ZBTB4, ATP1B2, CHRNB1, EIF4A1, POLR2A, WRAP53, 
SLC35G6, TMEM102, TNFSF12, TNFSF13, C17orf74, AC007421.1, 
TNFSF12-TNFSF13 

17 45.35-46.31 1.27×10-4 rs16957364 SP2, SP6, CBX1, PNPO, COPZ2, ITGB3, KPNB1, SCRN2, SKAP1, 
SNX11, TBX21, LRRC46, MRPL10, NFE2L1, NPEPPS, OSBPL7, 
PRR15L, TBKBP1, EFCAB13, CDK5RAP3 

20 17.76-17.84 7.02×10-4 rs2328224  
 
 



Supplementary Table 7 – Correlation between ASMCavg and other annotations from the baselineLD model. 
 
  baselineLD annotation  Correlation with ASMCavg (r) 

B-statistic59 -0.28 
CpG content 0.03 

Recombination rate 0.07 
LLD-Africa61 0.08 

ARGWeaver allele age6 0.26 
Nucleotide diversity 0.50 



Supplementary Table 8 – Traits analyzed in S-LDSC analysis. We report phenotype name (and reference), number of samples in 
the study, Z-score for the trait’s heritability, and URL (if summary statistics are publicly available). 
 

Phenotype N h2 Z-score URL 
Age at menarche (UKBB) 74,944 18.27 . 
Age at menopause (UKBB) 44,410 9.87 . 
Anorexia87 32,143 9.58 http://www.med.unc.edu/pgc/downloads/ 
Autism spectrum88 10,263 8.72 http://www.med.unc.edu/pgc/files/resultfiles/pgcasdeuro.gz 
Blood pressure, diastolic (UKBB) 134,011 24.12 . 
BMI89 122,033 17.45 http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files 
Coronary artery disease90 77,210     8.47 http://www.cardiogramplusc4d.org/ 
Crohn's disease91 20,883 10.34 http://www.ibdgenetics.org/downloads.html 
Eczema (UKBB) 145,416 11.42 . 
Height (UKBB) 145,368 29.29 . 
LDL92 93,354 9.49 http://www.broadinstitute.org/mpg/pubs/lipids2010/ 
Lung FEV1/FVC ratio (UKBB) 123,935 22.04 . 
Lung forced expiratory volume (UKBB) 123,935 27.99 . 
Neuroticism93 170,911 9.54 http://ssgac.org/documents/ 
Putamen volume94 12,924 7.08 http://enigma.ini.usc.edu/wp-content/uploads/E2_EVIS 
Rheumatoid arthritis95 37,681 10.20 http://plaza.umin.ac.jp/yokada/datasource/software.html 
Schizophrenia96 70,100 21.82 http://www.med.unc.edu/pgc/downloads/ 
Smoking status (UKBB) 145,227 19.70 . 
Systemic lupus erythematosus97 14,267 6.37 https://www.immunobase.org/downloads/protected_data/GWAS_Data/ 
Years of education98 126,559 11.97 http://www.ssgac.org/ 

 



Supplementary Table 9 – Percent heritability explained by SNPs within annotation quintiles. We performed a joint analysis of 
ASMCTMRCA and other annotations in the baselineLD model using S-LDSC, and estimated the fraction of heritability explained by 
SNPs in each quintile of an annotation. The highest ratio between largest and smallest mean quintile effects was observed for the 
ASMCavg and nucleotide diversity annotations. The effect (measured using τ*, see Figure 4B) of the nucleotide diversity annotation, 
however, is subsumed by the ASMCavg annotation. 
 

Annotation % of heritability for SNPs in each quintile largest/smallest 1st  2nd  3rd  4th  5th 
ASMCavg 33.11 (0.53) 26.05 (0.21) 16.00 (0.39) 16.05 (0.22) 8.73 (0.51) 3.79 

Nucleotide diversity 31.53 (0.36) 24.37 (0.15) 20.40 (0.08) 15.44 (0.16) 8.31 (0.38) 3.79 
LLD-Africa61 29.12 (0.38) 23.89 (0.13) 20.45 (0.07) 16.58 (0.16) 9.94 (0.33) 2.93 

ARGWeaver allele age6 29.25 (0.68) 25.43 (0.23) 14.42 (0.31) 20.16 (0.27) 10.69 (0.63) 2.74 
CpG content 11.94 (0.21) 16.76 (0.16) 20.11 (0.13) 22.09 (0.12) 28.49 (0.40) 2.39 
B-statistic59 13.17 (0.30) 15.91 (0.14) 19.57 (0.09) 22.77 (0.12) 28.35 (0.38) 2.15 

Recombination rate 19.08 (0.29) 19.87 (0.20) 20.71 (0.19) 22.02 (0.15) 18.27 (0.62) 1.04 



Supplementary Table 10 – Effects of the number of samples used in the emission model. We 
simulated data using standard parameters, and measured accuracy of ASMC-inferred 
coalescence times using RMSE and r2, for either WGS and SNP array data. We estimated 
coalescence times at each locus using either the maximum-a-posteriori (MAP) or the posterior 
mean of the inferred coalescence distributions. In each simulation, we ran ASMC using 100 
discretization intervals and a different number of samples to compute the CSFS in the emission 
model. For RMSE, we report the percent difference in accuracy between coalescence times 
inferred in SNP array data and WGS data. Better RMSE or r2 performance results for better use 
of allele frequency information via the CSFS emission model. We observed that the performance 
plateaus when using more than 100 samples in the CSFS. Approximate standard errors indicated 
in round brackets are computed using 5 independent simulations. 
  

