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ABSTRACT 

Inter-tumour heterogeneity is one of cancer’s most fundamental features. Patient stratification 

based on drug response prediction is hence needed for effective anti-cancer therapy. However, 

lessons from the past indicate that single-gene markers of response are rare and/or often fail to 

achieve a significant impact in clinic. In this context, Machine Learning (ML) is emerging as a 

particularly promising complementary approach to precision oncology. Here we leverage 

comprehensive Patient-Derived Xenograft (PDX) pharmacogenomic data sets with 

dimensionality-reducing ML algorithms with this purpose. Results show that combining 

multiple gene alterations via ML leads to better discrimination between sensitive and resistant 

PDXs in 19 of the 26 analysed cases. Highly predictive ML models employing concise gene 

lists were found for three cases: Paclitaxel (breast cancer), Binimetinib (breast cancer) and 

Cetuximab (colorectal cancer). Interestingly, each of these ML models identify some 

responsive PDXs not harbouring the best actionable mutation for that case (such PDXs were 

missed by those single-gene markers). Moreover, ML multi-gene predictors generally retrieve a 

much higher proportion of treatment-sensitive PDXs than the corresponding single-gene 
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marker. As PDXs often recapitulate clinical outcomes, these results suggest that many more 

patients could benefit from precision oncology if multiple ML algorithms were applied to 

existing clinical pharmacogenomics data, especially those algorithms generating classifiers 

combining data-selected gene alterations.  

INTRODUCTION 

It is now well-established that the efficacy of cancer drugs is strongly patient-dependent. 

Whereas analgesics such as Cox-2 inhibitors show efficacy in 80% of patients, on average only 

25% of oncological patients actually respond to cancer drugs
1
. Consequently, there is a great 

need to find accurate ways to predict which cancer patients will respond to a given anti-cancer 

treatment. The predominant approach to date has been to identify a specific somatic mutation to 

act as single-gene biomarker discriminating between therapy responders and non-responders
2
. 

Such a predictive biomarker is commonly referred to as an actionable mutation (either a point 

mutation, deletion or amplication of a specific gene in the tumour sample). Despite being able 

to predict response to some drugs
3,4

, most patients cannot benefit from single-gene markers 

because these have not been found for the vast majority of drugs
5,6

. Moreover, drug markers are 

generally found predictive on a specific cancer type, which means that the marker might not be 

predictive of drug response on patients from other types
7
. 

Not only are these simple drug-gene associations rare, but they are also not strong predictors of 

drug response in most cases. For example, the mutational status of EGFR in Non-Small Cell 

Lung Cancer (NSCLC) is a FDA-approved marker of response to Erlotinib
2,8

.The response rate 

in EGFR-mutant NSCLC tumours was found to be only 16% in this study
8
 (i.e. a 16% 

precision). Low precision may be due to the interplay of a range of confounding factors, acting 

on either the same gene (e.g. low expression of mutant EGFR) or other genes (e.g. resistance-

inducing mutations in the TP53
 
gene

9
). The same study unveiled that 67% of the responsive 
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patients were not correctly identified as such, which corresponds to a 33% recall, due to their 

NSCLC tumours not being EGFR-mutant. This means that two-thirds of NSCLC patients 

responded to Erlotinib by molecular mechanisms that do not involve EGFR mutations. The 

Matthews Correlation Coefficient (MCC) summarises both types of error (false positives and 

false negatives, whose numbers are inversely proportional to precision and recall, respectively) 

into a single performance metric. This single-gene marker obtained a MCC of just 0.11, which 

is slightly better than random classification (MCC=0) and very far from perfect classification 

(MCC=1). Figure 1 clarifies the limitations of this single-gene marker further. 

While precision and recall vary depending on the drug and its actionable mutation, the example 

in Figure 1 is representative in that the values of these metrics are generally quite modest
5,6

. 

Furthermore, it is widely believed that a suitable cancer treatment can only be predicted for 

those patients who have one of such actionable mutations
5
. We argue however that single-gene 

markers of drug response constitute only one possible approach to precision oncology. 

Consequently, more patients could benefit from taking an alternative approach that instead 

captures the interplay between multiple gene alterations that co-operatively control treatment 

response within tumours of a specific cancer type. 

