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Abstract 

 

Alzheimer’s disease (AD) is marked by cognitive dysfunction emerging from 

neuropathological processes impacting brain function. AD affects brain dynamics at the local 

level, such as changes in the balance of inhibitory and excitatory neuronal populations, as well as 

long-range changes to the global network. Individual differences in these changes as they relate 

to behaviour are poorly understood. Here, we use a multi-scale neurophysiological model, “The 

Virtual Brain (TVB)”, based on empirical multi-modal neuroimaging data, to study how local 

and global dynamics correlate with individual differences in cognition. In particular, we modeled 

individual resting-state functional activity of 124 individuals across the behavioral spectrum 

from healthy aging, to amnesic Mild Cognitive Impairment (MCI), to AD. The model parameters 

required to accurately simulate empirical functional brain imaging data correlated significantly 

with cognition, and exceeded the predictive capacity of empirical connectomes.  
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1. Introduction 

 

The cognitive and anatomical changes that occur in dementia due to Alzheimer’s disease (AD) 

have been widely documented (Braak and Braak, 1991; Braak et al., 1993; Hyman et al., 2012; 

Van Hoesen and Damasio, 1987; Weiner et al., 2012). Changes in structure and function occur 

across a range of spatial scales. Neurofibrillary tangles (NFT) disrupt axonal flow via tau 

phosphorylation, which in turn disrupt functional communication. The accumulation of tau 

protein results in the degeneration of axonal tracts, causing further damage in global functional 

connectedness, and finally, neuronal death.  

 

More recently, neuronal hyperactivity has been implicated in the degenerative cascade of AD. 

This hyperactivity, characterized by changes in local excitatory and inhibitory neuronal 

populations as well as global hyperexcitation, have been documented in both Mild Cognitive 

Impairment (MCI) and AD (Busche and Konnerth, 2015; Celone et al., 2006; Dickerson et al., 

2005; Jones et al., 2016; Sperling et al., 2010). The imbalance in excitatory and inhibitory neural 

circuits disrupts hippocampal functioning, which likely leads to cognitive decline (Goutagny and 

Krantic, 2013; Scott et al., 2012; Verret et al., 2012). The change in excitation/inhibition is 

particularly intriguing, as it may be causally linked to the amyloid buildup that is a regular 

characteristic of AD (Gleichmann et al., 2011; Gleichmann and Mattson, 2010; Palop and 

Mucke, 2010). Interestingly, the excitation that characterizes some subtypes of AD has actually 

been linked to an increased risk of seizure (Amatniek et al., 2006; Mark et al., 1995). Local 

excitation, integrated across the network via inter-area connections increases the coordinated 
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activity of the network via heightened FC (Deco et al., 2014b), which is a feature of seizure 

activity (Mishra et al., 2013).  

 

At the global level, AD has been described as a disconnection syndrome, characterized by the 

degeneration of the connectome and of network organization that is governed by these long-

range connections (Delbeuck et al., 2003; He et al., 2008; Sanz-Arigita et al., 2010; Stam et al., 

2007; Supekar et al., 2008; Wang et al., 2007). Both structural and functional connectivity (SC, 

FC) are affected (Balachandar et al., 2015; Filippi and Agosta, 2011; Matthews et al., 2013; 

Soldner et al., 2012; Sun et al., 2014). Changes in global network organization have been 

reported as a result (Delbeuck et al., 2003; He et al., 2008; Sanz-Arigita et al., 2010; Stam et al., 

2007; Supekar et al., 2008; Wang et al., 2007). 

 

To date, linking findings of AD pathology at these different scales of interrogation has proven 

elusive. Computational models are a promising strategy for combining network-level 

connectivity with neural mass models. These models allow for the systematic exploration of the 

optimal levels of neural parameters such as excitation, inhibition, coupling or conduction delays 

between distant regions. Computational models have already proved informative for 

understanding the link between SC and FC in the brain, for example via lesion studies (Alstott et 

al., 2009; Honey and Sporns, 2008). Several studies have focused on modeling changes in 

interconnected excitatory and inhibitory neural populations as they relate to network 

organization in clinical populations (de Haan et al., 2012; de Haan et al., 2017; Yang et al., 

2016). Two of these studies have documented such changes in Alzheimer’s disease. In the first 

study, De Haan et al. (2012) emphasized the pathological effects of hyperexcitability by showing 
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that the vulnerability of hub regions in AD is related to their increased excitability. De Haan et al 

(2017) showed that, contrary to their hypothesis, selective stimulation of excitatory neurons 

resulted in the prolonged preservation of oscillations, connectivity and network topology. The 

results of the study emphasize the unpredictability of excitation/inhibition on the complex 

dynamics of the brain. However, neither of these studies linked these changes to observed 

differences in cognition, as they were more interested in the influence on network properties. 

 

The goal of the present work was to elucidate whether optimal functioning points of local 

(excitation, inhibition) and global (long-range coupling, conduction velocity) brain dynamics can 

be linked to individual differences in cognition from healthy aging, to MCI, to AD. Our objective 

was to understand whether variability in these parameters can be informative for individual 

differences in AD. To this end, we used the novel neuroinformatics platform “The Virtual Brain” 

(TVB, thevirtualbrain.org), a large-scale simulator of brain dynamics based on connectivity 

metrics with the ability to target individual neural populations (Jirsa et al., 2017; Jirsa et al., 

2010; Ritter et al., 2013; Roy et al., 2014; Sanz Leon et al., 2013; Sanz-Leon et al., 2015; 

Woodman et al., 2014). Here, we modeled changes in interconnected excitatory and inhibitory 

neural populations that occur at the local level along with global connectivity changes. Each 

brain region was modelled as a local population comprising connected excitatory and inhibitory 

neurons linked with NMDA and GABA synapses (Deco et al., 2014a). Neural activity was 

generated as a function of the intra-areal local parameters – the excitatory and inhibitory inputs, 

and the inter-regional long-distance individual diffusion-derived SC that integrates these across 

the network (Deco et al., 2014b).  
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The strength of TVB is that it is based on individual structural and functional data and thus the 

parameter values obtained reflect personalized Virtual Brains (Ritter et al., 2013; Sanz-Leon et 

al., 2015; Woodman et al., 2014). We can compare these parameters across individuals and study 

their association with individual differences in cognition. Previous work has shown that 

biophysical parameters derived from TVB modeling can describe healthy neural dynamics (Jirsa 

et al., 2010; Kunze et al., 2016; Roy et al., 2014), as well as disease. As a proof of concept, it has 

been shown that these biophysical parameters correlate with motor recovery from stroke 

(Adhikari et al., 2015; Falcon et al., 2016a; Falcon et al., 2016b; Falcon et al., 2015), and the 

generation of epileptic seizures (Jirsa et al., 2014), along with seizure progression (Jirsa et al., 

2017). The biophysical parameters derived from TVB modeling have been shown to correlate 

with a variety of clinical phenotypes, and as such offer a potential for translation to clinical 

applications.  