Individuals in the 
emission model 

MAP 
RMSE % 

Post. mean 
RMSE % MAP r2 Post. mean r2 

50 +62.92 (2.91) +52.24 (2.14) 0.750 (0.013) 0.818 (0.013) 
100 +51.54 (2.02) +45.74 (0.86) 0.829 (0.012) 0.888 (0.005) 
150 +54.75 (0.77) +49.61 (1.33) 0.824 (0.011) 0.879 (0.007) 
200 +51.59 (0.52) +43.45 (0.61) 0.814 (0.010) 0.874 (0.005) 
250 +55.21 (0.57) +47.46 (1.25) 0.834 (0.005) 0.885 (0.005) 
300 +55.92 (1.64) +48.17 (0.92) 0.830 (0.009) 0.887 (0.008) 

 



Supplementary Table 11 - ASMC accuracy in coalescent simulations.  Numerical values 
from Figure 1. Numbers in round brackets represent standard errors. The r2 attained by     
ASMC-seq using WGS data is 0.946 (0.017). Average SNP density observed in the UK Biobank 
data set was 225. TMRCA was inferred using the ASMC posterior mean coalescence time at 
each site within the simulated region. 

 
Density (SNPS/Mb) r2 between true and inferred average TMRCA 

21.7 0.619 (0.017) 
44.4 0.739 (0.007) 
89.6 0.817 (0.006) 

180.1 0.868 (0.008) 
361.0 0.892 (0.008) 
722.9 0.913 (0.007) 
1288.2 0.925 (0.004) 
1637.7 0.935 (0.005) 
1812.6 0.938 (0.005) 

 
 



Supplementary Table 12 – Computational cost of ASMC.  Numerical values from Figure 2 
and Supplementary Figure 4. Running times are extrapolated from those obtained in 5Mb long 
regions of WGS data, assuming a 3,235 Mb genome. Memory usage reflects analysis of a 5Mb 
region using WGS data from 100 haploid individuals. Numbers in round brackets represent 
standard errors. 
 

TMRCA intervals Running time (seconds per genome) Memory usage (Gb) 
ASMC-seq SMC++ ASMC-seq SMC++ 

20 2.03 (0.05) 211 (30) 0.13 (0.0) 0.37 (0.03) 
40 3.12 (0.06) 1,150 (68) 0.24 (0.0) 0.83 (0.02) 
80 6.09 (0.21) 6,310 (115) 0.46 (0.01) 1.63 (0.02) 

160 12.18 (0.41) 43,879 (869) 0.9 (0.01) 3.67 (0.12) 
320 22.94 (0.97) 347,385 (13,505) 1.79 (0.03) 9.88 (0.31) 
640 46.77 (0.77) 2,649,817 (62,670) 3.55 (0.06) 21.67 (1.25) 

 



Supplementary Table 13 - S-LDSC analysis of ASMCavg background selection annotation 
and disease heritability.  Numerical values from Figure 4. (A) τ* value of the ASMCavg 
annotation for 20 independent diseases and complex traits. (B) Absolute values of τ* values 
(meta-analyzed across 20 independent diseases and complex traits) in joint analysis conditioned 
on baselineLD annotations. Values in round brackets represent standard errors. Numerical values 
for Figure 4c can be found in Supplementary Table 9. 
 
A 

Trait τ* 
Rheumatoid Arthritis -1.687 (0.233) 

Crohns Disease -1.452 (0.263) 
LDL -1.327 (0.229) 

Eczema -1.268 (0.189) 
Age at Menopause -1.111 (0.188) 

Coronary Artery Disease -1.093 (0.241) 
Lupus -1.082 (0.241) 

Schizophrenia -0.917 (0.078) 
Diastolic -0.865 (0.091) 

Years of Education -0.86 (0.131) 
Height -0.825 (0.094) 
BMI -0.759 (0.087) 

FEV1FVC -0.752 (0.089) 
Smoking Status -0.707 (0.088) 

FVC -0.686 (0.072) 
Age at Menarche -0.678 (0.107) 

MeanPutamen -0.629 (0.217) 
Neuroticism -0.536 (0.118) 

Autism -0.451 (0.192) 
Anorexia -0.25 (0.142) 

Meta analysis -0.807 (0.01) 
 
B 
 

Annotation Annotation τ* (meta-analysis) Annotation τ* (meta-analysis) not 
including ASMCavg in the model 

ASMCavg -0.253 (0.010) N/A 
ARGWeaver allele age6 -0.133 (0.013) -0.246 (0.012) 

LLD-Africa61 -0.199 (0.008) -0.185 (0.008) 
Recombination rate -0.223 (0.010) -0.207 (0.010) 
Nucleotide diversity -0.001 (0.008) -0.125 (0.008) 

B-statistic59 0.102 (0.006) 0.116 (0.006) 
CpG content 0.220 (0.009) 0.213 (0.009) 
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1 Background

1.1 The pairwise sequentially Markovian coalescent (PSMC)

The pairwise sequentially Markovian coalescent (PSMC (Li & Durbin, 2011)) is a widely
adopted coalescent-based hidden Markov model (HMM) that describes the ancestral
relationship of a pair of haploid individuals at all sites along their genome. We provide
a high-level description of this approach, upon which our model and several recent
extensions have been built.