A promising complement to single-gene markers is the application of Machine Learning 

(ML)
10

 to learn which combinations of gene alterations are most predictive of in vivo tumour 

response to a given treatment. ML algorithms can build in silico models with higher precision 

(i.e. fewer false positives) by learning which gene alterations, other than the single actionable 

mutation, influence drug response and how. Regarding increasing recall (i.e. fewer false 

negatives), ML can potentially learn all the different ways with which tumours of a given 

cancer type respond to a specific anti-cancer therapy. In that case, ML models would correctly 

identify not only responders with the actionable mutation as the single-gene marker, but also 
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the responders that are wild-type for that gene. Moreover, ML can provide predictive multi-

gene models for some of the many drugs for which a single somatic mutation is simply not 

enough to predict tumour response
11,12

.  

Unfortunately, the limiting factor for the application of ML to this problem is the availability of 

relevant data. Although the public release of new clinical pharmacogenomics data sets to power 

precision oncology is often promised, drug response data is typically excluded from these sets 

or at the very least limited to a few drug treatments. For example, the first release of the AACR 

Project Genie
13

 contained 19,000 molecularly-profiled tumour samples from various cancer 

types. However, the responses of the corresponding cancer patients to the administered 

treatments are still withheld to this date. Even if that information was revealed, cancer patients 

usually receive drug combinations and several lines of therapy after sample collection, 

hampering direct associations. This hindrances the discovery of new predictors of drug 

response. Deep molecular profiling, with no treatment response data, is only part of the puzzle. 

In the last six years, data comprising thousands of molecularly-profiled cell lines treated with 

hundreds of cancer drugs have been made freely available (e.g. GDSC
14

, CCLE
15

 or CTRP
16

). 

Cell lines are relatively cheap, quick to grow and amenable to high-throughput experiments
17

. 

In addition, some cell lines have been shown to mimic sufficiently well primary tumours
17–19

.  

Given their suitability for high-throughput experiments
17

, they are also the model for which 

more data is publicly available. Thus, such in vitro pharmacogenomics data sets are the only 

ones available to predict response on many pairs drug-cancer type. Despite these advantages, 

cell lines suffer from several inherent limitations. For example, intra-tumour heterogeneity, 

extracellular environment and immune system response processes are not captured by cell 

lines. They are furthermore prone to divergence across passages
18

.  
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In this context, Patient-Derived Xenograft (PDX) models are of great importance when no 

relevant clinical data is available
20–23

. Indeed, PDXs effectively capture patient-to-patient 

response variability to anti-cancer therapy
24,25

. In addition, these preclinical tools faithfully 

preserve the intra- and inter-tumoral heterogeneity observed in the originating cancer sample 

and the clinical population, respectively
26,27

. Taken together, these results support the use of 

these PDX models in guiding clinical therapeutic decisions for a more effective cancer 

treatment management
28,29

. PDX pharmacogenomics data represents an attractive opportunity 

to build ML models to predict tumour response in those treatment-cancer type pairs for which 

clinical data sets are not available.  Prominent among such data sets stands the NIBR-PDXE
29

 

resource for its high number of PDXs and their comprehensive profiling. Over 1000 PDXs 

were established, with 40% of these molecularly-profiled at three levels: whole-exome single-

nucleotide variants (SNVs), copy-number alterations (CNAs) and gene expression (GEX). 

Importantly, some of these PDXs were also evaluated with a panel of 60 treatments, which 

makes these data sets amenable to ML modelling.  

Here we carry out a systematic study to investigate how ML can improve the prediction of in 

vivo drug response from tumour molecular profiles by combining multiple gene alterations. To 

the best of our knowledge, this is the first time that NIBR-PDXE data is analysed with this aim. 

Note that previous studies applying ML to this problem across multiple drugs have been based 

on pharmacogenomics data from in vitro cell lines, instead of PDXs. There are three additional 

aspects of this paper that are novel: 1) directly comparing the performance of ML classifiers 

against that of single-gene markers across multiple treatments, 2) introducing and applying a 

variant of RF intended to provide a more stringent Feature Selection (FS)
30

 as a way to better 

handle the high-dimensionality of data sets, and 3) adopting a non-competitive approach where 

the goal is to identify the most suitable profile and classifier type for each treatment rather than 
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that with the highest average performance across treatments (the current ―one-size-fits-all‖ 

approach).  