 

In the present study, we sought to identify biophysical model neural parameters that associated 

with cognition along the spectrum from healthy controls to MCI to AD. We include non-

demented amnestic MCI (aMCI) subtypes within our investigation, given these individuals with 

memory-based impairments demonstrate increased rates of progression to AD – and are assumed 

to be experiencing a transitory, pre-clinical stage (Fischer et al., 2007; Petersen et al., 2014; 

Ward et al., 2013). aMCIs show widely variable rates of conversion to AD (Ward et al., 2013), 

and thus differences within this group are of interest to the present study. Importantly, we also 

create several models that reflect the progression of AD.  Neurodegeneration and functional 

changes occur first in limbic and temporal regions of the brain, and later in motor and sensory 

areas (Braak and Braak, 1991; Braak et al., 1993). The pattern of destruction follows the clinical 
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phenotype; memory is targeted first, followed only later by sensory and motor function. 

Accordingly, modeling is performed on a limbic subnetwork (Limbic SubNet model), as well as 

the full brain (Whole Network model). Any discrepancies between the Limbic SubNet and the 

Whole Network model may be characterized along the spectrum of cognitive phenotypes from 

healthy, to aMCI to AD. 

 

2. Methods 

 

2.1 Subjects 

 

Comprehensive behavioral data were acquired for 124 participants from the fourth wave of the 

Sydney Memory and Ageing study (MAS) (Perminder S. Sachdev et al., 2010; Tsang et al., 

2013). At study baseline (approximately six years prior to acquisition of the current data), these 

community-dwelling participants were initially between 70-90 years of age. Subjects were 

stratified based on cognitive performance into three groups: 73 healthy controls (HC), 35 with 

amnestic MCI (aMCI), and 16 Alzheimer’s Disease (AD).  

 

For all study participants, exclusion criteria at baseline included a Mini-Mental Statement 

Examination (Folstein et al., 1975) adjusted score below 24, diagnosis of dementia, 

developmental disability, neurological or psychiatric diseases, or inadequate comprehension of 

English to complete a basic assessment. The study was approved by the Human Research Ethics 

Committee of the University of New South Wales, and participants gave written, informed 

consent.  
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2.2 Neuropsychological measures 

 

Twelve individual neuropsychological tests were administered to cover a broad range of 

cognitive functions. These domains assessed included attention/processing speed, memory, 

language, visuospatial ability, and executive function.  These tests were grouped into cognitive 

domains as part of the boarder longitudinal study (MAS) (Kochan et al., 2010; P.S. Sachdev et 

al., 2010) – and selected accordingly to the primary cognitive function they assess (See Table 

S1). This was based upon the extant literature and the widespread practice used by 

neuropsychologists (Lezak, Howieson, & Loring, 2004; Strauss, Sherman, & Spreen, 2006; 

Weintraub et al., 2009). Further rationale for the cognitive groupings and their scale-items 

homogeneity estimates are outlined elsewhere  (A. Perry et al., 2017). 

 

Other measures such as the MMSE and the National Adult Reading Test (NART IQ) (Nelson & 

Willison, 1991) were also administered. The NART, which was administered to a subset of the 

current population at study baseline, estimates premorbid intelligence levels (Bright, Jaldow, & 

Kopelman, 2002). 

 

The neuropsychological assessments were used in two different ways: 

 

a) Diagnostic purposes  

The neuropsychological and clinical profiles of the study participants determined the individual’s 

classification into one of the three population groups (Perminder S. Sachdev et al., 2010; Tsang 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/277624doi: bioRxiv preprint 

https://doi.org/10.1101/277624
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9

et al., 2013).  

 

 Healthy Controls (HC): Performance on all neuropsychological test measures higher than 

a threshold of 1.5 SDs below normative values (matched for age and education level). 

The criteria for selection, and the demographic matching that was used to establish a 

normative reference is described in full elsewhere (Tsang et al., 2013).  

 

 Mild Cognitive Impairment (MCI): If the following international consensus criteria 

(Winblad et al., 2004) of MCI were met: 

1. Subjective complaint of memory decline or other cognitive function (from either the 

participant or informant). 

2. Evidence of cognitive-decline, derived here by performance 1.5 SDs below the 

normative values on any of the neuropsychological tests. 

3. Normal or minimally impaired functional activities, determined by informant ratings 

on the Bayer-ADL scale (Hindmarch et al., 1998). 

4. No current diagnosis of Dementia according to DSV-IV criteria (APA, 2000). 

 

Only MCI individuals demonstrating memory-based impairments - hence meeting the 

criteria for the amnestic MCI (aMCI) (Petersen, 2004) subtype - were included in the 

current study. Fifteen of these aMCI individuals were further representative of the multi-

domain aMCI subtype (md-aMCI) (Petersen, 2004), whom are characterized by 

additional impairments in non-memory domains . 
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 Alzheimer’s Disease (AD) patients: A diagnosis of Alzheimer’s Disease according to 

DSM-IV criteria (APA, 2000) – according to a clinical expert panel comprising of  

geriatric psychiatrists, neuropsychiatrists, clinical neuropsychologists and clinical 

psychologists. All clinical and structural MRI data (where available) were used in the 

diagnostic decision.   

 

b) Correlative metrics with model parameters 

Performance on the individual test scores were transformed into quasi Z-scores, based upon the 

mean and SDs for a healthy reference group (N = 723), identified from all the study participants 

at baseline (approximately 6 years prior to acquisition of the current wave’s data). Domain 

scores were calculated as the average of the transformed test scores comprising each domain. 

The only exception was the visuospatial domain that was represented by a single measure. The 

memory domain composite was further subdivided into verbal memory after exclusion of a 

visual retention test (Benton, Sivan & Spreen, 1996). If necessary, the signs of the z-scores were 

reversed so that higher scores reflect better performance. The correspondence between 

neuropsychological cognitive domain z-scores and clinical diagnosis classification (healthy 

control, MCI, AD) is reported in the Results.  

 

2.3 Imaging data  

 

Structural, diffusion (dMRI) and resting-functional MRI (rs-fMRI) data were acquired on a 

Phillips 3T Achieva Quasar Dual scanner. dMRI were acquired with a single-shot echo-planar 

imaging (EPI) sequence with the following parameters: TR = 13,586 ms, TE = 79 ms, 61 
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gradient directions (b = 2400 s/mm2), a non-diffusion weighted acquisition (b = 0 s/mm2), 96x96 

matrix, FOV = 240 x 240 mm2, slice thickness = 2.5mm, yielding 2.5mm isotropic voxels. For 

rs-fMRI, participants were instructed to lie quietly in the scanner and close their eyes. A T2* 

weighted EPI sequence with the following parameters was acquired: acquisition time = 7:02, TE 

= 30 ms, TR = 2000 ms, flip angle = 90º, FOV 250 mm, 136 x 136 mm matrix size in Fourier 

space. 208 volumes were acquired, each consisting of twenty-nine 4.5 mm axial slices. A 

structural T1-weighted image was also acquired with the following parameters: TR = 6.39 ms, 

TE = 2.9 ms, flip angle = 8°, matrix size = 256 × 256, FOV = 256 × 256 × 190, slice thickness = 

1 x 1 × 1 mm isotropic voxels.  

