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Abstract 

 

Structural connectivity (SC), the physical pathways connecting regions in the brain, and 

functional connectivity (FC), the temporal co-activations, are known to be tightly linked. 

However, the nature of this relationship is still not understood. In the present study, we 

examined this relation more closely in six separate human neuroimaging datasets with 

different acquisition and preprocessing methods. We show that using simple linear 

associations, the relation between an individual’s SC and FC is not subject-specific for 

five of the datasets. Subject-specificity of SC-FC fit is achieved only for one of the six 

datasets, the multi-modal Glasser HCP parcellated dataset. We show that subject-

specificity of SC-FC correspondence is limited across datasets due to relatively small 

variability between subjects in the SC compared to the larger variability in FC. 
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Introduction 

 

It has been shown that there is a relationship between structural connectivity (SC), the physical 

white-matter tracts between regions, and resting state functional connectivity (FC), the temporal 

coactivation between regions (Greicius, Supekar, Menon, & Dougherty, 2009; Hermundstad et 

al., 2013; Honey, Kotter, Breakspear, & Sporns, 2007; Honey et al., 2009; Koch, Norris, & 

Hund-Georgiadis, 2002; Misic et al., 2016; Ponce-Alvarez et al., 2015; Skudlarski et al., 2008; 

van den Heuvel, Mandl, Kahn, & Hulshoff Pol, 2009; van den Heuvel & Sporns, 2013) using 

both simple linear (Honey et al., 2009) as well as more complex metrics (Misic et al., 2016). 

Most of this research, however, considers group-averaged matrices of SC and FC rather than 

individual connectomes. Motivated by the recent interest in personalized medicine and precision 

science, there is a greater need to understand individual differences and unique relationships 

between SC and FC. One important question is whether individual SC correlates with the 

corresponding subject’s FC to a greater extent than between-subjects. Correlations between 

whole-brain individual SC and FC have been associated with measures of behaviour or clinical 

conditions (Caeyenberghs, Leemans, Leunissen, Michiels, & Swinnen, 2013; Cocchi et al., 2014; 

Skudlarski et al., 2010; Zhang et al., 2011). Yet, there are very few studies that investigate the 

subject-specificity of this SC-FC correspondence (Honey et al., 2009; Meier et al., 2016), and as 

far as we know there are no studies that assert that individual SC maps best onto its 

corresponding FC using linear measures of association. One preliminary investigation conducted 

by Honey et al. (2009) examined this question, however results were inconclusive due to the 

limited sample. Clearly, it is not well understood whether there is a unique portion of variance in 

the SC accounting for unique individual differences in FC. 
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It has already been shown that individual structural and functional connectomes can be sensitive 

to age (Zimmermann et al., 2016), personality traits (Markett et al., 2013), or cognition, 

demographics and behaviour (Hearne, Mattingley, & Cocchi, 2016; Ponsoda et al., 2017; S. 

Smith, 2016; S. M. Smith et al., 2015), and that SC (Kumar, Desrosiers, Siddiqi, Colliot, & 

Toews, 2017; Munsell, 2017; Yeh et al., 2016) as well as FC (Enrico; Finn et al., 2015) can be 

used to identify individual connectome fingerprints, the extent of this individual variability has 

been called into question  (Marrelec, Messe, Giron, & Rudrauf, 2016; Waller et al., 2017). This 

may particularly be the case in smaller sample sizes (Waller et al., 2017). It has been shown that 

variability in FC can be explained by only one or two dimensions, and that FC is highly 

degenerate in its ability to capture potential complexities and variability in underlying dynamics 

(Marrelec et al., 2016).  

 

Variance decomposition methods, such as principal components analysis (PCA), are helpful for 

characterizing the strength of individual differences in connectomes (E. Amico, Goñi, J., 2017; 

Marrelec et al., 2016). PCA provides a simplified representation of the data by reducing the 

existing variance into a smaller number of components. In this way, the portion of variance that 

is common across subjects can be identified and separated from the unique aspects of the 

variance. 

 

The aim of the present study is to investigate the subject-specificity of the SC-FC relationship. 

