Labels of aberrant Clusters of Differentiation gene expression in a compendium of systemic lupus erythematosus patients

Trang T. Le, Ph.D., Nigel O. Blackwood, Matthew K. Breitenstein, Ph.D.*

Department of Biostatistics, Epidemiology, & Informatics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA

* correspondence to: mkbreit at pennmedicine dot upenn dot edu

Background

This author manuscript serves as an extended annotation of gene expression for all known clusters of differentiation (**CD**) within a compendium of systemic lupus erythematosus (**SLE**) patients. The overarching goal for this line of research is to enrich the perspective of the CD transcriptome with upstream gene expression features.

Introduction

CDs are cell surface biomarkers that denote key biological differences between cell types and disease state. For each of the >400 known CDs¹, distinct monoclonal antibodies (**mABs**) enable robust immunophenotyping and serve as scalable biomarkers for translational research. Annotation of CD molecules have been organized through a series of international meetings known as the Human Leucocyte Differentiation Antigens (**HLDA**) Workshops, affiliated with the Human Cell Differentiation Molecules (**HCDM**) organization.

CD nomenclature < http://www.hcdm.org/>

Methods

A compendium containing human SLE gene expression data was previously collected, aggregated, and normalized by collaborators in the Greene Lab at the University of Pennsylvania. https://github.com/greenelab/rheum-plier-data/tree/master/sle-wb> This compendium was slightly modified to include basic demographic information and exclude patients not belonging to classifications of healthy control, treatment naïve SLE, or SLE with exposure to various treatments – the modified dataset represents our 'SLE Compendium'. Entrez gene ID to CD mapping was provided by HCDM¹. The SLE Compendium dataset and R code corresponding to data pre-processing can be found on the Breitenstein Lab Github page.

<u>SLE Compendium:</u> https://breitensteinlab.github.io/SLE-Compendium-2018/

Within our SLE Compendium, all known CDs gene expression of, were categorized as 'aberrant' or 'non-aberrant' based on the following criteria: *i*) two-tailed normalization at 20th and 80th percentile of relative gene expression. Specifically, the two tails encompassed 'aberrant' CD expression, whereas the middle distribution served as 'non-aberrant'. Following visual inspection of all histograms, specific CDs were deemed to require manual adjustments. *ii*) Manually adjustment of two-tail normalization was applied when CDs followed apparent normal distribution but would require slight modification of thresholds to characterization feature variation. *iii*) Binarization CD features was applied when an obvious non-normal distribution was observed. Thresholds separated the expression values into low/high groups (instead of non-aberrant/aberrant) to capture apparent patterns in the expression distributions.

In future research, CDs will be enriched with perspective of interdependent gene expression features using the integrated machine learning pipeline for aberrant biomarker enrichment (**i-mAB pipeline**).

i-mAB pipeline: https://breitensteinlab.github.io/i-mAB/

Results

Within the original study cohorts, multiple observations were generated for most patients. Observation characteristics of the SLE Compendium, including PMID for the 6 original studies^{2,3,4,5,6,7}, can be found in **Table 1**. Additional sample/cohort can be ascertained from the Gene Expression Omnibus via GSE or GEO accession ID.

Gene Expression Omnibus: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi

© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License

Table 1. SLE Compendium characteristics as ascertained from study of origin

	Cohort 1 ²	Cohort 2 ³	Cohort 3 ⁴	Cohort 4 5	Cohort 5 6	Cohort 6 7	Overall
Study PMID	18631455	23203821	24644022	25736140	27040498	26138472	
Study GEO identifier	GSE11907	GSE39088	GSE49454	GSE61635	GSE65391	GSE78193	
Healthy control*	0	46	0	30	72	12	160
median age (range)		34.5 (19-50)			12 (6-21)		16 (6-50)
gender - female/male		34			57		91
SLE-treatment naïve*	37	21	177	99	924	32	1290
median age (range)	14 (8-17)	43 (20-50)	40 (18-71)		15 (6-19)		16 (6-71)
gender - female	35	21	148		817		1021
SLE-various treatments*	0	57	0	0	0	69	126
median age (range)		36 (19-50)					36 (19-50)
gender - female/male		57					57

^{*}observation characteristics include multiple observations per patient

By default, CD gene expression thresholds were labeled as 'aberrant' or 'non-aberrant', with 'aberrant' being further delineated as 'low' or 'high'. Gene expression was stratified at 20 and 80 percentiles, with low expression being between 0 and 20, average between 20 and 80, and high between 80 and 100. Descriptive statistics of CD gene expression with corresponding Entrez ID can be found in **Supplement 1, Table 2**.

Overall the default two-tailed thresholds provided satisfactory characterization of 'aberrant' (including 'low' and 'high') vs. 'non-aberrant' normal gene expression distributions. However, some CDs required manual adjustment, including shifting of thresholds (n=3) and binary transformation for non-normal distributions (n=85) (**Supplement 2**, **Table 3**). Amongst CD genes requiring binary transformation, no clear data-driven hypothesis of 'aberrant' vs 'average' was practical so gene expression was labeled simply as 'low' or 'high' (i.e. no clear baseline comparison is available). Consensus review by the research team determined manual revisions of thresholds. Detailed labelling of all CD features (n=351) identified within the SLE Compendium can be found in **Supplement 3**, **Figures 1-290**. Included are histograms of CD gene expression distribution and descriptive statistics of expression and variation.

References

- 1. Clark G, Stockinger H, Balderas R, van Zelm MC, Zola H, Hart D, Engel P. Nomenclature of CD molecules from the tenth human Leucocyte differentiation antigen workshop. *Clinical & Translational Immunology*. 2016; 5(1).
- 2. Chaussabel D, Quinn C, Shen J, Patel P, Glaser C, Baldwin N, et al. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. *Immunity*. 2008 18;29(1): 150-64. (**GSE11907**)
- 3. Lauwerys BR, Hachulla E, Spertini F, Lazaro E, Jorgensen C, Mariette X, et al. Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon α–kinoid. *Arthritis & Rheumatology*. 2013; 65(2):447-56. (**GSE39088**)
- 4. Chiche L, Jourde-Chiche N, Whalen E, Presnell S, Gersuk V, Dang K, et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. *Arthritis & Rheumatology*. 2014; 66(6):1583-95. (**GSE49454**)
- 5. Carpintero MF, Martinez L, Fernandez I, Romero AG, Mejia C, Zang Y, et al. Diagnosis and risk stratification in patients with anti-RNP autoimmunity. Lupus. 2015; 24(10):1057-66. (**GSE61635**)
- 6. Banchereau R, Hong S, Cantarel B, Baldwin N, Baisch J, Edens M, et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. *Cell*. 2016; 165(3):551-65. (**GSE65391**)
- Welcher AA, Boedigheimer M, Kivitz AJ, Amoura Z, Buyon J, Rudinskaya A, et al. Blockade of interferon-γ normalizes interferon-regulated gene expression and serum CXCL10 levels in patients with systemic lupus erythematosus. *Arthritis & Rheumatology*. 2015; 67(10):2713-22. (GSE78193)