 

Data from all imaging modalities was then inspected in FSL View (Smith et al., 2004) for quality 

checking purposes. Subjects were removed if any of their scans had artifact issues, including 

slice dropouts on the diffusion-images (defined by zebra-like blurring or complete dropout) 

(Pannek et al., 2012b), complete orbitofrontal EPI signal dropout (Weiskopf et al., 2007), 

ringing on T1-images, or severe geometric warping.  

 

2.4 Preprocessing and tractography of diffusion data 

 

Steps involving the preprocessing and whole-brain tractography of dMRI data were similar to 

those performed for a subset of the current healthy control population (Perry et al., 2015b; 

Roberts et al., 2017). In short, head motion correction was performed by rotation of the gradient 

directions (Leemans and Jones, 2009; Raffelt et al., 2012), and spatial intensity inhomogeneities 

were reduced via bias field correction (Sled et al., 1998).  
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Estimates of fibre orientation and subsequent whole-brain tractography were performed within 

MRtrix3 (v0.3.12-515; https://github.com/MRtrix3) (Tournier, Calamante & Connelly, 2012), 

Fiber orientation distribution (FOD) functions were first estimated using constrained spherical 

deconvolution (CSD) (lmax = 8) (Tournier et al., 2008) of the diffusion signal in voxel-

populations with coherently-organized (FA > 0.7) fiber bundles. We then performed iFOD2 

(Tournier, Calamante & Connelly, 2010) probabilistic tracking to propagate 5 million fiber 

tracks from random seeds throughout the brain for each subject, with the following parameters: 

step size = 1.25 mm, minimum track length = 12.5 mm, maximum length = 250 mm, FOD 

threshold = 0.1, curvature = 1 mm radius.  

 

The sequences were acquired when reverse phase-encoding direction approaches were not the 

standard procedure within acquisition protocols. Given that the alignment between the diffusion 

and anatomical priors will not be perfectly accurate, seeding of the tractograms was not 

performed upon the grey/white-matter interface (i.e. ACT) (Smith et al., 2012), nor were 

streamline-filtering approaches applied (i.e. SIFT/SIFT2) (Smith et al., 2013). 

 

2.5 fMRI processing 

 

fMRI data processing was performed using the Data Processing Assistant for Resting-State fMRI 

(DPARSF, v 3.2) (Chao-Gan and Yu-Feng, 2010), which calls functions from SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/). Slice-timing correction (realignment to mean functional 

image) was performed, followed by co-registration to the structural image (via 6 DOF). We then 
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conducted linear detrending, nuisance regression of 24 motion parameters (Friston et al., 1996) 

and segmented WM/CSF signals (Ashburner & Friston, 2005). An average structural brain 

template across all participants was generated (DARTEL) (Ashburner, 2007), and native 

functional images were then transferred to MNI space (3 mm) via this template. Lastly, 

smoothing (8 mm) and temporal band-pass filtering (0.01-0.08 Hz) was performed. Full 

description of the steps involved for the pre-processing of these data are provided elsewhere 

(Perry et al., 2017) 

 

2.6 Functional and structural brain networks  

  

Connectomes representing patterns of SC and FC were constructed for all subjects, estimated 

from streamline-tractography maps and BOLD rs-fMRI signals, respectively. The widely-used 

AAL parcellation (within MNI space) was used here to derive the inter-areal connectivity 

estimates (Tzourio-Mazoyer et al., 2002). The choice of parcellation was motivated by previous 

work. The performance of identifying atrophy patterns in Alzheimer’s using the standard AAL 

template has been compared with a subdivision of the AAL parcels into regions (N = 487) of 

smaller size (Mesrob et al., 2008). The AAL template indeed demonstrated higher classification 

accuracy when using inter-cohort validation, relative to the finer-grained parcellation (Mesrob et 

al., 2008). The AAL template has also been widely used in AD studies (Savio, 2017; Tijms et al., 

2018; Wang et al., 2006), and was recently used within a whole-brain computational modeling 

approach to elucidate AD-related characteristics such as amyloid beta and tau (Demirtas et al., 

2017). Lastly, the AAL template was further chosen in lieu of the FreeSurfer parcellation 

because the noted acquisition procedure circumvents the imperfect alignment between the 
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diffusion and T1-weighted imaging modalities.  

 

For the structural connectomes, parcellations in subject-space were first achieved with FSL5 

(Smith et al., 2004) by linearly co-registering each individual FA image into the FMRIB standard 

space template. By applying the inverse of this above transformation matrix, the AAL 

parcellation was subsequently transformed into subject-space. Given that the functional images 

were already within MNI space, the parcellation template was not transformed to native-space 

for functional network construction. 

 

FC was computed as the Pearson’s correlation coefficient of the mean BOLD signals (i.e. all 

region i voxels) between all ij region pairs. For the SC matrices, two matrices were computed: 

(1) a weights connection matrix, and (2) a distance matrix used to assess conduction delays in the 

model. In the weights matrix, Wij represented the total number of streamlines that start/terminate 

within a 2mm radius of regions i and j. Note that the diffusion signal becomes noisier and weaker 

around the grey-white matter boundaries. By selecting a 2mm radius (default parameter within 

MRtrix tck2connectome), we ensured these erroneous fiber terminations were still identified as 

connectome edges. Whilst this streamline identification approach could potentially lead to over-

sampling of the streamline weights, we otherwise circumvent the potential for false negatives 

and under-sampling within the connectome edges. Wij were corrected by the euclidean distance 

between i and j and also total volumetric size (summed number of voxels) of the two regions. A 

subset of the AAL regions was used in the Limbic SubNet model, which characterized our AD 

subnetwork (See Supplementary Table S2 for a region list).  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/277624doi: bioRxiv preprint 

https://doi.org/10.1101/277624
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15

2.7 Quality control of SC 

 

We implemented stringent diffusion quality control procedures, which have been standard 

protocol for our other published works (Perry et al., 2015a; Roberts et al., 2016). In particular, 

each raw (i.e. unprocessed) diffusion volume of every subject was visualized. Any participant 

with notable motion effects and/or severe spatial distortions was removed from the study, 

operationalized by either complete signal dropout and “zebra-like” blurring of slices (Andersson 

and Sotiropoulos, 2016; Pannek et al., 2012a). Furthermore, each subject’s Fractional Anisotropy 

image was visualized, as was the accuracy of the co-registration between the FA image and AAL 

parcellation (that was originally within FMRIB FA space). The FMRIB FA template was chosen 

for an improved registration with each subject’s FA image. The FMRIB FA template was based 

upon normalization of independent FA images, and relative to the MNI T1 brain provided with 

FSL, provided a more similar anatomical shape to the subject FA images. An example of the 

alignment accuracy between the FMRIB and subject’s FA image are provided in Figure S1D. 