Given that single-gene markers based on somatic mutation data are central to current genomic 

medicine
6,31

, it is surprising that practically all studies evaluating multi-gene ML models have 

not included a direct comparison with single-gene markers. When we recently carried out such 

comparison in vitro across 127 drugs
12

, we observed that ML models combining multiple gene 

alterations identified a higher proportion of drug-sensitive cell lines (i.e. had a higher recall) in 

93% of the drugs. Here we will determine whether this is also the case in vivo. If confirmed in 

vivo, this will mean that many more patients could benefit from precision oncology if multi-

gene ML methods are applied to existing clinical pharmacogenomics data.  

One major challenge to build any predictive model is the high dimensionality of 

pharmacogenomics data. Indeed, while typically only tens of tumours have their response to the 

drug available, the molecular profiles of these tumours may easily aggregate over 50,000 

features. To face this challenge, ML algorithms with built-in FS such as Elastic Nets
32–36

, 

Ridge
33,36

, LASSO
33,34,36,37

 or Random Forest (RF)
12,33,35,36,38,39

 have been used to model 

pharmacogenomics data from in vitro cell lines. For instance, RF ignores those features 

irrelevant for predicting drug response and thus has been able to tackle to some extent this 

challenge. However, these methods have also been found to be unable to provide predictive 

models for many drugs. Here we will employ a new strategy, Optimal Model Complexity 

(OMC), to complement the ability of RF to reduce the dimensionality of tumour molecular 

profiles. With OMC, only a very small proportion of the typically thousands of features in the 

considered molecular profile will be employed by the resulting model. This is beneficial in that 

much fewer features would have to be experimentally determined in forthcoming tumours. In 

addition, in those cases where a few tumour features control drug response, predictions should 
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tend to be more accurate because RF will no longer be considering the thousands of irrelevant 

features that promote model overfitting.  

Lastly, the application of a ML method achieving slightly better performance than a previous 

method on average across drugs is commonly reported. However, the performance of ML 

methods with similar average performance across drugs can be very different on a particular 

drug. We therefore adopt a non-competitive approach instead, where the goal is to identify the 

most suitable profile and classifier type for each treatment. This approach should be 

collectively more predictive than using the method with the highest average performance across 

treatments. Another expected advantage is that we will be able to find out which molecular 

profile is most predictive for a given drug, which is valuable to reduce the time and cost that 

would be associated to determining the rest of profiles on patients treated with that drug. 

RESULTS 

We started the analysis by determining which drug-cancer type pairs in NIBR-PDXE
29

 have 

sufficient data to be likely to lead to predictive models (see the Methods section). We identified 

13 of such treatments in Breast Cancer (BRCA) and another set of 13 treatments in Colorectal 

Cancer (CRC). All but one of these 26 treatment-cancer type pairs had at least 35 PDXs, each 

PDX with treatment-response, SNV, CNA and GEX profiles. 

Establishing the best multi-gene predictor for each treatment and cancer type pair 

To perform this task, we trained and evaluated two ML algorithms on each data set using leave-

one-out cross-validation (LOOCV) as detailed in the Methods section. The first algorithm is RF 

using all available features (RF-all), whereas the second is an OMC variant of RF to identify 

the most predictive features in each case (RF-OMC). To account for their stochastic nature, we 

trained each algorithm on each LOOCV training fold 10 times, thus obtaining 10 estimations of 
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each performance metric per case. Note that this study always reports the median performances 

of each algorithm on held-out PDXs not used to train or select the model providing the 

prediction. For instance, each reported MCC is the median of 10 MCC determinations from 10 

independent nested LOOCVs. To assess which cases are better predicted by a particular gene, 

we also performed the standard single-gene analysis to evaluate which genes sensitise PDXs to 

the treatment when an actionable SNV is detected. In particular, we identified the sensitive 

marker with the lowest p-value and reported its LOOCV performance. Full results can be found 

in the single-gene_markers tab of the Supplementary Tables. 