Supplement 1. Table 2. CD expression characteristics with the SLE Compendium

Cluster of	Entrez				Standard	3 rd
Differentiation	ID	1 st quartile	Median	Mean	Standard error	quartile
CD1A	909	0.2877	0.4131	0.4306	0.0049	0.5418
CD1B	910	0.0429	0.2810	0.2859	0.0067	0.4699
CD1C	911	0.4298	0.4847	0.5165	0.0046	0.6191
CD1D	912	0.4725	0.5790	0.5669	0.0047	0.6692
CD1E	913	0.0808	0.3933	0.3550	0.0072	0.5690
CD2	914	0.5507	0.6660	0.6479	0.0045	0.7567
CD3D	915	0.5816	0.6579	0.6517	0.0037	0.7393
CD3E	916	0.3478	0.4621	0.4756	0.0050	0.5963
CD3G	917	0.4454	0.5510	0.5513	0.0045	0.6593
CD4	920	0.4148	0.5369	0.5325	0.0055	0.6743
CD5	921	0.4914	0.6062	0.5890	0.0047	0.7053
CD6	923	0.5397	0.6628	0.6438	0.0048	0.7728
CD7	924	0.4072	0.5400	0.5347	0.0052	0.6661
CD8A	925	0.4365	0.5553	0.5594	0.0049	0.6907
CD8B	926	0.3612	0.4399	0.4622	0.0044	0.5634
CD9	928	0.2634	0.4078	0.4108	0.0056	0.5510
CD10	4311	0.3475	0.4486	0.4754	0.0053	0.5955
CD11A	3683	0.3848	0.4876	0.4934	0.0047	0.5992
CD11B	3684	0.4461	0.5705	0.5660	0.0049	0.6893
CD11C	3687	0.3237	0.4352	0.4567	0.0051	0.5685
CD13	290	0.4166	0.5281	0.5234	0.0048	0.6361
CD14	929	0.4937	0.6117	0.5974	0.0047	0.7128
CD15	2526	0.3056	0.3946	0.4032	0.0041	0.4802
CD16B	2215	0.6375	0.7064	0.6900	0.0039	0.7744
CD18	3689	0.2797	0.3487	0.3843	0.0047	0.4451
CD19	930	0.3390	0.4880	0.4796	0.0057	0.6270
CD20	931	0.4250	0.5417	0.5368	0.0045	0.6543
CD21	1380	0.4267	0.5343	0.5282	0.0051	0.6581
CD22	933	0.2415	0.3850	0.3967	0.0051	0.5316
CD23	2208	0.3318	0.3686	0.4186	0.0052	0.5378
CD25	3559	0.3142	0.3952	0.4048	0.0042	0.4792
CD26	1803	0.3800	0.4833	0.4955	0.0048	0.6179

CD27	939	0.4434	0.5544	0.5574	0.0049	0.6732
CD28	940	0.5163	0.6076	0.5988	0.0042	0.6912
CD30	943	0.4002	0.5314	0.5164	0.0049	0.6416
CD31	5175	0.5092	0.6208	0.6047	0.0047	0.7196
CD33	945	0.4531	0.5563	0.5536	0.0045	0.6564
CD34	947	0.0888	0.2385	0.3193	0.0072	0.5643
CD35	1378	0.2969	0.3960	0.4141	0.0048	0.5101
CD36	948	0.5503	0.6644	0.6425	0.0046	0.7539
CD37	951	0.4015	0.5194	0.5212	0.0048	0.6362
CD38	952	0.2643	0.3496	0.3615	0.0042	0.4382
CD39	953	0.4219	0.5449	0.5388	0.0048	0.6571
CD40	958	0.4295	0.5178	0.5264	0.0049	0.6269
CD41	3674	0.2975	0.4246	0.4302	0.0051	0.5517
CD42A	2815	0.4343	0.5542	0.5424	0.0049	0.6606
CD42B	2811	0.2818	0.4168	0.4206	0.0055	0.5492
CD43	6693	0.4208	0.5204	0.5248	0.0046	0.6187
CD44	960	0.4447	0.5468	0.5461	0.0044	0.6526
CD45	5788	0.4831	0.5932	0.5897	0.0049	0.7097
CD46	4179	0.3236	0.4766	0.4776	0.0056	0.6164
CD47	961	0.3421	0.4422	0.4758	0.0051	0.6049
CD48	962	0.5302	0.6346	0.6206	0.0045	0.7340
CD49B	3673	0.0505	0.0692	0.2157	0.0057	0.3656
CD49C	3675	0.0874	0.1118	0.2535	0.0065	0.4513
CD49D	3676	0.4888	0.5827	0.5825	0.0044	0.6847
CD49E	3678	0.4647	0.5786	0.5710	0.0044	0.6751
CD49F	3655	0.4701	0.5373	0.5076	0.0043	0.5757
CD50	3385	0.4232	0.5380	0.5340	0.0050	0.6507
CD51	3685	0.4443	0.5668	0.5565	0.0046	0.6670
CD52	1043	0.5706	0.6869	0.6614	0.0046	0.7794
CD53	963	0.4696	0.5772	0.5712	0.0045	0.6843
CD54	3383	0.4393	0.4668	0.4858	0.0041	0.5453
CD55	1604	0.3661	0.4807	0.4874	0.0048	0.5927
CD56	4684	0.4322	0.5026	0.4613	0.0043	0.5338
CD57	27087	0.0730	0.1057	0.2654	0.0066	0.4719
CD58	965	0.4668	0.5758	0.5660	0.0045	0.6744
		•	•			