 

The steps involved in the estimates of fibre trajectories and the subsequent construction of each 

subject’s SC are summarized within Figure S1. Note that SC weights were exponentially 

distributed (See Figure S2), and that SC networks were not disconnected as we have used a 

dense-seeding approach with the tractography, and a relatively coarse parcellation scheme. 

Moreover, thresholding was not performed. To identify this did not potentially influence our 

results, we 1) checked that raw connectome density distributions were consistent across clinical 

groups  (ANOVA: F(2,121) = 0.41, p = 0.66) and 2) that density did not correlate with cognitive 

performance (r = -0.039, p = 0.67). The parcellation and affine co-registration (to the diffusion 

images) algorithm were identified to yield an acceptable standard of alignment accuracy across 
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the population groups (Figure S1F). 

 

2.8 Computational modeling with TVB 

 

The Virtual Brain is a multi-scale modeling approach that combines local parameters (i.e. 

population excitation, inhibition) with global long-range parameters that take into account the 

connectivity structure (i.e. global coupling) and dynamical interactions between regions (i.e. 

conduction velocity). The TVB modeling process is as follows: 1) incorporation of subject SC 

matrices (weights and track distances); 2) selection of a local model and parameters (See Section 

2.8.1 below for details); 3) selection of global parameters (i.e. conduction velocity, global 

coupling); 4) simulation of rsfMRI time series based on an integration of global and local 

dynamics; 5) computation of the simulated rsFC and fitting to the empirical rsFC; 6) iterative 

optimization by re-running steps 1-5 until an optimal fit is achieved; and 7) correlating optimal 

model parameters with patient phenotype (i.e. cognitive scores). See Figure 1 for a summary. 

This process was described in detail elsewhere (Ritter et al., 2013; Sanz-Leon et al., 2015; 

Woodman et al., 2014).  

 

2.8.1 Model 

 

We used the reduced Wong Wang model (Deco et al., 2014b), a mean field model that simulates 

local regional activity via interconnected populations of excitatory pyramidal and inhibitory 

neurons, with NMDA (excitatory) and GABA-A (inhibitory) synaptic receptors (Deco and Jirsa, 

2012; Deco et al., 2014b; Wong and Wang, 2006). The model is based on firing rates and 
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synaptic gating activity. The model was chosen as it is one of the more refined local models with 

an ability to model the balance between excitation and inhibition, which is disrupted in AD 

(Busche and Konnerth, 2015; de Haan et al., 2012; de Haan et al., 2017; Palop et al., 2007; 

Verret et al., 2012).  As with all populations models of large-scale neuronal activity, the model 

rests upon a combination of abstraction and mean-field dimension reduction (Breakspear, 2017). 

This is required to render it tractable, to improve parameter identifiability and to speed up 

computation time, hence facilitating parameter exploration and optimization. The Wong Wang 

model retains local within compartment excitatory and inhibitory connectivity, mediated by local 

synaptic currents (Wong and Wang, 2006). These form part of our central hypothesis. The model 

is of comparable complexity to other models used in computational assays of healthy and 

compromised brain dynamics (de Haan et al., 2017), being more complex than reduced oscillator 

models that have also been employed (Breakspear et al., 2010), whilst slightly less complex than 

population models that retain multi-layer connectivity (Bastos et al., 2012). Note however, that 

we do not test layer-specific hypotheses. All population models are by definition more abstract 

than multi-compartment spiking neural models: while these play an important role in dissecting 

microscopic models of disease, their high dimensionality and myriad of parameters challenges 

attempts to scale then to understand network and whole brain dynamics (Breakspear, 2017).      

 

Each local population forms a node, which are then coupled together through subject-specific 

connectomes to model the corresponding whole brain network dynamics. The behaviour at each 

node, i, is defined according to a set of stochastic differential equations (Deco et al., 2014b) 

describing synaptic currents I, synaptic gating variables, S and firing rates r. Currents in 

excitatory (Ii
(E)) and inhibitory populations (Ii

(I)) at node i are modelled as a combination of local 
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recurrent feedback arising from the local fraction of activated synapses (Si
(E) and Si

(E))), plus 

input from excitatory neurons in distant nodes Sj
(E)

. These are given as, 

 

 

 

 

where WE and WI scale the effect of a fixed external current IO (= 0.382). LEE scales the local 

excitatory recurrence (excitatory influences on excitatory populations, E-E) and LIE scales the 

local inhibitory synaptic coupling (inhibitory influences on excitatory populations). LEI scales the 

local excitatory synaptic coupling (excitatory influences on inhibitory populations, E-I). External 

input from other nodes is conveyed through the subject-specific connectome C. G is the global 

coupling scaling factor for Cij , the structural connection matrix weights of tracks between 

regions i and j. Note that LEE, LIE, and LEI correspond to the combined influence of w+ and Ji or 

JNMDA that are described elsewhere (Deco et al., 2014b). The firing rates of the neural 

populations in node I are then described by passing the corresponding input currents through a 

sigmoid-shaped activation function H, 

 

 

 

 

where Ii
(EI) is the input current to the (excitatory or inhibitory) population i. The synaptic gating 

18

he 

al 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/277624doi: bioRxiv preprint 

https://doi.org/10.1101/277624
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19

constants are aE = 310 (nC-1), aI = 615 (nC-1), bE = 125 (Hz), bI = 177 (Hz), dE = 0.16 (s), dI = 

0.087 (s). The set of equations are then closed by expressing the temporal evolution of the 

simulated excitatory and inhibitory synaptic gating variables S as a function of the corresponding 

firing rates,  

 

 

 

 

Note that in the absence of input, these variables relax back to zero with time constants for the 

decay of synaptic gating variables of NMDA and GABA receptors given by τE  = τNMDA = 100 

(ms) and τI = τGABA= 10 (ms). The constant γ = 0.000641 scales the self-feedback of local firing.  

Stochastic influences are introduced to these self-consistent equations via νi , an uncorrelated 

Gaussian noise source with unit standard deviation scaled in amplitude by σ = 0.01 (nA). The 

model parameter values are provided in Table S3.  

 

2.8.2 Model fitting 

 

Parameter space exploration was performed so that local and global parameters were adjusted 

iteratively to optimize model fit to the empirical data. Parameter fitting is done across the whole 

network, so that parameters are consistent across all nodes in the modeled network.  

 

Global parameters: Model fits were maximized by varying conduction velocity and global 

19
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coupling. Conduction velocity reflects the speed of signal transfer across white-matter fibers (in 

m/s). It is derived from the Euclidean distances. Previous studies have suggested the importance 

of conduction delays for resting-state BOLD (Deco et al., 2009; Ghosh et al., 2008). Global 

coupling (G, arbitrary units) is a scaling factor for the anatomical weights. It determines the 

balance between global long-range input from distal regions, and the local recurrent input from 

the local neural populations within regions. High global coupling denotes greater weighting of 

the global over the local input, such that activity in node i is driven more by activity propagated 

over the long-range connections from other nodes j.  