The vector of observations in the HMM is obtained from the genotypes of a pair of
haploid individuals that are randomly sampled from a population. For a sequence of
length `, observations xi, i 2 {1 . . . `}, have value 1 if the two individuals have discordant
genotypes (they are heterozygous at the site) or 0 if they have identical genotypes
(they are homozygous at the site). At each site along the genome, the hidden state
ti 2 {1 . . . d} of the Markov chain represents the time to most recent common ancestor
(TMRCA) of the pair of haploid individuals at site i. Time is measured in generations
(or in coalescent units) and is discretized into a predefined set of d possible time intervals.
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The probability of observing a heterozygous site for the pair of individuals given their
TMRCA is t is expressed as P (x = 1|t, µ) = 1 � e�2µti , where µ is the per generation,
per base pair mutation rate, which is assumed to be constant along the genome and
throughout time. Conversely, for a homozygous site, P (x = 0|t, µ) = e�2µti . The initial
state probabilities for the HMM are obtained from the coalescent distribution induced
by the e↵ective size history of the population from which the two individuals were
sampled. Transition probabilities between discrete TMRCA states along the genome are
obtained using the sequentially Markovian coalescent (SMC) model, which provides a
Markovian approximation to the coalescent process (McVean & Cardin, 2005) described
as a sequence of recombination and coalescent events along the genome (Wiuf & Hein,
1999). Details of the transition model can be found in (Li & Durbin, 2011). The
PSMC enables all usual applications of HMMs (Rabiner, 1989), including inferring the
posterior probability of TMRCA at each site in the genome (posterior decoding), and
learning the model’s hyperparameters, namely the population’s size history, mutation,
and recombination rates.

1.2 Related work on coalescent HMMs

The CoalHMM model (Hobolth et al. , 2007) is one of the earliest coalescent HMMs,
although its fundamental di↵erence compared to the PSMC and derived approaches is
that it operates at phylogenetic time scales, rather than population genetic time scales.
The MSMC approach (Schi↵els & Durbin, 2014), extended the PSMC to analysis of
multiple haploid individuals. The hidden states of the MSMC model represent the time
of the earliest coalescent event in the set of analyzed individuals, a modification that
leads to increased insight into recent time scales. Another improvement of the MSMC
over the PSMC is the use of the SMC’ model (Marjoram & Wall, 2006) in computing
transition probabilities, which leads to increased accuracy compared to the SMC model
(Hobolth & Jensen, 2014; Wilton et al. , 2015). When two individuals are analyzed, the
MSMC approach reduces to the PSMC approach, though with the improved SMC’ tran-
sition model. The DiCal model (Sheehan et al. , 2013; Tataru et al. , 2014; Steinrücken
et al. , 2015) is another coalescent HMM approach that enables simultaneous analysis
of multiple samples, and explicit modeling of complex demographic scenarios. This ap-
proach relies on the conditional sampling distribution (CSD, (Paul et al. , 2011)), which
approximates the full coalescent process by focusing on the conditional distribution of
the n-th haploid individual given (n � 1) individuals have been observed. When two
individuals are analyzed, the DiCal approach reduces to the PSMC model. The com-
putational burden of both the MSMC and the DiCal approach limits their use to no
more than ⇠10 haploid individuals. The recently developed SMC++ method (Terhorst
et al. , 2016), extends the PSMC approach by incorporating knowledge of the frequency
of the analyzed genetic polymorphisms in the emission model the of HMM, e↵ectively
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utilizing genotype information from multiple samples while computing posterior coales-
cent probabilities for a single pair of haploid individuals. To achieve this, the SMC++
approach crucially relies on the notion of “conditioned sample frequency spectrum”
(CSFS, see section 2.1 for an overview, and (Terhorst et al. , 2016) for details). As in
the MSMC approach, the transion model of the SMC++ provides an improvement over
the PSMC’s approximation of the full coalescent process. The SMC++ adopts the con-
ditional Simonsen-Churchil model (CSC) proposed in (Hobolth & Jensen, 2014), which
is superior to the SMC’ approach, as it considers the possibility of multiple recombi-
nation events occurring between two sites without a↵ecting the TMRCA for a pair of
analyzed individuals.