The analyses were conducted on several datasets with variable acquisition schemes and 

preprocessing methods on the findings: N1 = 48 (Ritter, Schirner, McIntosh, & Jirsa, 2013; 
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Zimmermann et al., 2016), N2 = 626 (Human Connectome Project, HCP), (Van Essen et al., 

2013), N3 = 171 (Brown, Rudie, Bandrowski, Van Horn, & Bookheimer, 2012), N4 = 766 

(HCP) with a high-resolution multi-modal parcellation (Glasser et al., 2016). Two additional 

datasets from the HCP were analyzed post-hoc. We use simple linear measures of association 

with bootstrapping to quantify the correspondence of within-subject and between-subject SC-FC, 

and decomposition to quantify the extent of common and unique variability in SC and FC across 

subjects.  
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Methods 

 

Data acquisition and preprocessing 

The analyses were conducted on 6 MRI datasets of healthy subjects: the Berlin dataset (N = 48) 

(Ritter et al., 2013; Schirner, Rothmeier, Jirsa, McIntosh, & Ritter, 2015; Zimmermann et al., 

2016), the Nathan Kline Institute (NKI) Rockland dataset from the UMCD Multimodal 

connectivity database (N = 171) (Brown et al., 2012), and four variations from the Human 

Connectome Project (HCP) (S900 release) (Van Essen et al., 2013) which differed in terms of 

processing methods as well as parcellation schemes. The HCP Lausanne dataset (N = 626), and 

the HCP Glasser dataset (N = 766), the HCP Destrieux dataset (N = 754), and HCP Desikan-

Killiany (DK) (N = 754). Note that sample size differences between HCP datasets are due to 

removal of subjects with problematic parcellations. The HCP Glasser dataset is a high-resolution 

multi-modal parcellation based on an areal feature-based cross-subjects alignment method 

(Glasser et al., 2016).  Research was performed in compliance with the Code of Ethics of the 

World Medical Association (Declaration of Helsinki). Written informed consent was provided by 

all subjects with an understanding of the study prior to data collection, and was approved by the 

local ethics committee in accordance with the institutional guidelines at Charité Hospital, Berlin, 

UCLA, and HCP WU-Minn.  

 

Table 1. Dataset details for 6 resting-state datasets, including sample size, preprocessing methods, 

and parcellation scheme.  

 Berlin NKI 
Rockland 

HCP, Lausanne HCP, Glasser HCP, 
Destrieux 

HCP, DK 

Processing 
reference 

Schirner et 
al. 2015  

Brown et al. 
2012 

Glasser et al. 
2013 

Glasser et al. 
2013 

Glasser et al. 
2013 

Glasser et al. 
2013 
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Number 
subjects 

48 171 626 766 754 754 

Subject ages 18-80  
(M = 41.90, 
SD = 18.47) 

5-85  
(M = 35.80, 
SD = 19.99) 

22-36  
(M = 28.65, SD 
= 3.66) 

22-37  
(M = 28.78, SD 
= 3.70) 

22-37  
(M = 28.78, 
SD = 3.70) 

22-37  
(M = 28.78, 
SD = 3.70) 

Structural and 
diffusion 
processing 

      

Software 
method 

FreeSurfer 
(http://surfer
.nmr. 
mgh.harvard
.edu/) 

FreeSurfer & 
Dipy  

Diffusion 
Toolkit 
(http://trackvis.
org/blog/tag/dif
fusion-toolkit/) 
 

HCP pipeline 
(Glasser et al., 
2013) 

HCP pipeline 
(Glasser et al., 
2013) 

HCP pipeline
(Glasser et 
al., 2013) 

Motion & 
eddy-current 
correction 

yes yes yes yes yes yes 

Intensity 
normalizatio
n 

yes no yes yes yes yes 

Tractograph
y 

Probabilistic  
(MRTrix) 

Deterministic 
(FACT) 

Deterministic 
(EuDX) 

Probabilistic  
(MRTrix) 

Probabilistic  
(MRTrix) 

Probabilistic 
(MRTrix) 

SC Metric Number of 
voxel pairs 
connected 
with  
streamline(s
), regional 
volume 
corrected 

Number of 
streamlines 

Number of 
streamlines 

Streamline 
count (SIFT2)  
weighted by 
inferred cross-
sectional area of 
the streamlines  

Weighted 
streamline 
count (SIFT2)  

Weighted 
streamline 
count 
(SIFT2) 

Functional 
processing 

      

Software 
method 

Schirner et 
al 2015 

fMRI FEAT Glasser et al 
2013 

Glasser et al 
2013 

Glasser et al 
2013 

Glasser et al 
2013 

Slice-timing no yes no no no no 
Motion 
correction 

MCFLIRT  MCFLIRT  FIX denoising 6 DOF FLIRT,  
FIX denoising 

6 DOF 
FLIRT,  
FIX denoising 

6 DOF 
FLIRT,  
FIX 
denoising 

Nuisance 
regression 

yes (6 
motion, 
mean WM, 
CSF) 

Yes (24 
motion, mean 
WM, CSF, 
mean whole 
brain) 

no no no no 

Smoothing no yes (Gaussian no yes (Cortical See Glasser See Glasser 
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kernel 5mm 
full-width half 
maximum) 

within surface, 
subcortical 
volume 
smoothing, 
FWHM 2 mm 
Gaussian)  