CD59	966	0.3650	0.4031	0.4285	0.0038	0.4862
CD61	3690	0.3290	0.4558	0.4583	0.0051	0.5751
CD62E	6401	0.0770	0.0991	0.2399	0.0067	0.4248
CD62L	6402	0.7253	0.8035	0.7461	0.0049	0.8507
CD62P	6403	0.3499	0.3783	0.4157	0.0043	0.4860
CD63	967	0.3594	0.4536	0.4675	0.0049	0.5648
CD66A	634	0.2915	0.3878	0.4013	0.0045	0.5012
CD66B	1088	0.1388	0.2813	0.3267	0.0057	0.4510
CD66C	4680	0.1392	0.2528	0.2982	0.0058	0.4030
CD66D	1084	0.4487	0.5544	0.5490	0.0047	0.6591
CD66E	1048	0.0563	0.0711	0.1684	0.0054	0.2331
CD66F	5669	0.0613	0.0806	0.2017	0.0063	0.3510
CD68	968	0.3514	0.4872	0.4973	0.0055	0.6275
CD69	969	0.3740	0.4842	0.4911	0.0048	0.6100
CD70	970	0.2230	0.2760	0.3463	0.0050	0.4596
CD71	7037	0.3510	0.4346	0.4396	0.0038	0.5131
CD72	971	0.3064	0.4160	0.4328	0.0049	0.5519
CD73	4907	0.4912	0.5631	0.5156	0.0051	0.5975
CD74	972	0.4180	0.5258	0.5255	0.0048	0.6352
CD79A	973	0.3382	0.4927	0.4903	0.0055	0.6265
CD79B	974	0.3125	0.4823	0.4761	0.0058	0.6293
CD80	941	0.0514	0.1602	0.2415	0.0063	0.4027
CD81	975	0.5014	0.6132	0.6063	0.0045	0.7234
CD82	3732	0.3397	0.4747	0.4727	0.0051	0.5940
CD83	9308	0.3623	0.4244	0.4407	0.0040	0.5118
CD84	8832	0.3429	0.4340	0.4523	0.0045	0.5422
CD85A	11025	0.6931	0.7578	0.7279	0.0038	0.8070
CD85C	10990	0.0850	0.4020	0.3630	0.0067	0.5531
CD85D	10288	0.3225	0.4431	0.4598	0.0053	0.5779
CD85F	353514	0.3677	0.5059	0.5027	0.0053	0.6397
CD85G	23547	0.4090	0.4471	0.4459	0.0041	0.4722
CD85H	11027	0.5010	0.6070	0.5915	0.0044	0.7014
CD85J	10859	0.3159	0.4139	0.4257	0.0046	0.5250
CD85K	11006	0.4451	0.5721	0.5530	0.0049	0.6757
CD85M	79166	0.0732	0.0925	0.1941	0.0058	0.2385
L	1		0	1	1	1

CD86	942	0.4575	0.5648	0.5551	0.0046	0.6661
CD87	5329	0.3865	0.5033	0.5014	0.0048	0.6157
CD88	728	0.4475	0.5733	0.5605	0.0048	0.6804
CD89	2204	0.2910	0.3992	0.4156	0.0049	0.5191
CD90	7070	0.4564	0.5648	0.5543	0.0046	0.6762
CD91	4035	0.3538	0.3758	0.4351	0.0045	0.5273
CD92	23446	0.2598	0.3575	0.3815	0.0048	0.4715
CD93	22918	0.5621	0.6614	0.6459	0.0043	0.7482
CD94	3824	0.3531	0.4708	0.4715	0.0051	0.5947
CD95	355	0.2904	0.3998	0.4154	0.0050	0.5267
CD96	10225	0.4582	0.5713	0.5583	0.0046	0.6695
CD97	976	0.6236	0.6971	0.6633	0.0046	0.7619
CD98	6520	0.3606	0.4524	0.4941	0.0051	0.5967
CD99	4267	0.4504	0.5680	0.5712	0.0050	0.6912
CD100	10507	0.3385	0.4490	0.4607	0.0050	0.5779
CD101	9398	0.2724	0.3138	0.3420	0.0047	0.3551
CD102	3384	0.4566	0.5730	0.5620	0.0049	0.6810
CD103	3682	0.4387	0.5648	0.5500	0.0050	0.6722
CD104	3691	0.0816	0.1027	0.2067	0.0057	0.2799
CD105	2022	0.3528	0.3820	0.4359	0.0046	0.5444
CD106	7412	0.0866	0.1180	0.2716	0.0065	0.4658
CD107A	3916	0.4480	0.5595	0.5639	0.0050	0.6827
CD107B	3920	0.4848	0.6087	0.5944	0.0050	0.7172
CD108	8482	0.0407	0.0579	0.2029	0.0058	0.3577
CD109	135228	0.0000	0.0000	0.1030	0.0052	0.1858
CD110	4352	0.3177	0.4492	0.4495	0.0054	0.5842
CD111	5818	0.0928	0.1236	0.2683	0.0066	0.4653
CD112	5819	0.3224	0.4273	0.4002	0.0044	0.4934
CD113	25945	0.0681	0.0913	0.2426	0.0064	0.4338
CD114	1441	0.5753	0.6686	0.6467	0.0043	0.7422
CD115	1436	0.5198	0.6335	0.6169	0.0047	0.7290
CD116	1438	0.4898	0.6032	0.5869	0.0048	0.7041
CD117	3815	0.3513	0.4393	0.4171	0.0048	0.5119
CD118	3977	0.0659	0.0853	0.1629	0.0050	0.1796
CD119	3459	0.4095	0.5120	0.5233	0.0048	0.6231
-						

CD120A	7132	0.5005	0.6198	0.6110	0.0047	0.7361
CD120B	7133	0.4559	0.5577	0.5536	0.0043	0.6504
CD121A	3554	0.0190	0.0244	0.1232	0.0049	0.1807
CD121B	7850	0.2424	0.3407	0.3743	0.0052	0.4773
CD122	3560	0.3886	0.5172	0.5126	0.0052	0.6399
CD123	3563	0.3700	0.4103	0.3952	0.0043	0.4318
CD124	3566	0.2042	0.2736	0.3085	0.0043	0.3769
CD125	3568	0.3568	0.4262	0.4325	0.0041	0.5189
CD126	3570	0.3755	0.4928	0.4965	0.0051	0.6100
CD127	3575	0.5461	0.6411	0.6247	0.0040	0.7205
CD130	3572	0.3375	0.4164	0.4160	0.0041	0.5015
CD131	1439	0.4445	0.5347	0.5372	0.0041	0.6284
CD132	3561	0.3418	0.4780	0.4704	0.0053	0.5944
CD133	8842	0.0488	0.0621	0.1466	0.0050	0.1944
CD134	7293	0.3926	0.4894	0.4966	0.0045	0.5970
CD135	2322	0.0291	0.0373	0.1480	0.0057	0.2172
CD136	4486	0.0000	0.0000	0.1381	0.0070	0.1647
CD137	3604	0.3478	0.4435	0.4429	0.0045	0.5422
CD138	6382	0.3120	0.3694	0.3835	0.0044	0.4721
CD140A	5156	0.0972	0.1263	0.2032	0.0053	0.2115
CD140B	5159	0.3238	0.3561	0.4020	0.0049	0.4690
CD141	7056	0.2608	0.2839	0.3207	0.0043	0.3411
CD142	2152	0.0865	0.1460	0.2883	0.0067	0.4879
CD143	1636	0.0946	0.1203	0.2143	0.0056	0.2871
CD144	1003	0.1160	0.1465	0.2313	0.0054	0.2808
CD146	4162	0.0703	0.0887	0.1900	0.0058	0.2591
CD147	682	0.3429	0.4740	0.4832	0.0055	0.6138
CD148	5795	0.4195	0.5279	0.5285	0.0045	0.6324
CD150	6504	0.4758	0.6168	0.5923	0.0048	0.7180
CD151	977	0.3240	0.4176	0.4358	0.0045	0.5333
CD152	1493	0.5168	0.5735	0.5624	0.0046	0.6629
CD153	944	0.2956	0.3934	0.3992	0.0045	0.4975
CD154	959	0.3712	0.4881	0.4943	0.0053	0.6246
CD155	5817	0.4646	0.5331	0.5162	0.0043	0.5983
CD156A	101	0.4237	0.5389	0.5380	0.0050	0.6521