 

Local parameters: The most salient group of parameters at the local level determine the coupling 

between excitatory and inhibitory neuronal populations. This is modeled via 3 local parameters: 

excitation from recurrent excitatory-excitatory populations (LEE), excitatory input to inhibitory 

populations (LEI), and dampening of activity via recurrent inhibition from inhibitory to excitatory 

populations (LIE).  

 

A progressive parameter space exploration was performed, with parameters varied one at a time 

in the following order: conduction speed, global coupling (G), inhibition-excitation (LEI), 

excitation-inhibition (LEI), excitation-excitation (LEE), in a manner similar to Falcon et al., 2015, 

2016. The following parameter ranges were used ([min, max, step size]: global coupling ([0.5, 

2.0, 0.1]), inhibition-excitation ([0.4, 2.6, 0.1]), excitation-inhibition ([0.025, 0.5, 0.025]), 

excitation-excitation ([0.5, 2.0, 0.1]). Note that parameter ranges were chosen based on 

parameters ranges in Deco et al., 2014.  
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Parameter exploration was performed according to the following heuristic: For each set of 

parameter combinations, individual resting-state BOLD fMRI time series of duration 3 minutes 

were simulated using a Balloon-Windkessel hemodynamic model (Buxton et al., 1998; Friston et 

al., 2000). Resting-state BOLD FC was then derived from each of the simulated time series. 

Specifically, model fitting was achieved by iterative optimization of the biophysical parameters 

until the maximum correlation to our subject-specific empirical FC across the range of input 

parameters was obtained.  Pearson’s correlations between the lower triangle of the empirical and 

the simulated FC matrices were used as the fitting criterion. Optimal biophysical parameters for 

each subject were those that achieved the best fit to the empirical FC.  

 

2.8.3 Whole network, Limbic SubNet, Embeddedness of Limbic SubNet 

 

As not all brain regions are affected simultaneously in AD, model parameters were estimated via 

three different approaches: 

1) Whole Network modeling: Model input is the full network SC derived from the AAL 

parcellation. Simulated BOLD FC was derived for all regions.  

2) Limbic SubNetwork: As certain limbic and temporal regions show the greatest 

neuropathological changes and degeneration early in the disease (Braak and Braak, 1991; 

Braak et al., 1993; Van Hoesen and Solodkin, 1994), associated with memory declines 

(Braak and Braak, 1991; Braak et al., 1993), we did additional modeling in a subnetwork 

that included the following regions in both hemispheres: cingulum (anterior, middle, 

posterior), hippocampus proper, parahippocampus, amygdala, temporal pole (superior, 

middle) (See Table S2). Model input was an SC of this subnetwork, derived as a subset of 
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the AAL parcellation. Simulated BOLD FC of these regions was derived.  

3) Embeddedness of Limbic SubNet: In order to characterize the discrepancies of brain 

dynamics in the Limbic SubNet and the larger network, we quantified the discrepancy 

between Limbic SubNet and Whole Network model parameters (Limbic SubNet – Whole 

Network optimal parameters).  

 

2.9 Statistical analysis 

 

Analyses were done by comparing individuals’ optimal model parameters: (1) with 

neuropsychological cognitive z-scores in a continuous scale and (2) between groups (healthy, 

aMCI, AD - based on clinical diagnosis). See Figure S3 for correspondence between cognitive 

scores and clinical diagnosis groups. 

 

(1) Model correlates of cognition  

 

To investigate the relationship between individual z-scores on the 6 cognitive domain measures 

(attention, language, executive functioning, visuospatial, memory, verbal memory), and the 

optimal biophysical parameters across subjects, we conducted a set of Partial Least Squares 

(PLS) correlation analyses (Krishnan et al., 2011; McIntosh and Lobaugh, 2004) Behavioural 

PLS is comparable to a Canonical Correlation Analysis, such that it decomposes the correlation 

between two variables into latent variables (LVs), or components, which identify the maximum 

least squares relationship between the variables. PLS is more robust than canonical correlation 

when there is potential for colinearity amongst the measures which is often the case in 

neuroimaging data. The LVs in PLS are comparable to LVs in canonical correlation.  
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The 4 biophysical model parameters were inputted as X and the 6 cognitive performance 

domains were inputted as Y, and the correlation between the two was computed. The cross-block 

correlation matrix was decomposed with SVD, yielding mutual orthogonal LVs, which have 

weights for X and Y variables and the singular value (i.e., covariance) that conveys the 

magnitude of the relation between X and Y for that LV. Within each LV, the reliability of the 

contributions of each measure in X and Y were captured via the bootstrap estimation of 

confidence intervals for the weights converted to correlations.  Permutations tests were used to 

assess the statistical significance of each LV, where its covariance (singular value) is compared 

to a distribution of random permutation of data pairings (McIntosh & Lobaugh, 2004). 

 

(2) Group differences in biophysical model parameters 

 

Differences in model parameters across clinical groups (healthy controls, MCI, AD) and network 

model (Limbic SubNet, Whole Network) were assessed using a non-rotated task PLS with two 

factors. Non-rotated task PLS is comparable to a MANOVA in that it tests for differences 

between groups with several dependent variables. However, non-rotated PLS is more robust than 

a MANOVA when there is a potential for colinearity amongst the measures. 

 

As large variations in prognosis rates have been reported among MCIs (Ward et al., 2013), we 

conducted a post-hoc analysis of variances in model parameters across and within groups.  A 

Levene’s test with two factors – group (healthy, MCI, AD), and condition (Limbic SubNet, 

Whole Network) was used to assess homogeneity of variance of biophysical parameters. 
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2.9.1 Estimation of model advantage over empirical FC and SC  

 

To assess if there was any quantitative advantage in associating model parameters with 

cognition, compared to associating SC/FC with cognition, we performed the following: We 

conducted 100 bootstraps across subjects, for each iteration we performed two PLS analyses 1) 

biophysical parameters with cognition and 2) connectomes (SC and FC) with cognition. The 2 

resulting distributions of obtained total covariances were saved.  

 

The expected values for the covariances will differ between analyses because of scale 

differences. We corrected for this by conducting 100 permutations across subjects to build a null 

distribution for each analysis, each time summing covariances across all latent variables to take 

into account the whole spectrum of the covariance/relationship. The obtained total covariances 

were then corrected by the mean of its permuted null distribution.  