Figure 2 shows the results for each of the 26 cases. We found out that the accuracy in 

predicting treatment response on left-out PDXs strongly depends on the considered treatment, 

molecular profile and classifier type in both cancer types. The performances of the best 

predictors from each case range from being slightly above purely random classification 

(MCC=0) to high in the context of this problem (MCC=0.57). In addition, a large variability is 

often obtained across the four molecular profiles within the ML algorithm. For each ML 

algorithm, we show the performance of the most predictive molecular profile for that case. As 

CNA is just a binarisation of the real-valued copy number (CN) profile, it is not surprising that 

CN is used much more often than CNA in the best models across cases (19 vs 3 models in 

Figure 2, respectively). Performance also varies strongly across the three model types within a 

given case.  

RF-OMC not only leads to more accurate predictors in 14 of the 26 cases, but these predictors 

merely require a very small subset of all gene alterations to operate (these concise gene lists are 

reported in tab RF_predictors of Supplementary Tables). By contrast, solely 5 of the 26 cases 

were better predicted by RF-all. Figure 2 shows that the MCCs of RF-OMC across the 13 

treatments were not better than those of RF-all in CRC (P=0.47 from a one-sided paired t-test, 
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both algorithms obtaining an average MCC of 0.19). However, RF-OMC was found to 

outperform RF-all in BRCA (P=0.009 from a one-sided paired t-test, average MCCs of 0.32 

and 0.16, respectively). The best predictor in the remaining 7 cases was a single-gene marker. 

Overall, these results stress the importance of considering several model types and profiles to 

predict in vivo treatment response.  

We have also compared each of these two ML classifiers against a random model where 

response class is predicted using the prior probability of a PDX to be sensitive. Supplementary 

figures 2 and 3 show that RF-OMC predicts 21 of the 26 cases better than random (P<0.05; 

one-sided paired t-test). By contrast, supplementary figures 4 and 5 show that RF-all is only 

able to predict 16 of the 26 cases at this level (P<0.05; one-sided paired t-test).  

In the next three subsections, we further analyse the three predictors found to have the highest 

accuracies and hence are the most useful models to predict which forthcoming PDXs will be 

responsive. 

Predicting BRCA PDX response to Binimetinib  

The best multi-gene predictor for BRCA PDXs treated with Binimetinib, a MEK1/2 inhibitor, 

was RF-OMC applied to GEX data comprising the expression values of 22,665 genes. Our 

analysis discarded the other three molecular profiles for Binimetinib-BRCA (SNV, CN and 

CNA), as they were substantially less predictive than the GEX profile in this case. RF-OMC 

practically offered the same performance as RF-all (MCC of 0.57 vs 0.56, respectively). 

However, RF-OMC identified 14 out of these 22,665 genes as the more informative to predict 

BRCA PDX response to Binimetinib. The resulting RF-OMC predictions are hence optimal 

combinations of the expression values of only these 14 genes, whereas RF-all was trained on all 

22,665 GEX features. 
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Figure 3 displays the performance of this multi-gene predictor compared to that of the best 

single-gene marker for Binimetinib-BRCA (the mutational state of PABPC3 with P=0.02 from 

a two-sided Fisher’s exact test). The multi-gene predictor achieves a more substantial 

discrimination between sensitive and resistant markers than the PABPC3 marker. This is also 

indicated by a higher MCC (0.57 vs 0.24). To help to understand what MCC values represent in 

terms of achieved discrimination, we also indicated FP and FN errors from both classifiers. 

Predicting BRCA PDX response to Paclitaxel  

The best multi-gene predictor for BRCA PDXs treated with Paclitaxel was RF-OMC applied to 

somatic mutation data comprising the presence or absence of a SNV in 15,232 genes. Our 

analysis discarded the other three molecular profiles for Paclitaxel-BRCA (GEX, CN and 

CNA), for being less predictive than the SNV profile in this case. The resulting RF-OMC 

model employs two out of these 15,232 genes (MUC20 and UPK3BL). RF-based combination 

of these two mutational states provide strongly better prediction than a RF model using the 

mutational states of all the genes (MCCs of 0.49 and -0.07, respectively).   