1.3 Computational cost and phasing requirements of other methods

Standard computation of posterior probabilities via the forward-backward algorithm,
which we will simply refer to as “posterior decoding” in the remainder of this note,
has cost O(d2`) for d hidden states and an observation sequence of length ` (Rabiner,
1989). The standard forward-backward calculations adopted in the PSMC and MSMC
methods therefore lead to O(d2`) computational cost to estimate posterior coalescent
probabilities for a set of d discretized TMRCA intervals and a sequence of length `
base pairs. PSMC reduces computational costs by pooling sites in blocks of 100 base
pairs, while MSMC uses precomputation and caching to improve run time. The DiCal
method (Steinrücken et al. , 2015) uses a “locus-skipping” approach (Paul & Song, 2012),
which enables running the forward-backward algorithm in time O(d2`p), where `p is the
set of loci that are polymorphic in the analyzed samples. This leads to substantial
speed-ups, since usually ` � `p. A previous version of DiCal utilizes properties of the
SMC model to reduce the run-time complexity of the forward-backward algorithm to
O(d`) (Harris et al. , 2014). These approaches, however, are limited to use within
the CSD model, which reduces to the SMC model when two haplotypes are analyzed.
Compared to the SMC’ and the CSC model, the SMC provides a less accurate Markovian
approximation of the coalescent (Hobolth & Jensen, 2014; Wilton et al. , 2015). The
SMC++ approach, which utilizes the more accurate CSC model, implements a novel
“locus-skipping” approach that enables computing the forward-backward dynamics in
time O(d3`p).

The coalescent HMM approaches discussed thus far require the availabulity of accu-
rate phasing information in order to perform TMRCA posterior decoding for haplotypes
from distinct diploid individuals. Accurate computational phasing, however, cannot be
achieved in modern sequencing data sets, particularly for rare variants. This often limits
the application of coalescent HMM approaches to the maternal and paternal haplotypes
within unphased diploid individuals, or results in noisy estimates of TMRCA distribu-
tions in the presence of pervasive phasing errors (Terhorst et al. , 2016). Although the
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SMC++ approach provides an e↵ective way of pooling information from the genotype of
multiple unphased individuals from a sample, TMRCA decoding for pairs of haplotypes
sampled across di↵erent diploid individuals still requires access to phasing information.

2 The ascertained sequentially Markovian coalescent

Here, we develop the Ascertained Sequentially Markovian Coalescent (ASMC). The
ASMC is most closely related to the SMC++ (Terhorst et al. , 2016), and makes the
following methodological innovations:

• The ability to perform posterior decoding using a non-random subset of genomic
variants, such as the subset of common variants that are genotyped using SNP
array technologies.

• A new formulation of the forward-backward algorithm that requires O(d`p) com-
putation under the conditional Simonsen-Churchil transition model (Hobolth &
Jensen, 2014).

These two advances enable performing high-troughput coalescent-based analysis of relat-
edness in large SNP array data sets, which are now widely available and often comprise
several tens or hundreds of thousand samples. Furthermore, owing to recent advances
in computational phasing algorithms (Loh et al. , 2016a; Loh et al. , 2016b; O’Connell
et al. , 2016), large cohorts such as the UK Biobank can now be computationally phased
with very high accuracy, with switch error rates in the order of 0.3% (one every ⇠10
cM). This creates the possibility of analyzing coalescent times for potentially all pairs of
haploid individuals in the sample, with negligible e↵ects of phasing errors. The dramatic
speedup achieved by ASMC also makes analysis of all pairs of available haploid genomes
feasible in sequencing data sets, whenever high-quality phasing information is available.

2.1 ASMC emission

The emission model of a coalescent HMM approach for the inference of TMRCA in
non-randomly ascertained genotype data, such as SNP array data, needs to tackle two
key technical challenges, namely

1. The information content of the observed genotype data with respect to the coa-
lescent time of the analyzed individuals is greatly reduced, as the vast majority of
genotype variants are unobserved.

2. The set of observed variants are not randonly ascertained from the underlying
sequencing variants. This ascertainment leads to significant bias in TMRCA in-
ference if not accounted for.
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To address these challenges, the ASMC adopts and extends the “conditioned sample
frequency spectrum” (CSFS) model (Terhorst et al. , 2016). In addition to modeling
allele sharing at each genomic site along the genome of the analyzed pair of individuals,
as done in the PSMC approach, the CSFS enables taking into account the total number
of individuals carrying each derived allele in a population sample. Modeling of allele
frequencies using the CSFS allows to (1) increase the informativeness of the observations,
enabling inference of TMRCA despite a substantial reduction in genotyped variants
(2) remove biases due to frequency-based ascertainment, by explicitly modeling the
probability of observing a variant in the data provided it is polymorphic at a given
frequency in the analyzed sample.

The CSFS model can be briefly described as follows. Having obtained a set of
(n+2) haploid samples from a panmictic population with known demographic history, we
denote 2 of these samples as “distinguished”, and the remaining n as “undistinguished”.
Given that the pair of distinguished lineages coalesce at time ⌧ at a site along the
genome, the CSFS expresses the probability that exactly d out of the two distinguished
individuals and u out of the n undistinguished individuals carry a mutated allele. We
denote this probability as CSFS(⌧)d,u, so that a CSFS(⌧) is a 2 ⇥ n table where
entry {d, u} corresponds to the probabily that d derived alleles are observed in the two
distinguished samples, and u derived alleles are found in the n undistinguished samples
(the value of n is dropped to simplify the notation). Details on the derivation of the
CSFS for a given demographic model can be found in (Terhorst et al. , 2016). We note
that in this paper we are mainly concerned with the task of decoding TMRCA along
the genome of a pair of haploid individuals, and we will and adopt a demographic model
inferred from previous analysis of whole-genome sequencing data.