 

The two resulting distributions of corrected covariances were compared by subtracting 

connectomes with cognition covariances from the biophysical parameters with cognition 

covariances. A difference distribution above zero would affirm that biophysical parameters 

correlate with cognition above and beyond SC and FC.  
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Figure 1. Workflow in TVB Modeling: Graphical representation of the sequential steps taken in 

this study: a) Individual empirical neuroimaging data; dMRI is the input to the model, rsfMRI is 

used for model fitting and optimization, b) Personalized model: integration of global and local 

dynamics; c) Output: simulated rsfMRI time series, FC is then computed, d) Optimization: 

model is optimized by iterative adjustment of parameters to achieve best fit of the simulated to 

the empirical FC. e) Phenotype: individual patient demographics, cognitive domain scores etc, 

these are used to make, f) Patient predictions, by correlating cognitive domain scores with model 

parameters.  

 

3. Results 
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3.1 Subject demographics, cognition, clinical grouping 

 

Mean demographics, MMSE and IQ scores by group are shown in Table S4. Neuropsychological 

cognitive domain scores corresponded tightly with clinical diagnosis groupings; scores decreased 

consistently and significantly across the three clinical diagnosis groups (HC>MCI>AD; See 

Figure S5). Internal consistency scores of cognitive domain scores are shown in Table S5. 

 

3.2 Model fitting and parameter estimation 

 

Both the Limbic SubNet model and the Whole Network model generated good fits between the 

individual empirical and the simulated FC for each subject (Limbic SubNet: r = 0.57, SD = 

0.075, 95% CI = [0.48, 0.65], Whole Network: r = 0.31, SD = 0.0453, 95% CI = [0.29, 0.33], 

mean r, SD, CI across subjects, for FCs generated with the optimal parameter values). The 

parameter search space showed a slow gradation towards a single optimal solution rather than 

multiple local maxima (See Figure S4). Thus, there is unlikely to be any appreciable interaction 

between any of the parameters. A systematic exploration of this has previously been shown using 

the same Deco et al. (2014) model (Schirner et al., 2018) and another  similar model (Sanz-Leon 

et al., 2015). 

 

Model fit did not differ significantly across groups, but was significantly higher for the Limbic 

SubNet than Whole Network model (2 factor ANOVA: group F(2,121) = 2.27, p = .15, model 

F(1,121) = 5817.77, p < 0.0001, group*model interaction: F(2,121) = 2.21, p = .11). We found 

that the 3 local parameters as well as global coupling correlated with model fit across subjects 
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(See Table S6). However, conduction velocity did not influence model results in initial 

parameter explorations, thus time delays were not included in the model. Note that the effects we 

have reported are robust to using the SC weights normalized by track length. The optimal model 

parameters remained consistent when re-running the model with track length on two sample 

subjects.  

 

3.3 Model correlates of cognition  

 

We correlated model biophysical parameters with cognitive z-scores within the Limbic SubNet 

model, Whole Network model and the embedded Limbic SubNet (See Figure 2). 
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Figure 2A) Correlation between biophysical model parameters and cognitive domain z-scores 

across all subjects for the Limbic SubNet, Whole Network model and the embedded Limbic 

SubNet. Biophysical model parameters are the optimal: global coupling, inhibition-excitation, 

excitation-inhibition, and excitation-excitation. Cognition domain z-scores include: attention 

(Att), language (Lan), executive function (Exe), visuospatial (Vis), memory (Mem), and verbal 

memory (Ver). B) The contributions of the cognitive domain scores to the cognition-parameter 

relationship. Confidence intervals on these correlations were obtained by bootstrap estimation. 

C) Individual subject cognitive domain scores and biophysical parameter scores, color coded 

across groups. These are the weighted sum of cognitive domain scores and biophysical model 

parameters per subject, respectively, and are similar to factor scores from factor analysis. The 

Embedded Limbic SubNet model was characterized as the model parameter discrepancy between 

the Limbic SubNet parameters and the Whole Network parameters.  

 

We identified a single significant latent variable (LV) that characterizes the relationship between 

the biophysical parameters and cognitive domain z-scores for each of the models. Model 

parameters derived from the Limbic SubNet, the Whole Network, and the discrepancy between 

these two (the Embedded Limbic SubNet model) correlated with cognition on this LV (Limbic 

SubNet: p = 0.018, Whole Network: p = 0.01, Embedded Limbic SubNet: p < 0.001). The 

contributions of cognitive performance domains are shown in Figure 2B.  

 

Within the Whole Network model, cognitive domain z-scores correlated negatively with 

inhibition, and positively with global coupling and excitation (excitation-inhibition and 

excitation-excitation). In contrast, within the Limbic SubNet, cognitive domain z-scores 
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correlated negatively with global coupling and excitation (both excitation-inhibition, and 

excitation-excitation), and positively with inhibition.  

 

We observed that the discrepancy between model parameters of the Limbic SubNet and the 

Whole Network correlates with cognitive performance (See Embedded Limbic SubNet model, 

Figure 2). Individuals with higher cognitive scores (i.e. healthy subjects) have a greater 

discrepancy in inhibition, and lower discrepancy in excitatory and global coupling parameters.  

Note that these results hold when correcting for subject demographics (age, non-English 

speaking background, sex, and education) via regression and using residuals for analysis.  

 

3.4 Group differences in biophysical model parameters  

 

Thus far we had compared biophysical model parameters with cognitive performance as a 

surrogate measure of disease severity. In order to examine whether parameters could also be 

used to differentiate between clinical diagnosis groups, we compared model parameters across 

clinical groups (healthy, aMCI, AD) and network (Limbic SubNet, Whole Network). Here, we 

did not observe group differences between parameters, nor an effect of network, but we did 

observe a significant group*network interaction (p = 0.004). See Table 1, and the same data in 

Figure 3, for optimal parameters and details by group. 
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Table 1. Mean (SD) of optimal biophysical model parameters per group and network 

Cohort 
Average across 

subjects 
Healthy MCI AD 

 
Limbic 

SubNet 

Whole 

Brain 

Limbic 

SubNet 

Whole 

Brain 

Limbic 

SubNet 

Whole 

Brain 

Limbic 

SubNet 

Whole 

Brain 

Global 

Coupling 

1.03 

(0.44) 

0.98 

(0.21) 

0.9151 

(0.26) 

0.9315 

(0.21) 

1.1914 

(0.64) 

0.9343 

(0.21) 

1.0000 

(0.32) 

0.9500 

(0.23) 

Inh-Exc 
1.49 

(0.26) 

1.46 

(0.16) 

1.5082 

(0.20) 

1.4082 

(0.13) 

1.4029 

(0.36) 

1.4629 

(0.21) 

1.4812 

(0.28) 

1.4687 

(0.14) 

Exc-Inh 
0.1593 

(0.0359) 

0.1621 

(0.0238) 

0.1541 

(0.028) 

0.1716 

(0.0226) 

0.1721 

(0.0488) 

0.1507 

(0.0205) 

1.1594 

(0.0315) 

0.1656 

(0.0239) 

Exc-Exc 
1.35 

(0.3135) 

1.41 

(0.1751) 

1.3589 

(0.25) 

1.5219 

(0.15) 

1.4714 

(0.41) 

1.3571 

(0.17) 