(column to the 
left) 

(column to 
the left) 

Intensity 
normalizatio
n of BOLD 

no yes no yes yes yes 

Temporal 
filtering 

High-pass 
filtering 
(cutoff at 
100s) 

Bandpass 
filtering 
(0.08-
0.009Hz) 

no no no no 

Registration 
to standard 
space 

no MNI152 no MNI152 & 
surface-based 
areal feature 
multimodal 
registration 
(MSMAll, 
Robinson et al., 
2014) 

  

Motion 
scrubbing 

no yes no no no no 

Parcellation 
(total number of 
regions) 

Desikan-
Killiany 
(68) 
(Desikan et 
al., 2006) 

Craddock 
(188) 
 

Lausanne 
(83) 
(Hagmann et 
al., 2008) 

Glasser  
(378) 
(Glasser et al., 
2016), brainsem 
was removed 

Destrieux 
(164) 
(Destrieux, 
Fischl, Dale, 
& Halgren, 
2010) 

Desikan-
Killiany  
(84)  
(Desikan et 
al., 2006) 
 

 

 

A detailed description of data acquisition procedures is presented in Table S1. Subject sample 

size, age range, post processing, and parcellation information are presented in Table 1, with links 

to previously published papers with these datasets. Quality control is described in detail there. 

Noise-correction was performed via nuisance variable regression from the BOLD signal, for the 

Berlin and Rockland dataset, including the 6 motion parameters, mean white matter, and CSF 

signals. For the HCP dataset, we used FIX-denoised data, a tool that was trained to effectively 

remove components of the white matter, CSF, physiological noise, and 24 high-pass filtered 
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motion parameters from the signal (Glasser et al., 2013). (See Table 1 for detailed information 

and references to data processing). 

 

SC and FC was derived via diffusion-weighted magnetic resonance imaging (dwMRI) and 

resting-state blood oxygen dependent functional magnetic resonance imaging (rsfMRI BOLD) 

respectively. Structural and functional data were parcellated into predefined ROIs that varied in 

size across datasets (68-378 cortical regions). Fiber track estimation was performed on the 

diffusion data, and weight and distance SCs were computed by aggregating tractography-based 

estimations of white matter streamlines between regions of interest (ROIs). Each entry in the SC 

weights matrix estimates the connection strength between a pair of ROIs. SC distances were the 

Euclidian distances (Brown et al., 2012; Glasser et al., 2013; Hagmann et al., 2008), or average 

length of tracks (Schirner et al., 2015) in mm between pairs of ROIs. We corrected for SC 

distance by regressing distances from weight SCs, and using residuals for analysis (as tract 

length may have an effect on structure-function relations (Romero-Garcia, Atienza, & Cantero, 

2014). To account for age-related differences in parcellation and ROI size, pair-wise SC (Berlin 

data set) connection weights were weighted by mean gray-matter white-matter interface area of 

connected ROIs.  FCs were computed as the Pearson’s correlation between each ROI pair of 

BOLD time series. We transformed FC matrix entries of each FC to become normally distributed 

by conducting a Fisher’s r to Z transform. 

 

Subject specificity of SC-FC predictions 
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We compared individual SC and FC within and between all subjects using Pearson’s correlations, 

in order to determine whether individual SC correlates best with its own individual FC. We 

constructed a matrix of size NSC x NFC (N = the number of subjects NSC = NFC). The diagonal of 

this matrix captures the intra-subject (within) SC-FC correlations; the off-diagonal represent the 

inter-subject (between) SC-FC (See Figure 1 for a visualization of this SC-FC matrix). We 

corrected the p-value of each correlation value in the resulting matrix for multiple comparisons 

using FDR (Matlab function fdr_bky) (Benjamini, Krieger, & Yekutieli, 2006). Note that 

associations between all individual SC and FC within and between all subjects was also 

performed via eigenvector correlations. This method is described in the Supplementary Materials.  

 

We conducted 1000 bootstrapped means of SC-ownFC correlations and 1000 boostrapped means 

of SC-otherFC correlations (Matlab function bootstrp) and plotted the two bootstrapped 

distributions against each other. In order to evaluate the statistical significance of the differences 

between the distributions, we subtracted the SC-otherFC distribution from the SC-selfFC 

distribution and constructed a 95% confidence interval on this difference distribution (Matlab 

function prctile). To confirm our results, in a secondary analysis we used only SC present 

connections, as indirect connections may have an unknown effect on FC (Honey et al., 2009). 