Incidentally, we would like to highlight that RF-all constitutes an embedded feature selection 

technique
42

. RF-OMC performs generally better because it promotes a much more stringent 

feature selection, which has been found to be more suitable in most cases. We illustrate this 

point with paclitaxel-BRCA-SNV as an example. RF-OMC with only two SNV features 

achieves a MCC of 0.49. By contrast, with all features and the same data, RF-all obtains a far 

worse MCC of practically zero (MCC=-0.07). Out of these 15,232 features, only 3374 are 

actually used by any of the 1000 trees forming the RF-all model, as each RF tree only uses 

those features providing the best discrimination among the mtry randomly chosen at each node. 

The poor performance indicates that 3374 features are still far too many for this particular case, 

which is much better predicted by a RF model employing the two most predictive features. 
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Figure 4 visualises the high performance of this two-gene predictor on Paclitaxel-BRCA. The 

performance of the best single-gene marker, also shown, is very poor. This marker is the 

mutational state of HYDIN, a gene coding for Protein Phosphatase 1’s Regulatory Subunit 31. 

While we found this sensitising mutation to be the most strongly associated with the cytotoxic 

drug Paclitaxel in BRCA (P=0.04; two-sided Fisher’s exact test), its performance in left-out 

PDXs suggests that it is a spurious correlation. 

Predicting CRC PDX response to Cetuximab  

The best multi-gene predictor for CRC PDXs treated with Cetuximab was RF-OMC applied to 

somatic mutation data. The other three molecular profiles for Cetuximab-CRC (GEX, CN and 

CNA), were discarded for being less predictive than the SNV profile in this case. We identified 

four out of these 15,232 genes whose combined mutational states provide better prediction than 

a RF model using the mutational states of all genes (MCCs of 0.47 and 0.39, respectively). 

Figure 5 visualises the higher performance of this four-gene predictor on Cetuximab-CRC. The 

performance of the best single-gene marker, also shown, is even higher in this case. This 

marker is the mutational state of ACR (Acrosin), whose association to this targeted drug is the 

strongest across the 26 cases (P=0.0003; two-sided Fisher’s exact test). Unlike with RF-OMC, 

most prediction errors correspond to sensitive PDXs that were not correctly identified as such 

(FN=7 vs FP=1). 

Multi-gene predictors generally offer substantially higher recall than single-gene markers  

In the three cases analysed in Figures 3-5, multi-gene predictors exhibit a substantially higher 

recall than the corresponding best single-gene markers. More concretely, recalls of 0.91, 0.88 

and 0.81 (multi-gene) versus recalls of 0.68, 0.00 and 0.56 (single-gene). Figure 6 shows that 

this is actually a strong general trend: 23 out of 26 studied cases have a higher proportion of 
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correctly predicted sensitive PDXs using the multi-gene markers. We recently observed a 

similar trend when using the standard version of RF to predict in vitro drug response from SNV 

data
12

, which is here confirmed in vivo. 

In the three cases that do not follow this trend, a slightly higher proportion of correctly 

predicted sensitive PDXs was found using single-gene markers. The first case is BGJ398-

BRCA and its best single-gene marker is the drug-gene association BGJ398-KIF20B. The other 

two cases are in CRC and have as best markers the following drug-gene associations: BYL719-

TMEM184A and BYL719+LJM716-LSR.  

DISCUSSION 

Combining multiple gene alterations via ML has resulted in better discrimination between 

sensitive and resistant PDXs in 19 of the 26 analysed cases. More importantly, this ML 

approach has determined which is the most predictive classifier type and molecular profile for 

each treatment – cancer type pair. Despite training on data from practically the same PDXs 

within a cancer type, we found that some treatments can be predicted much better than others 

(this is true for both cancer types). The results show that an effective way to improve the 

prediction of a given case is to evaluate several model types. For instance, the collective 

prediction of these 26 cases would have been much worse if we had only considered the 

standard RF algorithm (see for instance the difference between the MCCs of square and 

triangle signs for drug LKA136 in Figure 2). Likewise, the same undesirable outcome would 

have been occurred if only the GEX profile had been available (see MCCs of blue signs in 

Figure 2). This new knowledge is displayed in Figure 2 and fully reported in the Supplementary 