1.4125 

(0.33) 

1.4938 

(0.17) 

 

Of note here (Table 1, Figure 3) was the large variance among the MCIs in the Limbic SubNet 

compared to healthy controls and ADs. A Levene’s test of homogeneity of variance for optimal 

values of each parameter was significant for group, network, and their interaction (except for the 

group*network interaction of inhibitory-excitatory parameter) (See Table 2). 
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Figure 3.  Variance of biophysical parameters across clinical groups for: A) the Limbic SubNet, 

where the greatest variance was observed among the MCI cohort, and B) the Whole Network, 

where the parameter variances were equal across groups.  
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Table 2. Levene’s test of variance in model parameters for group (healthy, MCI, AD) and 

network (Limbic SubNet, Whole Network), and their interaction 

 

Parameter 
Group 

(Healthy, MCI, AD) 

Network 

(Limbic SubNet, Whole) 
Group x Network 

Global Coupling 
F(2,242) = 14.56 

p < 0.0001 *** 

F(1,242) = 31.24 

p < 0.0001 *** 

F(2,242) = 16.28 

p < 0.0001 *** 

Inh-Exc 
F(2,242) = 17.54 

p < 0.001 *** 

F(1,242) = 32.82 

p < 0.001 *** 

F(2,242) = 2.71 

p = 0.0688 

Exc-Inh 
F(2,242) = 4.03 

p < 0.05 *** 

F(1,242) = 26.84 

p < 0.0001 *** 

F(2,242) = 7.61 

p < 0.0001 *** 

Exc-Exc 
F(2,242) = 11.66 

p < 0.0001 *** 

F(1,242) = 55.93 

p < 0.0001 *** 

F(2,242) = 7.35 

p < 0.0001 *** 

 

We hypothesized that the lack of differences between groups was due to the large variability in 

the aMCI group as well as the large differences in sample sizes between groups. In order to 

account for variable sample sizes that led to the unequal weighing of groups, we conducted a 

secondary analysis comparing the healthy and AD group, matching for age and sample size (N = 

16 per group). Here, we reported a significant effect of clinical group (healthy, AD) (p = 0.003, d 

= 0.45) and network (Limbic SubNet, Whole Network) (p = 0.003, d = 0.73), as well as a 

group*network interaction (p = 0.02, d = 0.29).  

 

3.5 Model advantage over empirical connectomes  
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Next, we compared our individualized patient models to empirical imaging data in their ability to 

predict clinical phenotype, for both the Limbic SubNet and Whole Network. We observed that:  

(1) the covariance between model parameters and cognition exceeded (2) the covariance between 

empirical connectomes and cognition (See Figure 4; Results shown here are for the Limbic 

SubNet model).  

 

 

Figure 4. Covariance of biophysical model parameters with cognition outperforms covariance of 

connectomes (SC combined with FC) with cognition. Distributions shown are covariances from 

bootstrap resampling. 

 

We bootstrapped covariances of (1) and (2) (See Methods), and subtracted the two to assert that 

model parameters with cognition significantly exceed connectomes (SC combined with FC) with 

cognition (See Methods). The mean of the difference distribution (the difference distribution was 

the connectomes with cognition covariance subtracted from model with cognition covariance) = 

0.95, 95% CIs: [0.17, 1.70]. Thus, the difference distribution was reliably > 0.  

 

See Supplementary materials for more details on reductions in empirical SC and FC weights 

(Figure S5), as well as graph measures across clinical groups. We also checked for SC-FC 

differences between groups, which were non-significant F(2,123) = 1.09, p = 0.338. 
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3.6 Subject motion 

 

An ANOVA was conducted to compare framewise displacement between healthy controls, 

MCIs, and ADs to check whether subject motion was driving any differences between groups 

(Power et al., 2012). The result was non-significant  (F(2,123) = 0.38, p = 0.68). 

 

4. Discussion 

 

We used a neurophysiological multi-scale brain network model (The Virtual Brain) to examine 

how individual optimal functioning points of local (inhibition/excitation) and global (long-range 

coupling) dynamics correlate with variability in cognition across healthy controls, amnesic Mild 

Cognitively Impaired (aMCI), and Alzheimer’s (AD) patients. The study is a compelling proof 

of concept that the modeling platform can be used to characterize an individual’s own network 

and local dynamics and has a clinical utility that can inform about the disease. We modeled, 1) 

the Limbic SubNet, which includes the regions of primary onset of the pathology (Van Hoesen 

and Solodkin, 1994), and 2) the Whole Network, which encompassed also the Limbic SubNet. 

We also characterized the embeddedness of the Limbic SubNet within the full network, which 

describes the influence of the larger network to the subnetwork.  

 

We were interested in global long-range network changes (Delbeuck et al., 2003; He et al., 2008; 

Sanz-Arigita et al., 2010; Stam et al., 2007) as well as local excitatory/inhibitory dynamics on 

neural activity (Palop et al., 2007; Paula-Lima et al., 2013), as these changes have consistently 
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been observed in AD. Quantitative metrics in our model reflect optimal levels of local excitation, 

inhibition, and global coupling for each individual. Such parameters have been linked to the 

emergence of important network features in health (Deco et al., 2009; Deco and Jirsa, 2012; 

Deco et al., 2014b), and performance in clinical conditions (Falcon et al., 2016b; Falcon et al., 

2015). A link between model measures (e.g. excitation/inhibition) and function has been 

ascertained in computational models of AD in the past (de Haan et al., 2012; de Haan et al., 

2017). Here, we showed these model parameters allow for the characterization of an individual’s 

own network and local dynamic changes in MCI and AD that reflect cognitive performance. 

 

Specifically, we found that optimal levels of excitation, inhibition and global coupling in the 

individual subject’s model were associated with cognitive performance scores across six 

cognitive domains (attention, language, executive function, visuospatial, memory, and verbal 

memory). When disease severity was characterized by cognitive performance alone, there was a 

clear association between severity and biophysical model parameters (Figure 2). However, 

biophysical parameters did not differ when compared strictly across clinical diagnosis groups. 

This was likely due to the large variation in biophysical model parameters in the aMCI group 

(See Figure 3). The large variance in the optimal values of excitation/inhibition as well as global 

dynamics in the aMCI group was an important finding in our study, particularly in light of the 

heterogenic nature of this group in terms of phenotype and conversion. We conducted a 

secondary analysis in order to ascertain that biophysical parameters are nonetheless informative 

for clinical group. When matched for sample size and age, healthy controls’ biophysical 

parameters differed significantly from ADs’. 
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Particularly intriguing was the finding that the Limbic SubNet and Whole Network model 

showed opposing brain-behavioural patterns. We describe each below, and follow with an 

embeddedness explanation of this discrepancy.  