Assume now that variants in the observed data set have been genotyped based on
their frequency in a population sample, in other words, that the probability of observing
a variant in the data can be expressed as P (obs|d+u). The ascertained conditioned site
frequency spectrum is then obtained as ACSFS(⌧)d,u = CSFS(⌧)d,u ⇥ P (obs|d+ u)⇥
norm, where norm is a normalizing constant such that

P2
d=0

Pn
u=0ACSFS(⌧)d,u = 1.

In practice, we need to estimate P (obs|d + u), and we do so by computing P̂ (obs|d +
u) = SFSa(d+ u)/SFSs(d+ u), where SFSa(x) and SFSa(x) represent counts for the
number of sites polymorphic in x individuals for a sample of size n + 2. Note that the
normalization of SFSa(·) and SFSs(·), which should take into account terms related
to e.g. the population mutation rate, is irrelevant, as these scaling constants vanish
when the ACSFS is renormalized. To estimate the ascertained SFSa(·), we compute
the sample frequency spectrum in the analyzed data. The sequence-level site frequency
spectrum, SFSs(·) is obtained using the population demographic model, which is known
and provided in input. The unconditioned site frequency spectrum may be obtained from
the CSFS as SFSs(x) =

R1
⌧=0 ⌘(⌧)

P
d,u|d+u=xCSFS(⌧)d,u where ⌘(⌧) is the coalescent
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probability for the known demographic model at time ⌧ .

2.2 ASMC transition

The transition model of a coalescent HMM dealing with sparsely ascertained data needs
to account for the increased distance between observed markers. Observed variants in
common SNP array data sets, for instance, are separated by several kilobases on av-
erage. The SMC transition model (McVean & Cardin, 2005) originally adopted in the
PSMC approach (Li & Durbin, 2011) becomes particularly inaccurate in this setting, as
it postulates that at most one recombination event may occur between two contiguous
sites. Furthermore, the SMC assumes that any recombination event leads to a change in
the value of the TMRCA, whereas the full coalescent model admits the possibility that
a recombination event between two loci is followed by a coalescent event to the same
lineage such that the TMRCA remains unchanged. This modeling limitation is miti-
gated in the improved SMC’ model (Marjoram & Wall, 2006), which allows for multiple
recombination and coalescent events between two loci, and is adopted (though allowing
for at most one recombination event) in the MSMC approach (Schi↵els & Durbin, 2014).
The ASMC transition model adopts the “conditional Simonsen-Churchil” model (CSC)
described in (Hobolth & Jensen, 2014), also implemented in the SMC++ approach (Ter-
horst et al. , 2016). The CSC further improves modeling of recurring recombination and
coalescent events between a pair of sites that are separated by large genetic distances,
such as markers in SNP array data.

2.3 A general linear time forward-backward algorithm

Although several computational improvements have been proposed in previous coales-
cent HMM methods (see Section 1.3), further speed-ups are required for the analysis of
all pairs of haploid samples in large data sets under the CSC model. We thus devise
a new algorithm that enables performing forward-backward posterior calculations using
the CSC transition model in time O(d`p), where `p is a set of observed loci for which
we want to estimate TMRCA, and d is the number of discrete hidden TMRCA states.
We start by introducing the Conditional Simonsen-Churchill model (Hobolth & Jensen,
2014), making use of the notation reported in Table 1.

2.3.1 The conditional Simonsen-Churchill model

Consider two loci at recombination distance ⇢/2 in a population of constant size N ,
corresponding to a per-generation coalescent rate of ⌘. In (Hobolth & Jensen, 2014),
the Markov chain of Figure 1 was used to descibe the distribution of ancestry at one
locus conditional on the ancestry at the other locus. The transition matrix for this
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Table 1: Table of notation for current section

⇢ , Recombination rate
⌘t or ⌘(t) , Coalescent rate at time t

Nt , Population size at time t
MSMC , Transition rate for the SMC model
MSMC0 , Transition rate for the SMC’ model
MCSC , Transition rate for the conditional Simonsen-Churchil model

etMi,j , Entry {i, j} for the matrix exponential of tM

⌦(t) , Cumulative transition probability after compressing to 3
states

C(t) , Cumulative transition probability before compressing to 3
states

[⌦(t)]i,j , Entry {i, j} for the cumulative transition probability

q(t|s) , Transition probability for locus 1 at time s and locus 2 at
time t

⇡(s, t) , Coalescent probability between time s and t
⇡̃(s, t) , Probability of not having coalesced between time s and t
⇧(s, t) , Cumulative coalescent probability between time s and t
Q(t|s) , Cumulative transition probability for locus 1 at time s and

locus 2 at time t
Ru , Time range Ru = [Tu, Tu+1)
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Figure 1: The conditional Simonsen-Churchil model (modified from Figure 1b of
(Hobolth & Jensen, 2014)). Four relevant states from the full CSC model are labeled
using letters within each circle.

model is

MCSC =

2

664

�⇢ ⇢ 0 0
⌘ �(2⌘ + ⇢/2) ⇢/2 ⌘
0 4⌘ �5⌘ ⌘
0 0 0 0

3

775 , (1)

where each row and colum of the matrix represents one of the four states for which t < s
(circles labeled with letters to the left of the vertical bar in Figure 1). Although the CSC
model has four states, we will be mostly concerned with the probability that the Markov
chain is in one of the three numbered states in Figure 1, that is, it will be irrelevant for
our calculations whether at a given point in time the exact state of the chain is either
state B or C within the dashed box. We thus define the matrix ⌦(t), whose first row
is [⌦(t)]1• = [C(t)AA, C(t)AB + C(t)AC , C(t)AD], where C(t)i,j = etMi,j is the cumulative
probability of transitioning from state i to state j after time t, for i, j 2 {A,B,C,D}.