For this analysis, connections that have a zero value in the SC matrix were not included in the 

correlations with FC. 
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Figure 1. Individual subject SCs and FCs are stacked into a subjects x structural connections 

matrix and a subjects x functional connections matrix. Subject-wise SC and FC were then 

correlated for all pairs of SC and FC (within and between subjects). On-diagonals of this matrix 

are within subject SC-FC (SC-SelfFC), off-diagonals represent between subject SC-FC (SC-

OtherFC). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 8, 2018. ; https://doi.org/10.1101/277590doi: bioRxiv preprint 

https://doi.org/10.1101/277590
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

Subject variability in SC and in FC 

We examined variability across subjects in SC, as well as FC, in order to understand whether the 

lack of subject-specificity of SC-FC in the Berlin, HCP Lausanne and NKI Rockland dataset was 

due to a large portion of common variance in the connectomes across subjects that over-powered 

any existing individual differences. To this end, we decomposed the subject-wise SC matrix (SC 

connections x subjects) and FC matrix (FC connections x subjects) each with PCA (princomp 

function matlab, subjects as variables). The breakdown of variability in SC, as well as FC across 

subjects was thus ascertained. From the PCA, we obtained, for each PC: eigenvalues, the 

principal component loadings per subject, and principal component scores per each connection. 

To determine the significance of the resulting eigenvalues, we permuted the SC matrix and the 

FC matrix 100 times (scrambled across connections and subjects) and performed PCA of the 

resulting matrices to generate null distributions of eigenvalues for each PC. A p-value for each 

PC eigenvalue was obtained as the proportion of times that the permuted eigenvalue exceeded 

the obtained eigenvalue. 

 

We also computed the age relationship with the principal component subject loadings that had 

been obtained from the PCA. We did this by calculating the correlation (via Partial Least 

Squares) of age (age vector, size: subjects x 1) with the subjects’ principal coefficient loadings of 

the significant PCs (size: subjects x number of significant PCs).  Partial Least Squares is a 

multivariate method akin to canonical correlation in that it computes the relationship between 

two matrices via orthogonal latent variables (Krishnan, Williams, McIntosh, & Abdi, 2011; 

McIntosh & Lobaugh, 2004). The significance of the resulting correlations was assessed via 

permutation testing (N = 1000) of the singular values from singular value decomposition of the 
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two matrices, and reliability of each principal component subject loading to the latent variable 

was assessed via bootstrapping (N = 500). We thus were able to compute how age corresponded 

to the significant variance across subjects.  
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Results 

 

Subject specificity of SC-FC predictions 

We first quantified the SC-FC relationship at the average group level. The correlation between 

averaged SC and averaged FC was as follows: Berlin: mean r = 0.59, HCP Lausanne: mean r = 

0.47, NKI: mean r = 0.41, HCP Glasser: mean r = 0.34, HCP Destrieux: mean r = 0.40, HCP 

DK: mean r = 0.47, all p < 0.001.  

 

At the individual subject level, all subjects’ SCs were significantly correlated with all subjects’ 

FCs (between and within SC-FC) (Pearson’s correlations, p < 0.001, FDR multiple comparison 

correction, p < 0.001). However, we found that SC-FC correlations were subject-specific only 

for the HCP Glasser dataset, and not for the other datasets, when comparing the bootstrapped 

within-subject SC-FC correlation distribution (SC-SelfFC) and the bootstrapped between-subject 

SC-FC correlation distribution (SC-OtherFC) (CIs on difference distribution). The HCP Glasser 

dataset was the only dataset that showed subject-specificity using both the simple bivariate 

correlation (See Figure 2), as well as the eigenvector correlation approach (See Figure S2). Mean 

and CIs on the difference distributions are shown in Table 2 below for simple correlations and 

Table S2 for eigenvector correlations. The results were consistent using the two approaches.  

 

Table 2. Mean and 95% CIs of the difference distribution calculated as the difference between 

the SC-SelfFC distribution and SC-OtherFC distribution. The * indicates a significant subject-

specificity so that the distribution of intra-subject SC-FC is higher than the distribution of inter-

subject SC-FC.  
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Dataset Simple correlation 

Mean CI 

Berlin 
M = 0.0013  [-0.0169, 0.0190] 

HCP, Lausanne 
M =  0.0016  [-0.0012, 0.0044] 

NKI Rockland 
M = -5.8447e-04  [-0.0109, 0.0065] 

HCP, Glasser 
M = 0.0032  [0.002, 0.0043] * 

HCP, Destrieux M = -2.2348e-04 [-0.0019, 0.002] 
HCP, DK M = 0.001 [-.0001, 0.0017] 
 