 

4.1 Limbic SubNet  

 

Within the Limbic SubNet, we observed that global inter-regional inputs and excitation 

correlated negatively with cognition, while inhibition correlated positively with cognition. The 

excitation/inhibition findings are consistent with the view that over-excitation is damaging to the 

system, leading to synapse debilitation, excitotoxicity, and subsequent cell death in AD (Palop et 

al., 2007; Paula-Lima et al., 2013), while inhibition serves to counteract its effects as a sort of 

compensatory mechanism to reduce vulnerability to excitotoxicity (Lapchak et al., 2000; Palop et 

al., 2007; Schwartz-Bloom et al., 2000; Velasco and Tapia, 2002; Zhang et al., 2007). On the 

other hand, the finding that global inter-regional coupling correlated negatively with cognition 

within the Limbic SubNet suggests that a limbic system where neuronal dynamics are driven by 

neuronal activity from other regions is maladaptive. This is consistent with shifts that have been 

observed in global dynamics in healthy aging (McIntosh et al., 2014), as well as maturation (Fair 

et al., 2009). Disease-related alteration in global coupling is in line with reports of connectome 

degeneration and of network reorganization that is governed by these long-range connections 

(Delbeuck et al., 2003; He et al., 2008; Sanz-Arigita et al., 2010; Stam et al., 2007; Supekar et 

al., 2008; Wang et al., 2007).  

 

4.2 Whole Brain  
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The brain-behavioural relationships we observed in the Whole Brain model were quite different 

than in the Limbic SubNet. In the Whole Brain model, we found that excitation and inhibition 

were positively and negatively correlated with cognition, respectively. This suggests that the 

effects of excitation and inhibition are not straightforward and often unpredictable in a complex 

system like the brain. The positive cognition correlate of excitation that we found is in contrast 

with our findings in the Limbic SubNet (where cognition correlated negatively with excitation), 

as well as with the damaging effects of over-excitation that have consistently been reported 

(Busche and Konnerth, 2015; Celone et al., 2006; Dickerson et al., 2005; Gleichmann et al., 

2011; Gleichmann and Mattson, 2010; Jones et al., 2016; Sperling et al., 2010). Interestingly, 

similar unpredictability of excitation on function in AD has been reported previously (de Haan et 

al., 2017). In a whole-brain computational model of AD, de Haan et al (2017) found that, 

contrary to their hypothesis, selective stimulation of excitatory neurons was actually beneficial 

for preserving network function. In the present study, excitation in the Whole Brain model was 

also positively linked to preserved cognition.  

 

4.3 Embeddedness 

 

Although the notion of embeddedness was first introduced within social-economic network 

sciences (Granovetter, 1985), it has more recently been used to characterize neural networks and 

to describe how the network exerts influence onto a subnetwork that lies within it (Misic et al., 

2011; Vlachos et al., 2012). A subnetwork is embedded within a larger network if its behaviour 

or properties are affected by the outside system. Embeddedness can be characterized by the 
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difference in dynamics between the network and the subnetwork. That is, the more different the 

dynamics, the greater the influence of the larger network on the subnetwork.  

 

Here, we studied embeddedness in order to better understand the disparity in the cognition-

parameter associations in the Limbic SubNet and the Whole Network model. We characterized 

the difference in optimal levels of functioning in the Limbic SubNet nodes and Whole Network, 

and therefore the dependency between the two (i.e. embeddedness), as a function of cognition. 

We showed that the dependency of these two sets of model parameters differ across severity, 

suggesting that the influence of the larger network on the Limbic SubNet varies in disease.  

 

4.4 Variation in aMCI group 

 

Of note was the striking variability in model parameters within the aMCI group. This is 

particularly interesting in light of the variability that exists in phenotype and conversion rates 

among aMCI patients. With an annual conversion rate of about 20% (Ward et al., 2013), only a 

certain portion of aMCIs will convert to AD within the next few years. We suggest that the high 

variability we found may reflect disparities in the classification of MCI and its subtypes. We 

propose that those aMCIs individuals that will be converters will have a biophysical parameter 

fingerprint closer to that of the AD group, while those that will not convert will have biophysical 

parameters closer to that of the healthy group. A follow-up study with MAS longitudinal multi-

wave data will test the use of biophysical model parameters in the individual prediction of 

conversion.  
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4.5 Model parameters above empirical connectomes 

 

Individual subjects’ model parameters were better predictors of cognition compared to empirical 

structural and functional connectivity. This is important, as our model adds value above and 

beyond SC and FC for making predictions about disease-related cognitive decline. The model 

identifies the key features of SC and FC that reflect the unique biophysical properties of the 

subject, thereby reducing the irrelevant noise inherent in the connectomes and capturing the most 

predictive representation of the empirical data. A related observation was made in a modeling 

study of stroke outcome (Falcon et al., 2016), whereby biophysical parameters at pre-therapy 

conditions were more strongly associated with long-term motor recovery than the patient’s 

physical features of stroke or their demographics.  

 

4.6 Caveats and considerations 

 

We note several possible limitations of our study. One concern is that the cognition-related 

differences in biophysical model parameters could be driven by non-biological factors. To 

reduce or correct for the influence of non-biological factors, a number of precautions were taken: 

1) Quality control of SCs (See Methods), 2) analysis of model fits across disease severity, 3) 

analysis of SC-FC across disease severity. We conclude that neither model fit nor SC-FC 

relationships varied with severity and are thus unlikely to contribute to biophysical model 

differences in our study. 

 

As the simulations were based on SCs, we conducted rigorous quality control of our matrices. 
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Nonetheless, the validity of our SCs could be improved by using filtering methods that ensure 

the streamline weights more accurately resemble the underlying densities (Smith et al., 2013, 

2015). In addition, the validity could also be enhanced by performing tracking upon the 

grey/white-matter interface (Smith et al., 2012). Whilst these methods were not employed, and 

we acknowledge the limitations of our widely-adopted normalization approach (Yeh et al., 

2016), the current diffusion data do still benefit from being processed with the most advanced 

options currently available for the present acquisitions. These approaches have been shown to 

distinguish between normal ageing and neurodegenerative groups; Of note, a recent study which 

also employed fibre-orientation based estimations of SC, identified striking voxel-wise 

microstructural differences in MCI and AD patients (relative to controls) (Mito et al., 2018). 

Similarly, fMRI is a helpful tool for the identification of AD-related dysfunction at early stages 

of the disease (Sperling, 2011) in view of the synaptic changes that occur early in the course of 

the pathology, often before measurable clinical symptoms (Coleman et al., 2004; Selkoe, 2002), 

However, it is important to take into consideration that changes in rsfMRI in AD may be an 

effect of pathological neurovascular differences in the BOLD signal and hemodynamic response 

(Sperling, 2011). Studying AD-related changes using a neural model circumvents some of these 

issues.  

 

We also chose a local neuronal population model that was sufficiently complex to capture the 

key features of interest (excitatory and inhibitory synaptic currents) but, as with all population 

models, embodying other abstractions. Future models could address more nuanced aspects of 

synaptic and circuit pathophysiology through the employment of more detailed multi-layer 

cortical models. 
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