For completion, we note that although we are mostly concerned with the CSC model,
the discussion below also applies to the SMC and SMC’ models, which may be seen as
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special cases of the CSC where states B and C have been collapsed, with updated rate
matrices

MSMC =

2

4
�⇢ ⇢ 0
0 �⌘ ⌘
0 0 0

3

5 (2)

MSMC0 =

2

4
�⇢ ⇢ 0
⌘ �2⌘ ⌘
0 0 0

3

5 . (3)

Note that MSMC0 actually represents a process that is similar, but slightly di↵erent
from the SMC’, as discussed in (Wilton et al. , 2015). Thus, [⌦(t)]11 will hold the
probability that no recombination occurred from time 0 to time t or, for the SMC’ and
CSC models, that at least one recombination occurred, but the lineages colasced back
to state 1. [⌦(t)]12 respresents the probability that recombination occurred after time 0,
but the lineages have not recoalesced back to state 1 or to a state such that the right tree
has coalesced (state 3). [⌦(t)]13 represents the probability that the right tree is lower
than the left tree, i.e. the two lineages coalesced at time t < s. Using these quantities,
we can write the transition distribution for the height of the right tree, t, conditional on
knowing the height of the left tree, s as

q(t|s) =

8
><

>:

⌘ [⌦(t)]12 if t < s,

[⌦(s)]11 if t = s,

⇡(s, t) [⌦(s)]12 if t > s,

(4)

where ⇡(s, t) is the coalescent probability between time s and t. This probability is
computed as

R t
s ⌘(t)t dt = ⌘e�(t�s)⌘ for a constant population size with coalescent rate

⌘. Equation 4 is normalized, since
Z s

0
⌘ [⌦(t)]12 dt = [⌦(s)]13 , (5)

Z 1

s
⇡(s, t) [⌦(s)]12 dt = [⌦(s)]12 , (6)

and [⌦(s)]11 + [⌦(s)]12 + [⌦(s)]13 = 1.

2.3.1.1 Piecewise constant demographic model

If the population size is piecewise constant, for each time period k ranging in Rk 2

[Tk, Tk+1), there is a di↵erent transition rate matrix Mk. If t is contained in the interval
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Rk, then the state matrix at time t can be computed as

C(t) =

"
k�1Y

i=1

e(Ti+1�Ti)Mi

#
e(t�Tk)Mk . (7)

For a piece-wise constant model, the coalescent probability after time s can be similarly
computed as

⇡(s, t) = ⌘t

v|t2RvY

i=u|s2Ru

exp {�⌘i [m(t, Ti+1)�M(s, Ti)]}

= ⌘t exp

8
<

:

v|t2RvX

i=u|s2Ru

⌘i [M(s, Ti)�m(t, Ti+1)]

9
=

; ,

(8)

whereM(...) andm(...) indicate maximum and minimum, respectively. The rate
R Ti+1

Ti
⌘(t)t dt =

R Ti+1

Ti
⌘it dt = ⌘i (Ti+1 � Ti) in the argument of the exponential should be substituted

with the appropriate rate for inhomogeneous (e.g. exponential) models. We indicate
the probability of not having coalesced at time t with

⇡̃(s, t) = ⌘�1
t ⇡(s, t)

= exp

8
<

:

v|t2RvX

i=u|s2Ru

⌘i [M(s, Ti)�m(t, Ti+1)]

9
=

; .
(9)

and the cumulative coalescent probability with

⇧(s, t) = 1� ⇡̃(s, t). (10)

Using the quantities above, the transition probability for tree heights is still given by

q(t|s) =

8
><

>:

⌘t [⌦(t)]12 if t < s,

[⌦(s)]11 if t = s,

⇡(s, t) [⌦(s)]12 if t > s.

(11)

2.3.1.2 Discretization

Using Equation 5, the cumulative transition probability is

Q(t|s) =

8
><

>:

[⌦(t)]13 if t < s,

[⌦(s)]11 + [⌦(s)]13 if t = s,

[⌦(s)]11 +⇧(s, t) [⌦(s)]12 + [⌦(s)]13 if t > s.

(12)
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The probability of transitioning between time s and the time range Ru is then obtained
as Q(Tu+1|s) � Q(Tu|s). The same approach can be used to further partition time
in discrete states that do not necessarily correspond to population size changes. If
we assume time has been discretized into d intervals, then we can obtain a transition
matrix T such that entry Ti,j corresponds to the probability of transitioning from time
interval i to time interval j. Each entry of the transition matrix is then obtained as
Ti,j = Q(Tj+1|si) � Q(Tj |si), where we indicated the expected coalescent time within
interval Ri as si.