In summary, we found that for all but the HCP Glasser dataset, subject’s SC did not correlate 

better with its own FC than with that of another subject’s FC. These results remained consistent 

when using distance corrected SCs, or only SC present connections. For the HCP Glasser 

dataset, the within-subject SC-FC was significantly higher than the between-subject SC-FC when 

comparing the bootstrap resampled distributions.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 8, 2018. ; https://doi.org/10.1101/277590doi: bioRxiv preprint 

https://doi.org/10.1101/277590
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 8, 2018. ; https://doi.org/10.1101/277590doi: bioRxiv preprint 

https://doi.org/10.1101/277590
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

Figure 2. Bivariate Pearson’s correlations for all combinations of SC and FC within and between 

subjects, for A1) Berlin dataset B1) HCP Lausanne dataset C1) Rockland dataset D1) HCP 

Glasser dataset, E1) HCP Destrieux dataset F1) HCP DK dataset 

and distribution histograms of bootstrapped means of intra (SC-SelfFC) and inter (SC-OtherFC) 

correlations for the A2) Berlin dataset B2) HCP Lausanne dataset and C2) Rockland dataset D2) 

HCP Glasser dataset E2) HCP Destrieux dataset F2) HCP DK dataset. SC-SelfFC correlations 

are those where SC and FC are from the same subject. SC-OtherFC correlations are those where 

SC and FC are from different subjects. Significance of the difference of these two distributions is 

calculated via CIs on the difference distribution.  

 

Subject variability in SC and in FC 

Figures 3 through 8 show PCA results for Berlin, HCP Lausanne, NKI, HCP Glasser, HCP 

Destrieux, and HCP DK data respectively. For both SC and FC across our datasets, the first 

component captured a very large portion of  ‘common’ variance across subject. All subjects 

loaded heavily on this common PC1; these principal component subject loadings are visualized 

on the right-hand-side bar plots in Panel B in Figures 3-8. The principal component scores (ie., 

reconstructed matrix from PC1) for this common PC1 are visualized in the left-hand-side 

matrices in Figures 3-8. These represent the features of the connectome that were captured by 

PC1. The variance explained by this first ‘common’ PC was large in the SC (91%, 80%, 79%, 

91%, 93% variance explained for Berlin, HCP Lausanne, NKI, HCP Glasser, HCP Destrieux, 

HCP DK datasets respectively) and lower in the FC (57%, 70%, 33%, 74%, 80% variance 

explained for Berlin, HCP Lausanne, NKI, HCP Glasser, HCP Destrieux, HCP DK data sets). 

Eigenvalues for the first 30 PCs for all datasets are shown in Supplementary Table S3.  
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A second pattern of results that we observed across all datasets was that SC was less variable 

than FC across subjects. There were fewer significant eigenvalues for the SC compared to the FC 

(significance determined via permutation testing of the eigenvalues), see Table S2 in the 

Supplementary Materials.  From the figures (Panel A in Figures 3-8), the knee, or drop-off in the 

variance explained by subsequent PCs (Cattell, 1966) was evidently sharper for the SC than the 

FC. Thus although the common component was dominant for both modalities, the second and 

later components explained a larger portion of variance in the FC. 

 

Consistent with the above findings, we also noted differences between SC and FC in the strength 

of the age-related differences. We found an age effect in the FC in all 6 datasets,  (PLS analysis: 

Berlin: r = 0.79, p < 0.001, HCP Lausanne: r = 0.42, p < 0.001, NKI: r = 0.63, p < 0.001), HCP 

Glasser: r = 0.43, p < 0.001, HCP Destrieux: r = 0.40, p < 0.001, HCP DK: r = 0.38, p < 0.001 

and in the SC for 2 of the 6 datasets (Berlin (non-significant): r = 0.06, p = 0.68, HCP Lausanne 

(non-significant): r = 0.12, p = 0.48, NKI (significant): r = 0.50, p < 0.001), HCP Glasser 

(significant): r = 0.14, p = 0.035), HCP Destrieux (non-significant): r = 0.13, p = 0.13, and HCP 

DK: r = 0.13, p = 0.05.  

 

We compared brain volume across subjects to check for any age-related differences. For the 

Berlin and the Rockland dataset, tissue segmentation was performed and partial volume maps 

were derived using FSL FAST. Total brain volume was computed by summing the GM and WM 

tissue volumes. Total brain volume across subjects was correlated with region-wise SC (Berlin 

dataset: r = 0.22, p = 0.14, Rockland dataset: r = 0.18, p = 0.17) and FC (Berlin dataset: r = 0.17, 
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p = 0.31, Rockland dataset: r = 0.09, p = 0.40), no effect was found. Volume differences in the 

HCP data were already accounted for via the FIX method.  