CD156C	102	0.4647	0.5321	0.5452	0.0039	0.6233
CD157	683	0.3466	0.4645	0.4743	0.0051	0.5949
CD158E	3811	0.3143	0.4080	0.4189	0.0043	0.5066
CD158I	3809	0.0000	0.0000	0.1134	0.0060	0.1442
CD158K	3812	0.3227	0.4613	0.4677	0.0053	0.6060
CD160	11126	0.3611	0.4916	0.4939	0.0048	0.6118
CD161	3820	0.4143	0.5328	0.5259	0.0049	0.6424
CD162	6404	0.3945	0.5122	0.5080	0.0047	0.6193
CD163	9332	0.2490	0.3195	0.3529	0.0043	0.4156
CD164	8763	0.3328	0.4739	0.4945	0.0050	0.6267
CD166	214	0.3513	0.4532	0.4597	0.0048	0.5668
CD167A	780	0.3657	0.4349	0.4419	0.0043	0.5196
CD167B	4921	0.0842	0.1105	0.2371	0.0063	0.3681
CD168	3161	0.0473	0.1676	0.2173	0.0056	0.3415
CD169	6614	0.0290	0.1402	0.2449	0.0072	0.4275
CD170	8778	0.4018	0.5207	0.5186	0.0049	0.6382
CD171	3897	0.0649	0.0819	0.2025	0.0061	0.3430
CD172A	140885	0.4620	0.5746	0.5634	0.0045	0.6771
CD172G	55423	0.3642	0.4814	0.4895	0.0049	0.6088
CD174	2525	0.0000	0.0000	0.1298	0.0063	0.2475
CD177	57126	0.0226	0.0311	0.1232	0.0047	0.1642
CD178	356	0.4686	0.5054	0.5078	0.0044	0.5625
CD179A	7441	0.0409	0.0523	0.1288	0.0045	0.1056
CD179B	3543	0.5017	0.5881	0.5847	0.0044	0.6935
CD180	4064	0.0896	0.3274	0.3306	0.0066	0.5309
CD181	3577	0.5136	0.6410	0.6177	0.0049	0.7477
CD182	3579	0.5253	0.6211	0.6064	0.0041	0.7002
CD183	2833	0.4208	0.5164	0.5323	0.0046	0.6433
CD184	7852	0.4024	0.4948	0.5076	0.0045	0.6019
CD185	643	0.3929	0.5298	0.5033	0.0047	0.6156
CD186	10663	0.4005	0.4329	0.4296	0.0042	0.4769
CD191	1230	0.4444	0.5803	0.5620	0.0051	0.6919
CD193	1232	0.4625	0.5722	0.5543	0.0049	0.6712
CD194	1233	0.0459	0.0605	0.1963	0.0064	0.3592
CD195	1234	0.3732	0.4295	0.4471	0.0042	0.5207
L			·	L	L	L

CD196	1235	0.3381	0.4530	0.4578	0.0050	0.5753
CD197	1236	0.4787	0.6108	0.5969	0.0050	0.7204
CD199	10803	0.3392	0.4020	0.3840	0.0038	0.4403
CD200	4345	0.0567	0.0819	0.2404	0.0062	0.4174
CD201	10544	0.2714	0.3164	0.3688	0.0048	0.4618
CD202B	7010	0.0674	0.2322	0.2739	0.0064	0.4369
CD203C	5169	0.0818	0.1037	0.1722	0.0046	0.1822
CD204	4481	0.0663	0.0921	0.2563	0.0064	0.4345
CD205	4065	0.4357	0.5313	0.5450	0.0040	0.6345
CD206	4360	0.0625	0.0808	0.1978	0.0054	0.3369
CD207	50489	0.0724	0.0917	0.2102	0.0060	0.3352
CD208	27074	0.2642	0.3410	0.3676	0.0043	0.4326
CD209	30835	0.0000	0.0000	0.1070	0.0056	0.1425
CD210	3587	0.4240	0.5205	0.5219	0.0044	0.6222
CDW210B	3588	0.5186	0.6042	0.5920	0.0041	0.6832
CD212	3594	0.4045	0.5213	0.5310	0.0049	0.6489
CD213A1	3597	0.4451	0.5561	0.5489	0.0048	0.6578
CD213A2	3598	0.0658	0.0828	0.1504	0.0045	0.1479
CD215	3601	0.0744	0.0945	0.1943	0.0057	0.2438
CD217A	23765	0.3543	0.4847	0.4848	0.0053	0.6106
CD218A	8809	0.2310	0.3237	0.3634	0.0053	0.4489
CD218B	8807	0.3551	0.4772	0.4696	0.0049	0.5795
CD220	3643	0.0558	0.0707	0.1690	0.0054	0.2508
CD221	3480	0.3040	0.3717	0.3908	0.0041	0.4642
CD222	3482	0.3865	0.4883	0.4928	0.0047	0.5964
CD223	3902	0.3208	0.4433	0.4631	0.0048	0.5783
CD225	8519	0.6660	0.7433	0.7008	0.0047	0.7958
CD226	10666	0.4493	0.5699	0.5684	0.0046	0.6877
CD227	4582	0.2539	0.2935	0.3209	0.0038	0.3633
CD228	4241	0.0977	0.1279	0.2904	0.0067	0.5091
CD229	4063	0.4910	0.6255	0.6065	0.0049	0.7315
CD230	5621	0.4669	0.5790	0.5668	0.0047	0.6783
CD231	7102	0.0694	0.1267	0.1527	0.0038	0.2059
CD232	10154	0.3927	0.5165	0.5161	0.0050	0.6311
CD233	6521	0.3742	0.4941	0.4807	0.0052	0.5946
L	1	l	·	·	L	L