2.3.2 Linear time computation of posterior coalescent times

We now describe a forward-backward algorithm to compute posterior coalescent proba-
bilities in time O(d`p), where d is the number of discrete coalescent time intervals, and
`p is the number of sites for which we wish to obtain TMRCA estimates (e.g. the set of
observed sites). We use the notation reported in Table 2

2.3.2.1 Forward probabilities

We want to compute ↵0
i, the forward probability at position p for state i, given a

vector of forward probabilities for position p� 1 (which we denote as ↵k, dropping the
position index to simplify notation). Using standard considerations from hidden Markov
models, this can be obtained as ↵0

i = ⇠i
Pd

k=1 ↵kTk,i = ⇠iAi, where ⇠i represents the
emission probability for the observation at position p (dropped to simplify the notation)
given state i. Because this operation involves a vector-matrix multiplication, the cost of
computing Ai =

Pd
k=1 ↵kTk,i is linear in d, and because d forward probabilities need to

be computed, the overall cost will be quadratic in d. However, we note that the entries
below the diagonal in T are all identical, since Q(t|s) in Eq. 12 does not depend on s
for t < s. Furthermore, the ratio of subsequent columns in the transition matrix can be
computed as

Ti,j+1/Ti,j =
⇡̃(Tj , Tj+1) [1� ⇡̃(Tj+1, Tj+2)]

[1� ⇡̃(Tj , Tj+1)]
(13)

(see Appendix). This ratio does not depend on i, so that it will be the same for all
rows of the T matrix, as long as the entries are above the diagonal. Taken together,
these observations imply that the sum Ai =

Pd
k=1 ↵kTk,i can be computed recursively

in constant time. We assume the following quantities have been precomputed (in time
linear in d), and are available for the computation of Ai:

• The diagonal entries of the transition matrix Di = Ti,i for i 2 [1, d].
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Table 2: Table of notation for current section

p , Positions along the sequence
↵0
k , Forward probability for state k at position p

↵k , Forward probability for state k at position p� 1
⇠k , Emission probability for state k at position p (for forward

calculations) and at p+ 1 (for backward calculations)
Ti,j , HMM transition probability from discrete time i to discrete

time j
d , Number of discrete states (time intervals) in the HMM

Ai , Pd
k=1 ↵kTk,i

Ti , Start time for discrete interval i
Ti+1 , End time for discrete interval i
Di , Diagonal entry of the transition matrix
Ui , Entries above the diagonal for the transition matrix
Bi , Entries below the diagonal for the transition matrix

A#
i , Pi�1

k=1 ↵kTk,i in forward calculations

A"
i , Pd

k=i+1 ↵kTk,i in forward calculations

↵̂i , Pd
k=i+1 ↵k

�k , Backward probability for state k at position p+ 1
�0
k , Backward probability for state k at position p
vi , ⇠i�i in backward calculations

B#
i , Pi�1

k=1 vkTi,k in backward calculations

B"
i , Pd

k=i+1 vkTi,k in backward calculations
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• The elements right above the diagonal Ui = Ti�1,i, for i 2 [2, d].

• The elements right below the diagonal Bi = Ti+1,i for i 2 [1, d� 1].

• The cumulative sum of the ↵ vector of forward probabilities from the previous
position, ↵̂i =

Pd
k=i+1 ↵k.

We now rewrite the previous sum as

Ai =
dX

k=1

↵kTk,i

=
i�1X

k=1

↵kTk,i + ↵iTi,i +
dX

k=i+1

↵kTk,i

= A"
i + ↵iDi +A#

i

(14)

Then, the quantities A"
i and A#

i can be computed in constant time as follows:

• A"
i = Bi↵̂i

• A#
i+1 = ↵iUi +

Ti,j+1

Ti,j
A#

i , for i 2 [2, d], after having set A#
1 = 0.

Having computed the above quantities (in time linear in d), all entries Ai = A"
i +

↵iDi + A#
i can be computed in linear time. The final forward vector is obtained multi-

plying the emission probabilities to obtain ↵0
i = ⇠iAi.

2.3.2.2 Backward probabilities

The linear-time backward calculations can be obtained in a similar way. In this
case, given ⇠, the emission probability vector at sequence position p + 1, and �, the
backward probability vector for position p+1, we want to compute �0

i =
Pd

k=1 Ti,k⇠k�k,
the backward probablity at state i, position p. We again use observations (1) and (2)
from the previous section to e�ciently compute this sum. It is convenient to define the
vector v such that vi = ⇠i�i. As in the previous case, we rewrite the above sum as

�0
i =

dX

k=1

vkTi,k

=
i�1X

k=1

vkTi,k + viTi,i +
dX

k=i+1

vkTi,k

= B#
i + viDi +B"

i

(15)
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We have previously noted that the ratio of subsequent columns above the diagonal is
constant (see Appendix). We now note that the same holds for the ratio of columns. In
particular, it can be shown (see Appendix), that

Ti,j/Ti+1,j =
[⌦(si+1)]12

[⌦(si)]12 ⇡̃(si, si+1)
8i > j. (16)

Using this result, the quantities B#
i and B"

i can be e�ciently computed as

• B#
i =

Pi�1
k=0Bk�1vk�1, having set B#

1 = 0.

• B"
i = vi+1Ui +

Ti,j

Ti+1,j
B"

i+1, having set B"
d = 0.