 

Finally, it is noteworthy that our results remained robust following a number of secondary 

analyses. For example, global signal regression and logarithm transformed SCs redistributed to a 

Gaussian distribution by resampling (Honey et al., 2009) to address the exponentially distributed 

connection weights. The results shown are those based on the original matrices. Please see 

Supplementary Table S2 for the PCA results on logarithmized SCs redistributed to Gaussian.  
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Figure 3. PCA of SC and FC matrices on Berlin data. Percent of total variance explained by 

each principal component of the A1) SC and A2) FC, with corresponding p-values. Panel B 

shows on the left-hand-side the principal component scores per connection for PC1, B1) for the 

0
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SC, and B2) for the FC. This shows the aspects of the connectome that are manifested in PC1, 

the common (across subjects) component. On the right-hand-side of panel B are the subject 

loadings onto PC1, all subjects load positively on this component. C1) shows the age effect for 

the SC and C2) shows the age effect for the FC..  

 

Figure 4. PCA of SC and FC matrices over all subjects of HCP Lausanne dataset. Percent of 

total variance explained by each principal component of the A1) SC and A2) FC, with 

corresponding p-values. Panel B shows on the left-hand-side the principal component scores per 

1
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connection for PC1, B1) for the SC, and B2) for the FC. This shows the aspects of the 

connectome that are manifested in PC1, the common (across subjects) component. On the right-

hand-side of panel B are the subject loadings onto PC1, all subjects load positively on this 

component. C1) shows the age effect for the SC and C2) shows the age effect for the FC.  

 

Figure 5. PCA of SC and FC matrices on Rockland dataset. Percent of total variance explained 

by each principal component of the A1) SC and A2) FC, with corresponding p-values. Panel B 

2
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shows on the left-hand-side the principal component scores per connection for PC1, B1) for the 

SC, and B2) for the FC. This shows the aspects of the connectome that are manifested in PC1, 

the common (across subjects) component. On the right-hand-side of panel B are the subject 

loadings onto PC1, all subjects load positively on this component. C1) shows the age effect for 

the SC and C2) shows the age effect for the FC. 
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Figure 6. PCA of SC and FC matrices on HCP Glasser data. Percent of total variance explained 

by each principal component of the A1) SC and A2) FC, with corresponding p-values. Panel B 

shows on the left-hand-side the principal component scores per connection for PC1, B1) for the 

SC, and B2) for the FC. This shows the aspects of the connectome that are manifested in PC1, 

the common (across subjects) component. On the right-hand-side of panel B are the subject 

4
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loadings onto PC1, all subjects load positively on this component. C1) shows the age effect for 

the SC and C2) shows the age effect for the FC.  

 

Figure 7. PCA of SC and FC matrices on HCP Destrieux data. Percent of total variance 

explained by each principal component of the A1) SC and A2) FC, with corresponding p-values. 

Panel B shows on the left-hand-side the principal component scores per connection for PC1, B1) 

5

s. 

1) 
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for the SC, and B2) for the FC. This shows the aspects of the connectome that are manifested in 

PC1, the common (across subjects) component. On the right-hand-side of panel B are the subject 

loadings onto PC1, all subjects load positively on this component. C1) shows the age effect for 

the SC and C2) shows the age effect for the FC.  
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Figure 8. PCA of SC and FC matrices on HCP DK data. Percent of total variance explained by 

each principal component of the A1) SC and A2) FC, with corresponding p-values. Panel B 

shows on the left-hand-side the principal component scores per connection for PC1, B1) for the 

SC, and B2) for the FC. This shows the aspects of the connectome that are manifested in PC1, 

the common (across subjects) component. On the right-hand-side of panel B are the subject 

7
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loadings onto PC1, all subjects load positively on this component. C1) shows the age effect for 

the SC and C2) shows the age effect for the FC.  
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Discussion 

 

Subject specificity in SC-FC 

 

Initial studies of SC-FC correspondence (Greicius et al., 2009; Honey et al., 2007; Honey et al., 

2009; Koch et al., 2002), show that there is a relationship between these two entities via linear 

(Honey et al., 2009) as well as other more complex methods (Misic et al., 2016). However, there 

remains a gap in our understanding of how the two measures relate at the individual level. In the 

present study, we showcase how individual SC corresponds with individual FC, using simple 

linear metrics in three separate datasets (Berlin, HCP, NKI Rockland) with variable acquisition, 

processing methods as well as age spectrums. The question was whether the correspondence of 

individual SC-FC matrices was greater than if two matrices were randomly paired.  

 

Our results showed that although there is a correlation between group-averaged SC and FC, 

replicating previous findings (Greicius et al., 2009; Hermundstad et al., 2013; Honey et al., 2007; 

Honey et al., 2009; Koch et al., 2002; Misic et al., 2016; Ponce-Alvarez et al., 2015; Skudlarski 

et al., 2008; van den Heuvel et al., 2009), the specificity of this SC-FC relationship was not 

unique to an individual. Five of the datasets examined did not show subject specificity of the SC-

FC correspondence, so that within-subject SC-FC did not exceed random pairings of SC-FC. 