CD234	2532	0.2298	0.2971	0.3469	0.0051	0.4538
CD235A	2993	0.0264	0.0336	0.0949	0.0040	0.1100
CD235B	2994	0.2290	0.3563	0.3744	0.0056	0.5058
CD236	2995	0.4735	0.5625	0.5534	0.0043	0.6455
CD238	3792	0.2072	0.2995	0.3301	0.0045	0.4292
CD239	4059	0.1152	0.1459	0.2366	0.0059	0.2638
CD240CE	6006	0.1861	0.2264	0.2542	0.0041	0.2675
CD240D	6007	0.0252	0.0322	0.1400	0.0050	0.2184
CD241	6005	0.0282	0.0361	0.1449	0.0051	0.2316
CD242	3386	0.3286	0.3667	0.3986	0.0041	0.4481
CD243	5243	0.3582	0.4697	0.4731	0.0050	0.5995
CD244	51744	0.5086	0.5471	0.5625	0.0044	0.6383
CD246	238	0.0540	0.0687	0.1963	0.0064	0.3157
CD247	919	0.5804	0.6672	0.6598	0.0039	0.7547
CD248	57124	0.3734	0.4714	0.4798	0.0047	0.5894
CD249	2028	0.0632	0.0860	0.2344	0.0064	0.4235
CD252	7292	0.2576	0.3412	0.3685	0.0047	0.4500
CD253	8743	0.3552	0.4537	0.4613	0.0046	0.5625
CD254	8600	0.0778	0.1061	0.2277	0.0060	0.3639
CD257	10673	0.4844	0.6047	0.5812	0.0048	0.6959
CD258	8740	0.3544	0.5111	0.5044	0.0057	0.6435
CD262	8795	0.3919	0.5091	0.5013	0.0049	0.6212
CD263	8794	0.3718	0.4614	0.4833	0.0048	0.5685
CD264	8793	0.0537	0.0768	0.2575	0.0069	0.4421
CD265	8792	0.0607	0.0770	0.1617	0.0049	0.2216
CD266	51330	0.2305	0.2770	0.3496	0.0051	0.4592
CD267	23495	0.3001	0.3167	0.3391	0.0042	0.3625
CD269	608	0.2179	0.3244	0.3582	0.0049	0.4692
CD270	8764	0.3937	0.5311	0.5315	0.0053	0.6555
CD271	4804	0.0484	0.0626	0.1994	0.0059	0.3569
CD272	151888	0.3200	0.4516	0.4583	0.0049	0.5837
CD273	80380	0.0000	0.0000	0.0919	0.0048	0.1376
CD274	29126	0.0346	0.0441	0.1299	0.0049	0.1768
CD276	80381	0.0618	0.0801	0.2286	0.0069	0.3964
CD277	11119	0.3237	0.4063	0.4270	0.0044	0.5089
1	i		i			•

CD278	29851	0.4065	0.5303	0.5204	0.0051	0.6423
CD279	5133	0.0390	0.0499	0.1709	0.0061	0.2742
CD280	9902	0.0455	0.2031	0.2347	0.0058	0.3882
CD281	7096	0.3368	0.4997	0.4942	0.0060	0.6577
CD282	7097	0.2973	0.4055	0.4288	0.0050	0.5405
CD283	7098	0.0974	0.1225	0.2435	0.0059	0.3783
CD284	7099	0.3382	0.4540	0.4687	0.0051	0.5907
CD286	10333	0.3518	0.4914	0.4930	0.0054	0.6335
CD288	51311	0.4240	0.5298	0.5305	0.0048	0.6437
CD289	54106	0.3317	0.3715	0.3772	0.0042	0.3984
CD290	81793	0.4269	0.5439	0.5341	0.0046	0.6416
CD292	657	0.0928	0.1299	0.2889	0.0065	0.4903
CDW293	658	0.0771	0.1042	0.2290	0.0054	0.3880
CD294	11251	0.2721	0.2885	0.3274	0.0045	0.3827
CD295	3953	0.4433	0.5012	0.5038	0.0041	0.5759
CD296	417	0.3463	0.3758	0.4412	0.0044	0.5359
CD297	420	0.0485	0.0637	0.2164	0.0062	0.3780
CD298	483	0.3326	0.4407	0.4449	0.0047	0.5547
CD299	10332	0.0339	0.0427	0.1953	0.0067	0.3262
CD300A	11314	0.4993	0.6021	0.5909	0.0045	0.6974
CD300C	10871	0.4161	0.5457	0.5341	0.0051	0.6624
CD301	10462	0.4865	0.5319	0.5278	0.0044	0.6119
CD304	8829	0.0821	0.1085	0.2568	0.0065	0.4547
CD305	3903	0.3634	0.4618	0.4744	0.0044	0.5776
CD306	3904	0.2039	0.2878	0.3070	0.0044	0.3783
CD307A	115350	0.0862	0.1091	0.1929	0.0053	0.2121
CD307B	79368	0.3870	0.5031	0.4953	0.0047	0.6056
CD307C	115352	0.4221	0.5118	0.5191	0.0044	0.6154
CD307D	83417	0.0523	0.0663	0.1390	0.0046	0.1500
CD307E	83416	0.2651	0.3560	0.3732	0.0044	0.4562
CD308	2321	0.1455	0.1845	0.2555	0.0054	0.2298
CD309	3791	0.0792	0.1003	0.1694	0.0045	0.1944
CD312	30817	0.4273	0.5262	0.5254	0.0046	0.6323
CD315	5738	0.0863	0.1089	0.1899	0.0050	0.2524
CD316	93185	0.1475	0.5214	0.4480	0.0070	0.6486
-						

CD317	684	0.4043	0.5385	0.5355	0.0054	0.6746
CD318	64866	0.0909	0.2574	0.3190	0.0070	0.5427
CD319	57823	0.3282	0.4635	0.4620	0.0048	0.5813
CD320	51293	0.4975	0.5343	0.5618	0.0042	0.6432
CD321	50848	0.3659	0.4622	0.4825	0.0047	0.5838
CD322	58494	0.0578	0.0736	0.2095	0.0065	0.3546
CD324	999	0.0830	0.1046	0.1786	0.0048	0.1851
CD325	1000	0.1798	0.2115	0.2514	0.0044	0.2504
CD326	4072	0.0374	0.0473	0.1227	0.0043	0.1631
CD327	946	0.1152	0.4171	0.3868	0.0067	0.5691
CD328	27036	0.3945	0.4399	0.4761	0.0041	0.5506
CD329	27180	0.3735	0.4845	0.4874	0.0050	0.5985
CD331	2260	0.0623	0.0815	0.1848	0.0057	0.2825
CD332	2263	0.1078	0.1379	0.1910	0.0046	0.1685
CD333	2261	0.0938	0.1198	0.2726	0.0064	0.4759
CD334	2264	0.1030	0.1317	0.2100	0.0055	0.1767
CD335	9437	0.0930	0.1176	0.2136	0.0056	0.3205
CD336	9436	0.0406	0.0514	0.1626	0.0057	0.2566
CD337	259197	0.3529	0.4894	0.4933	0.0046	0.6105
CD338	9429	0.0000	0.0000	0.0981	0.0052	0.0917
CD339	182	0.0478	0.0622	0.1937	0.0061	0.3276
CD340	2064	0.4351	0.4842	0.4856	0.0044	0.5603
CD344	8322	0.0000	0.0000	0.1506	0.0071	0.3500
CD349	8326	0.0453	0.0572	0.1384	0.0049	0.1556
CD350	11211	0.0368	0.0508	0.2128	0.0066	0.3945
CD351	8395	0.2458	0.3268	0.3550	0.0044	0.4425
CD353	56833	0.0388	0.0496	0.1923	0.0060	0.3306
CD354	54210	0.4307	0.5610	0.5460	0.0052	0.6796
CD355	56253	0.0568	0.0724	0.1858	0.0061	0.2610
CD357	8784	0.0684	0.0893	0.2214	0.0061	0.3834
CD358	27242	0.3184	0.3443	0.3893	0.0049	0.4793
CD360	50615	0.5752	0.6418	0.6174	0.0045	0.7088
CD361	2124	0.2721	0.3649	0.3831	0.0047	0.4680
CD362	6383	0.2068	0.2533	0.3137	0.0050	0.3991
CD363	1901	0.4069	0.5292	0.5368	0.0051	0.6612