From these quantities, we can then obtain �0
i = B#

i +viDi+B"
i . Note that these calcula-

tions hold for the SMC, SMC’ and CSC models, provided the corresponding transition
matrices are used to compute entries of the ⌦ vector. Inhomegeneous (e.g. exponential)
models can be handled by computing the corresponding coalescent quantities in the
above calculations.

2.3.2.3 Approximate decoding for stretches of identical observations

When ascertained data is analyzed and no information on the sequence content be-
tween observed `p markers is available, the linear time algorithm described above yields
exact posterior TMRCA probabilities. Using a locus-skipping approximation, it is also
possible to use the same linear-time forward-backward algorithm for the analysis of se-
quencing data, where we wish to obtain TMRCA estimates for `p loci (e.g. polymorphic
loci), while accounting for the fact that all sites between any other two contiguous ob-
servations share the same emission probabilities (e.g. they are all monomorphic in the
analyzed sample, or homozygous if frequency information is not used in the emission
model). To this end we note that the forward step of the forward-backward algorithm
between two sites separated by a stretch of n identical observations requires computing
the product ↵0 = ↵(TEs)nTEp, where T is the transition matrix between two sites in
the region, Es is a diagonal matrix with the emission probability for a given emission
character (e.g. homozygous/monomorphic site), and Ep is a diagonal matrix with emis-
sion for the site at position p in the sequence. We observe that, for relatively small
genetic distances between the two observed sites, and for realistic demographic models,
the matrix T is close to diagonal. Thus, we can use the commutative property of di-
agonal matrices to approximate the product (TEs)n as TnEn

s . Having done that, we
can now rely on the previosly described linear time algorithm to compute the prod-
uct ↵(TEs)nTEp ⇠ ↵TnEn

s TEp. In the ASMC program, the matrices Tn and En
s are

precomputed (in linear time) and stored so that these need not be computed for each
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analyzed haploid pair. Note that the ASMC uses genetic distances from a human recom-
bination map, rather than assuming a constant recombination rate along the genome, so
that the matrix Tn will actually depend on genomic position, while the emission matrix
En

s will only depend on the number of loci between a pair of sites.
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3 Appendix

3.1 Ratio of columns in the transition matrix

Ti,j+1/Ti,j =
⇡̃(Tj ,Tj+1)[1�⇡̃(Tj+1,Tj+2)]

[1�⇡̃(Tj ,Tj+1)]
8j > i. Proof:

Ti,j = Q(Tj+1|si)�Q(Tj |si)

= ([⌦(si)]11 +⇧(si, Tj+1) [⌦(si)]12 + [⌦(si)]13)� ([⌦(si)]11 +⇧(si, Tj) [⌦(si)]12 + [⌦(si)]13)

= ⇧(si, Tj+1) [⌦(si)]12 �⇧(si, Tj) [⌦(si)]12
= [⌦(si)]12 (⇧(si, Tj+1)�⇧(si, Tj))

= [⌦(si)]12 [(1� ⇡̃(si, Tj+1))� (1� ⇡̃(si, Tj))]

= [⌦(si)]12 [⇡̃(si, Tj)� ⇡̃(si, Tj+1)]

= [⌦(si)]12 [⇡̃(si, Tj)� ⇡̃(si, Tj)⇡̃(Tj , Tj+1)]

= [⌦(si)]12 ⇡̃(si, Tj) [1� ⇡̃(Tj , Tj+1)] ,

(17)

which implies

Ti,j+1

Ti,j
=

[⌦(si)]12 ⇡̃(si, Tj+1) [1� ⇡̃(Tj+1, Tj+2)]

[⌦(si)]12 ⇡̃(si, Tj) [1� ⇡̃(Tj , Tj+1)]

=
[⌦(si)]12 ⇡̃(si, Tj)⇡̃(Tj , Tj+1) [1� ⇡̃(Tj+1, Tj+2)]

[⌦(si)]12 ⇡̃(si, Tj) [1� ⇡̃(Tj , Tj+1)]

=
⇡̃(Tj , Tj+1) [1� ⇡̃(Tj+1, Tj+2)]

[1� ⇡̃(Tj , Tj+1)]

(18)

3.2 Ratio of rows in the transition matrix

Ti+1,j/Ti,j =
[⌦(si)]12⇡̃(si,si+1)

[⌦(si+1)]12
8i > j. Again, using

Ti,j = [⌦(si)]12 ⇡̃(si, Tj) [1� ⇡̃(Tj , Tj+1)] , (19)

we have

Ti+1,j

Ti,j
=

[⌦(si)]12 ⇡̃(si, si+1)⇡̃(si+1, Tj) [1� ⇡̃(Tj , Tj+1)]

[⌦(si+1)]12 ⇡̃(si+1, Tj) [1� ⇡̃(Tj , Tj+1)]

=
[⌦(si)]12 ⇡̃(si, si+1)

[⌦(si+1)]12

(20)
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3.3 Above diagonal elements

Ti,i = Q(Ti+1|si)�Q(Ti|si)

= [⌦(si)]11 +⇧(si, Ti+1) [⌦(si)]12 + [⌦(si)]13 � [⌦(Ti)]13
(21)

and

Ti,i+1 = Q(Ti+2|si)�Q(Ti+1|si)

= [⌦(si)]12 ⇡̃(si, Ti+1) [1� ⇡̃(Ti+1, Ti+2)] ,
(22)
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