This would suggest that individual SC cannot predict individual FC beyond chance. However, 

when the analysis was conducted on the HCP data with the Glasser parcellation, significant 

subject-specificity was observed. This would suggest that while subject-specificity assessed on 
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standard datasets via standard parcellation and processing methods is difficult to ascertain, it may 

be obvious only when higher resolution data as well as finer parcellations are applied. 

 

Our finding that intra-subject SC-FC correspondence exceeded inter-subject SC-FC 

correspondence for the HCP Glasser dataset, but not for the HCP Lausanne, Berlin, or NKI 

Rockland dataset, supports the hypothesis by Honey et al. (2009), who speculated that the 

individual SC-FC fit would be significant if shown on a large enough dataset of high fidelity, 

which was demonstrated in the results from the Glasser-parcellated HCP dataset. Our 

interpretation is that this difference was due to the higher precision (Glasser) versus more 

standard (Lausanne) parcellation used. However, these two HCP datasets also differed in the 

tractography method (probabilistic vs deterministic). Thus we endeavoured to re-evaluate our 

findings post-hoc using two additional HCP datasets with probabilistic tractography processed in 

the same way as the Glasser HCP, except with finer grained parcellation methods, FreeSurfer 

convolution-based probabilistic Destrieux atlas (Destrieux et al., 2010) and Desikan-Killiany 

(DK) atlas (Desikan et al., 2006). We did not find subject-specificity with the HCP Destrieux and 

the HCP DK, suggesting that the Glasser parcellation allows for a fitting of individual structure 

and function that could not otherwise be observed. The Glasser multi-modal parcellation is based 

on functional properties with improved areal feature-based cross-subject alignment rather than 

solely geometric and morphological properties, and thus improves the neuroanatomical precision 

of individual parcellations. It is important to point out the despite the improvement, the Glasser 

HCP dataset was only slightly better than the others, and would not pass a direct head-to-head 

comparison since the presence of significance in one dataset and the absence of significance in 

another does not mean the two datasets are themselves significantly different. 
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Subject specificity in SC-FC is limited by variability within modality  

The second set of findings clarify the unique portion of variance that exists in either modality 

alone, which may set limitations on the portion of SC that can reasonably be captured by 

individual FC. We had speculated that the lack of subject-specificity in the Berlin, HCP 

Lausanne and NKI Rockland dataset was due to a large portion of common variance in the 

connectomes across subjects that over-powered any existing individual differences. Indeed, our 

results conferred that there is a large portion of common variance in SC across subjects, however 

this was true regardless of the sample size, data quality, or parcellation: Berlin: 91%, HCP 

Lausanne: 80%, NKI: 79%, HCP Glasser: 87%, HCP Destrieux: 91%, HCP DK: 93%. 

Interestingly, even in the Glasser dataset, where whole-connectome SC-FC subject-specificity 

was observed, this component was strikingly large. We did observe, however, that SC variability 

was captured via a greater number of components in the Glasser dataset compared to the other 

datasets (Glasser N = 12, Berlin = 1, HCP Lausanne = 7, NKI Rockland = 2, HCP Destrieux = 8, 

HCP DK = 7), suggesting greater inter-individual differences in the SC. Although the smaller 

datasets (e.g. Berlin) generally had fewer SC components, the variability in the Glasser HCP SC 

was not merely due to sample size as the HCP Destrieux and HCP DK datasets were comparable 

in the number of subjects.  

 

We also found that FC showed a large common component, which accounted for less total 

variance than the SC common component. Here, a larger number of significant components were 

observed. The comparably greater FC variability can be observed in the striping in the SC-FC 

correspondence matrix, where some FCs correlate quite highly with all SCs, while others 
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correlate very little with all SCs. Note that this does not mean that individual differences in SC 

are not observed, but rather that the correspondance of SC variance that maps to the 

corresponding variance in FC is weaker than one may expect intuitively.  

 

In the FC, a significant portion of variance was related to age, particularly for the two datasets 

with a wide age range (Berlin, NKI: age = 20-80, 5-85). This is consistent with previous reports 

of age effects on FC (Andrews-Hanna et al., 2007; Damoiseaux et al., 2007; Ferreira & Busatto, 

2013; Sala-Llonch et al., 2014)). Interestingly, however, age did not account for a significant 

portion of between-subject variance in SC for two (HCP Lausanne, Berlin) of the four datasets. 

In the third dataset (NKI Rockland), the large observed age effect in SC was likely a 

consequence of the wide age distribution and the inclusion of child subjects. The grey-white 

matter boundary is ill defined in children, and incomplete myelination results in weaker 

tractography-based estimation of SC (Deoni, Dean, Remer, Dirks, & O'Muircheartaigh, 2015; 

Thompson et al., 2005).  