CD364	221476	0.4220	0.4661	0.4906	0.0047	0.5900
CD366	84868	0.4126	0.5178	0.5167	0.0046	0.6249
CD367	50856	0.5184	0.6120	0.6118	0.0042	0.7098
CD369	64581	0.4805	0.5836	0.5811	0.0049	0.6980

By default, CD gene expression was stratified at 20 and 80 percentiles, with low expression being between 0 and 20, average between 20 and 80, and high between 80 and 100. Two-tailed thresholds were labeled as 'aberrant' or 'non-aberrant', with 'aberrant' being further delineated as 'low' or 'high'.

Supplement 2. Table 3. Clusters of differentiation gene expression requiring. Feature transformation included threshold shifting (n=3) or binary dichotomization (n=85).

Cluster of Differentiation	Entrez ID	Feature transformation	Threshold	Figure #
CD34	947	Dichotomization	0.18	38
CD49B	3673	Dichotomization	0.1	54
CD49C	3675	Dichotomization	0.18	55
CD57	27087	Dichotomization	0.2	66
CD62E	6401	Dichotomization	0.2	70
CD62L	6402	Dichotomization	0.7	71
CD66E	1048	Dichotomization	0.12	78
CD66F	5669	Dichotomization	0.15	79
CD72	971	First threshold shifted	0.35	84
CD80	941	Dichotomization	0.1	89
CD85C	10990	Dichotomization	0.2	95
CD85M	79166	Dichotomization	0.2	102
CD91	4035	Dichotomization	0.45	108
CD104	3691	Dichotomization	0.2	121
CD105	2022	First threshold shifted	0.3	122
CD106	7412	Dichotomization	0.2	123
CD108	8482	Dichotomization	0.15	126
CD111	5818	Dichotomization	0.2	129
CD113	25945	Dichotomization	0.15	131
CD118	3977	Dichotomization	0.18	136
CD121A	3554	Dichotomization	0.1	140
CD133	8842	Dichotomization	0.1	151
CD135	2322	Dichotomization	0.1	153
CD140A	5156	Dichotomization	0.2	157
CD142	2152	Dichotomization	0.2	160
CD143	1636	Dichotomization	0.2	161
CD144	1003	Dichotomization	0.25	162
CD146	4162	Dichotomization	0.2	163
CD154	959	Dichotomization	0.35	170
CD167B	4921	Dichotomization	0.2	185
CD168	3161	Dichotomization	0.15	186
CD169	6614	Dichotomization	0.1	187
CD171	3897	Dichotomization	0.2	189
CD179A	7441	Dichotomization	0.15	195
CD180	4064	Dichotomization	0.2	197

CD194	1233	Dichotomization	0.1	206
CD200	4345	Dichotomization	0.2	211
CD202B	7010	Dichotomization	0.15	213
CD203C	5169	Dichotomization	0.18	214
CD204	4481	Dichotomization	0.2	215
CD206	4360	Dichotomization	0.15	217
CD207	50489	Dichotomization	0.15	218
CD213A2	3598	Dichotomization	0.15	225
CD215	3601	Dichotomization	0.2	226
CD220	3643	Dichotomization	0.15	230
CD225	8519	Dichotomization	0.63	234
CD228	4241	Dichotomization	0.2	237
CD231	7102	First threshold shifted	0.05	240
CD235A	2993	Dichotomization	0.07	244
CD239	4059	Dichotomization	0.2	248
CD240D	6007	Dichotomization	0.1	250
CD241	6005	Dichotomization	0.1	251
CD246	238	Dichotomization	0.2	255
CD249	2028	Dichotomization	0.2	258
CD254	8600	Dichotomization	0.2	261
CD264	8793	Dichotomization	0.15	266
CD265	8792	Dichotomization	0.15	267
CD271	4804	Dichotomization	0.15	272
CD274	29126	Dichotomization	0.1	275
CD276	80381	Dichotomization	0.2	276
CD279	5133	Dichotomization	0.1	279
CD280	9902	Dichotomization	0.15	280
CD283	7098	Dichotomization	0.2	283
CD292	657	Dichotomization	0.2	289
CD297	420	Dichotomization	0.2	290
CD299	10332	Dichotomization	0.1	294
CD304	8829	Dichotomization	0.2	296
CD307A	115350	Dichotomization	0.2	300
CD307D	83417	Dichotomization	0.1	303
CD309	3791	Dichotomization	0.2	306
CD315	5738	Dichotomization	0.2	309
CD316	93185	Dichotomization	0.2	311
CD318	64866	Dichotomization	0.2	312
CD322	58494	Dichotomization	0.15	314

CD324	999	Dichotomization	0.2	318
CD326	4072	Dichotomization	0.1	319
CD331	2260	Dichotomization	0.2	321
CD333	2261	Dichotomization	0.2	325
CD334	2264	Dichotomization	0.2	327
CD335	9437	Dichotomization	0.2	328
CD336	9436	Dichotomization	0.1	329
CD339	182	Dichotomization	0.1	330
CD349	8326	Dichotomization	0.1	333
CD350	11211	Dichotomization	0.1	336
CD353	56833	Dichotomization	0.1	337
CD355	56253	Dichotomization	0.15	339
CD357	8784	Dichotomization	0.15	341
CDW293	658	Dichotomization	0.2	342

 $Supplement \ 3. \ Figures \ 1-351. \ Distributions \ Clusters \ of \ Differentiation \ and \ labels \ of \ aberrant \ gene \ expression.$

Figure 24 - CD16B 7.00 -Max. :1.0000 3rd Qu.:0.7744 0.62 Mean :0.6900 5.25 -Median :0.7064 1st Qu.:0.6375 Min. :0.0000 Density 3.50 -254 258 1.75 -

Figure 54 - CD49B* 31.00 -Max. :1.0000 3rd Qu.:0.2504 0.1 Mean :0.2514 23.25 -Median :0.2115 1st Qu.:0.1798 Min. :0.0000 Density 15.50 **-**620 666 7.75 -0.00 -0.4 0.2 0.6 0.8 1.0 Normalized Expression

TRUE

Low

FALSE

71

Figure 55 - CD49C* 18.0 -

Figure 89 - CD80* 33.00 -:1.00000 Max. 3rd Qu.:0.32623 0.1 Mean :0.19526 24.75 -Median :0.04270 1st Qu.:0.03387 Min. :0.00000 16.50 **-**666 8.25

Figure 94 - CD85A 11.00 -:1.0000 Max. 3rd Qu.:0.8070 0.82 Mean 0.67 i :0.7279 8.25 -Median :0.7578 1st Qu.:0.6931 :0.0000 Min. Density 245 5.50 255 2.75 -0.00 0.2 0.4 0.6 0.8 1.0 Normalized Expression 111

TRUE

FALSE

Aberrant

Figure 126 - CD108* 29.00 -:1.0000 Max. 3rd Qu.:0.4618 ¦0.15 Mean :0.3688 21.75 -Median :0.3164 1st Qu.:0.2714 Min. :0.0000 14.50 -572

Figure 127 - CD109* 78.0 **-**Max. :1.0000 3rd Qu.:0.6959 0.01 0.28 Mean :0.5812 58.5 Median :0.6047 1st Qu.:0.4844 Min. :0.0000 Density 39.0 106 258 19.5 0.0 0.2 0.6 0.8 1.0 Normalized Expression 144

TRUE

FALSE

Aberrant

Figure 129 - CD111* 14.0 -Max. :1.0000 3rd Qu.:0.4769 0.2 Mean :0.4296 10.5 -Median :0.4329 1st Qu.:0.4005 Min. :0.0000 Density 7.0 -518 3.5 -0.0 0.2 0.4 0.6 0.8 1.0 Normalized Expression

Figure 136 - CD118*

Figure 140 - CD121A* 67.00 -Max. :1.0000 3rd Qu.:0.4403 0.1 Mean :0.3840 50.25 Median :0.4020 1st Qu.:0.3392 Min. :0.0000 Density 33.50 -831 455 16.75 **-**

Figure 141 - CD121B 7.00 -Max. :1.0000 3rd Qu.:0.4773 0.22 0.51 Mean :0.3743 5.25 -Median :0.3407 1st Qu.:0.2424 Min. :0.0000 Density 254 3.50 -258 1.75 -0.00 0.8 0.2 0.4 1.0 0.6 Normalized Expression

TRUE

FALSE

Aberrant

158

Figure 151 - CD133* 29.00 -Max. :1.0000 3rd Qu.:0.6591 0.1 Mean :0.5490 21.75 -Median :0.5544 1st Qu.:0.4487 Min. :0.0000 Density 14.50 -386 7.25 0.2 0.4 0.6 0.8 1.0

Figure 153 - CD135* 42.0 -:1.0000 Max. 3rd Qu.:0.5250

Figure 157 - CD140A* 15.00 -

Figure 161 - CD143* 16 -Max. :1.00000 3rd Qu.:0.55311 0.2 Mean :0.36296 12 -Median :0.40198 1st Qu.:0.08497 Min. :0.00000 372 4 -

Figure 163 - CD146* 21.00 -Max. :1.0000 3rd Qu.:0.8070 0.2 :0.7279 Mean 15.75 -Median :0.7578 1st Qu.:0.6931 Min. :0.0000 Density 10.50 -339 5.25

Figure 176 - CD158I* 78.0 **-**Max. :1.0000 3rd Qu.:0.5250

0.01

Figure 185 - CD167B*

Figure 187 - CD169* 48 -Max. :1.00000 3rd Qu.:0.39447 0.1 Mean :0.21282 36 Median :0.05077 1st Qu.:0.03675 Min. :0.00000 Density 24 -608 678 12 -0.0 0.2 0.6 0.4 1.0 8.0 Normalized Expression 204 TRUE FALSE Low

Figure 189 - CD171*

Figure 193 - CD177 37.00 -Max. :1.00000 3rd Qu.:0.16423 0.19 02 Mean :0.12318 27.75 **-**Median :0.03105 1st Qu.:0.02263 Min. :0.00000 Density 18.50 **- 25** 774 258 9.25 -0.00 0.2 0.6 0.8 1.0

Figure 195 - CD179A* 30.0 -Max. :1.0000 3rd Qu.:0.6974 ¦ 0.15 Mean :0.5909 22.5 -Median :0.6021 1st Qu.:0.4993 Min. :0.0000 Density 15.0 -310

Figure 196 - CD179B 7.00 -Max. :1.0000 3rd Qu.:0.6935 0.47 0.71 Mean :0.5847 5.25 -Median :0.5881 1st Qu.:0.5017 Min. :0.0000 Density 3.50 -254 258 1.75 -0.00 0.2 0.8 0.4 0.6 1.0 Normalized Expression

213

Figure 197 - CD180* 22.0 -Max. :1.00000 3rd Qu.:0.21213 0.2 Mean :0.19293 16.5 **-**Median :0.10911 1st Qu.:0.08617

Figure 206 - CD194*

Figure 211 - CD200* 22.0 -Max. :1.0000 3rd Qu.:0.6919 0.2 Mean :0.5620 16.5 -Median :0.5803 1st Qu.:0.4444 Min. :0.0000 Density 11.0 -709 576 5.5 -

Figure 213 - CD202B* 27.00 -Max. :1.0000 3rd Qu.:0.6712 <u> 0.15</u> Mean :0.5543 20.25 -Median :0.5722 1st Qu.:0.4625 Min. :0.0000 Density 13.50 **-**694 591 6.75 0.00 0.2 0.4 0.6 0.8 1.0 Normalized Expression 230

TRUE

Low

FALSE

Figure 215 - CD204* 21.00 -Max. :1.0000 3rd Qu.:0.5207 0.2 Mean :0.4471 15.75 **-**Median :0.4295 1st Qu.:0.3732 Min. :0.0000 10.50 -696 590

Figure 218 - CD207* 23.00 -Max. :1.0000 3rd Qu.:0.7204 0.15 Mean :0.5969 17.25 -Median :0.6108 1st Qu.:0.4787 Min. :0.0000 Density 11.50 -438 5.75 0.00 0.2 0.4 0.6 0.8 1.0 Normalized Expression 235 TRUE FALSE Low