 

The limited amount of between-subjects variability in both SC and FC found in our study was 

comparable to Marellec et al (2016), where a large portion of variance was accounted for by an 

‘invariant core’ (SC: ~86%, FC: ~59%). Here it was found that the invariant core of SC 

correlated with the invariant core of FC. Along the same lines, Waller et al. (2017) suggested 

that the specificity of connectome fingerprinting using FC was limited by the large amount of 

common variance across subjects.  
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The decomposition approach we used here is helpful for separating common and unique variance 

and identifying aspects of the connectome that express each portion of variance. Data-driven 

classification algorithms like clustering are an alternate approach that can be used to express 

similarities and differences between subject connectomes (E. Amico et al., 2017; Iraji et al., 

2016) . Recently, a consensus clustering algorithm has been introduced that can be helpful for 

identifying how aspects of the connectome are combined to express these inter-subject 

similarities and differences (Rasero, 2017).  

 

Limitations on the study of variability within modality 

The study of variability within SC and FC each faces its unique limitations.  Variation in 

acquisition, processing and connectome metrics and statistical methods may impact the extent of 

between-subject variability observed. For instance, for SC, the diffusion method, or tractography 

(Bonilha et al., 2015), SC metric (Buchanan, Pernet, Gorgolewski, Storkey, & Bastin, 2014), and 

ROI size (Bonilha et al., 2015), may affect variability and reproducibility of SCs. FC variability 

will similarly be affected by choice of metric.  For example, the amount of common variance 

may be slightly higher using correlation compared to mutual information for the calculation of 

FC, whereas dynamic FC calculated over several smaller time windows shows a similar common 

‘invariant core’ component across subjects as when FC was calculated over a single timeseries 

(Marrelec et al., 2016). In that study, parcellation or preprocessing did not have a large effect on 

FC variance.  

 

The correlation between SC and FC may be limited by the dynamic fluctuation of FC on short 

time windows (Allen et al., 2014; Deco, Kringelbach, Jirsa, & Ritter, 2016; Hutchison et al., 
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2013). SCs may better correlate with temporally stable rsFC (Honey et al., 2009). To this end, 

we considered only SC present connections in a secondary analysis, as these have been shown to 

have more stable resting-state FC (Shen et al., 2015).  

 

One important question is whether increased between-subjects’ variation in the FC is a 

consequence of non-neural influences such as vascular variability or head motion (Geerligs, 

Tsvetanov, Cam, & Henson, 2017) or reflects real, meaningful variability in neural activation. If 

meaningless between-subjects variability in FC can be reduced, FC has the best chance to be able 

to capture subtle individual differences in SC. In addition to the corrections described in the 

methods, FC between-subjects variability was minimized via a secondary global signal 

regression (GSR) analysis (Berlin dataset, NKI Rockland dataset). Yet, lack of SC-FC subject-

specific correlation in five of the six persists despite these secondary analyses.  

 

Future directions 

Computational models that investigate how SC gives rise to FC may be particularly helpful for 

furthering our understanding of how individual SC and FC are linked (Ritter et al., 2013). The 

mechanisms by which individual FC comes about from individual SC may be the key to 

understanding subject-specific differences. In this sense, parameters from such generative 

models that are optimized based on the individual SC foundation and fitted to the empirical FC 

may be particularly revealing (Schirner, McIntosh, Jirsa, Deco, & Ritter, 2018). Variability in 

these parameters have already been shown to be relevant to brain function and behaviour in 

health (Jirsa, Sporns, Breakspear, Deco, & McIntosh, 2010; Kringelbach, McIntosh, Ritter, Jirsa, 

& Deco, 2015; Kunze, Hunold, Haueisen, Jirsa, & Spiegler, 2016; Roy et al., 2014) and disease 
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(Falcon, Jirsa, & Solodkin, 2016; Falcon, Riley, et al., 2016; Falcon et al., 2015; Jirsa et al., 

2017; Jirsa et al., 2010).  

 

Summary 

We present evidence that the subject variation in SC, as estimated from diffusion weighted MRI,  

may be too weak in healthy populations to be reflected in the FC variability in most standard 

datasets. However, subject specificity of SC-FC can be captured via fine, multi-modally 

parcellated data, due to greater SC variability across subjects. Nonetheless, SC and FC each 

show a large component that is common across subjects which sets limitations on the extent of 

SC-FC subject specificity. Implications of these findings for personalized medicine should be 

considered. Namely, attention to the quality of processing and parcellation methods is critical for 

furthering our understanding of the relationship between individual SC and FC. 
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