78.0 **-**Max. :1.0000 3rd Qu.:0.6591 0.01 0.26 Mean :0.5490 58.5 Median :0.5544 1st Qu.:0.4487

Figure 220 - CD209*

Figure 226 - CD215*

Figure 230 - CD220* 26.0 **-**Max. :1.0000 3rd Qu.:0.6581 0.15 :0.5282 Mean 19.5 **-**Median :0.5343 1st Qu.:0.4267 Min. :0.0000 13.0 -380 906 6.5 -

Figure 244 - CD235A* 52 Max. :1.0000 3rd Qu.:0.6284 0.07 Mean :0.5372 39 Median :0.5347 1st Qu.:0.4445 Min. :0.0000 Density 888 ! 26 -398 13 **-**0.0 1.0 0.2 0.6 0.8 Normalized Expression

TRUE

Low

FALSE

261

Figure 248 - CD239* 14.0 -Max. :1.0000 3rd Qu.:0.7422 0.2 Mean :0.6467 10.5 -Median :0.6686 1st Qu.:0.5753 Min. :0.0000 Density 7.0 -358 3.5 -0.0 0.2 0.6 0.4 0.8 1.0 Normalized Expression 265

TRUE

Low

FALSE

Figure 250 - CD240D* 50.0 -Max. :1.0000 3rd Qu.:0.6629 0.1 Mean :0.5624 37.5 -Median :0.5735 1st Qu.:0.5168 Min. :0.0000 Density 25.0 **-**797 489 12.5 **-**0.0 0.2 0.8 1.0 0.6

Figure 251 - CD241* 49.00 -Max. :1.0000 3rd Qu.:0.5837 0.1 Mean :0.4583 36.75 -Median :0.4516 1st Qu.:0.3200 Min. :0.0000 Density 24.50 -494 792 12.25 -0.00 0.2 0.4 0.6 0.8 1.0 Normalized Expression 268 TRUE FALSE Low

Figure 255 - CD246* 24 -Max. :1.0000 3rd Qu.:0.5927 0.2 Mean :0.4874 18 Median :0.4807 1st Qu.:0.3661 Min. :0.0000 12 -898 387

Figure 258 - CD249* 21.00 -Max. :1.00000 3rd Qu.:0.28710 0.2 :0.21434 Mean 15.75 -Median :0.12032 1st Qu.:0.09457 Min. :0.00000 10.50 -507 5.25

Figure 267 - CD265* 23.00 -

Figure 272 - CD271* 30.0 -Max. :1.0000 3rd Qu.:0.5444 0.15 Mean :0.4359 22.5 Median :0.3820 1st Qu.:0.3528 Min. :0.0000 15.0 -794 491 7.5 -

Figure 275 - CD274* 39.00 -

Figure 276 - CD276* 22.0 -Max. :1.0000 3rd Qu.:0.5603 0.2 :0.4856 Mean 16.5 -Median :0.4842 1st Qu.:0.4351 Min. :0.0000 Density 11.0 -832 454 5.5 -0.0 0.2 0.4 0.6 0.8 1.0 Normalized Expression

Low

293

Figure 283 - CD283* 17.00 -Max. :1.00000 3rd Qu.:0.48786 0.2 :0.28827 Mean 12.75 -Median :0.14602 1st Qu.:0.08651 Min. :0.00000 Density 8.50 -477 4.25

Figure 290 - CDW293* 21.00 -Max. :1.0000 3rd Qu.:0.5985 0.2 :0.4874 Mean 15.75 -Median :0.4845 1st Qu.:0.3735 Min. :0.0000 Density 10.50 -736 551 5.25

Figure 296 - CD299* 45.00 -Max. :1.0000 3rd Qu.:0.5900 0.1 Mean :0.4906 33.75 Median :0.4661 1st Qu.:0.4220 Min. :0.0000 Density 22.50 -505 11.25 0.2 0.4 0.6 0.8 1.0

Figure 300 - CD304* 18.0 **-**Max. :1.0000 3rd Qu.:0.7744 0.2 Mean :0.6900 13.5 **-**Median :0.7064 1st Qu.:0.6375 :0.0000 Min. 9.0 -516

Figure 306 - CD307D* 26.0 **-**Max. :1.00000 3rd Qu.:0.47587 0.1 :0.27257 Mean 19.5 **-**Median :0.11976 1st Qu.:0.09383 Min. :0.00000 Density 13.0 -361 6.5 -

Figure 309 - CD309* 17.00 -

Figure 311 - CD315* 18.0 **-**Max. :1.0000 3rd Qu.:0.1767 0.2 Mean :0.2100 13.5 **-**Median :0.1317 1st Qu.:0.1030 Min. :0.0000 Density 9.0 -358 4.5 -0.0 0.2 0.4 0.6 0.8 1.0 Normalized Expression

Low

Figure 312 - CD316* 19.00 -

Figure 314 - CD318* 18.0 **-**

Figure 318 - CD322* 26.0 -Max. :1.00000 3rd Qu.:0.21717 0.15 Mean :0.14802 19.5 **-**Median :0.03733 1st Qu.:0.02906 Min. :0.00000 13.0 -439 6.5 -

Figure 319 - CD324* 17.00 -Max. :1.0000 3rd Qu.:0.4715 0.2 Mean :0.3815 12.75 -Median :0.3575 1st Qu.:0.2598 Min. :0.0000 8.50 -312 4.25

Figure 321 - CD326* 35.00 -

Figure 322 - CD327 13.00 -Max. :1.0000 3rd Qu.:0.5691 0.11 0.6 Mean :0.3868 9.75 -Median :0.4171 1st Qu.:0.1152 Min. :0.0000 Density 6.50 **-**268 760 258 3.25 0.00 0.2 0.6 0.8 0.4 1.0 Normalized Expression 339

TRUE

FALSE

Aberrant

Figure 325 - CD331*

Max. :1.0000

3rd Qu.:0.4722

10-

1.0

342

8.0

Density

5 -

Figure 326 - CD332 17.00 -Max. :1.0000 3rd Qu.:0.1685 0.1 0.19 :0.1910 Mean 12.75 -Median :0.1379 1st Qu.:0.1078 Min. :0.0000 8.50 -252 258

78.0 **-**Max. :1.0000 3rd Qu.:0.6757 0.01 0.2

Figure 332 - CD338*

Figure 333 - CD339* 28 -Max. :1.0000 3rd Qu.:0.4538 0.1 Mean :0.3469 21 -Median :0.2971 1st Qu.:0.2298 Min. :0.0000 473 7 -

Figure 336 - CD349* 29.00 -

Figure 341 - CD355* 26.0 -Max. :1.0000 3rd Qu.:0.4326 0.15 :0.3676 Mean 19.5 **-**Median :0.3410 1st Qu.:0.2642 Min. :0.0000 13.0 -383 6.5 **-**