Tables.  
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We have also seen that even ML algorithms with built-in FS can often struggle to provide 

predictive classification models. To further mitigate the problem of overfitting caused by high-

dimensional data
43

, we have introduced and evaluated RF-OMC. OMC ranks features by their 

individual ability to discriminate between resistant and sensitive tumours (e.g. via a t-test), with 

only the highest ranked being used to train the ML model. Thus, such univariate filters may 

miss co-operativity effects among features. In principle, wrapper FS techniques such as 

Recursive Feature Elimination (RFE)
40

 should improve model accuracy by capturing these 

effects. However, at least in the related problem of cancer prognosis prediction
41

, univariate 

filters generally outperform RFE despite the computational cost of RFE being much higher. In 

this same study, embedded (built-in) FS techniques such as LASSO did not generally 

outperform univariate filters either. Instead of using a fixed predetermined cutoff (e.g. the 100 

top-ranked genes as in that study
41

), a novel aspect of OMC is that the complexity of the ML 

model is optimised for the drug, cancer type, molecular profile and available data. As the 

dimensionality of the employed data is optimally reduced for the considered case, thousands of 

less informative gene alterations are not included in model building. This is often an advantage, 

as the least informative of these features are probably irrelevant and hence harm classifier 

performance.  

In practice, we have found that OMC complements the standard version of RF on this type of 

problems (16 of the 26 cases were better predicted by RF-OMC). More importantly, RF-OMC 

predicts 11 cases with an MCC of at least 0.3, whereas RF-all only predicts 4 cases with at least 

that accuracy. Furthermore, while RF-OMC predicts 21 of the 26 cases better than random, this 

is only the case for 16 of the 26 cases predicted by RF-all. Interestingly, unlike here with multi-

omics features of tumours, FS did not generally result in more accurate ML models when using 

chemical features of drug molecules in the related problem of QSAR
44

. In our study, RF-all 
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only outperforms RF-OMC once among the most predictive cases (i.e. those with an MCC of at 

least 0.3, see Supplementary Figure 6), when predicting BRCA PDX response to HDM201 

based on SNV profiles. This probably due to limitation of this initial version of RF-OMC, 

where features are ranked without taking into account their possible synergies with the rest of 

features and the cut-off might be too tight. These exceptions also serve as a reminder of the 

importance to consider multiple algorithms.  

As anticipating which classifiers will work best on a case is currently not possible, we 

benchmarked three algorithms building models of varying complexity. In this way, their 

relative performance can shed some light into the intrinsic non-observable complexity of each 

case. For instance, only a given list of genes could be controlling drug response for tumours of 

that type and that control could be preferentially exert at a given omics level. If a single-gene 

marker works best, it is likely that such subset is actually reduced down to that single gene and 

the omics level is SNV (e.g. the mutational status of ACR as a predictor of CRC PDX response 

to Cetuximab  in Figure 2 right). However, it could also be that mutations in other genes 

influence drug response as well, but we do not have sufficient data to detect more complex 

cooperativity patterns. In cases where RF-OMC works best, a few genes are likely to be 

controlling drug response via the most predictive molecular profile (e.g. the mutational status 

of NR1H2, TLK2 and CTSA to predict BRCA PDX response to LKA136 in Figure 2 left), 

although again more data could result in more complex gene interactions being exploited and 

thus models with higher predictive accuracy. Lastly, in cases where RF-all obtains the best 

performance (e.g. an RF model trained on all SNV features to predict BRCA PDX response to 

HDM201 in Figure 2 left), this suggests that more features than those considered by the OMC 

strategy must be positively contributing to the prediction of drug response. 
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Indeed, an important advantage of RF-OMC over standard RF models is that only a few genes 

need to be profiled to predict whether a PDX is responsive or not. Concise gene lists in a highly 

predictive model are valuable for interpretation and clinical application purposes. Take for 

instance the 14 genes forming part of the Binimetinib-BRCA GEX predictor (Figure 3). RF-

OMC unveiled that this gene list is a promising starting point for mechanistic studies. Such 

studies would aim at explaining how the nonlinear interplay between the expression values of 

these genes accurately predicts BRCA PDX response to Binimetinib. On the other hand, 

concise gene lists permit cheaper and faster clinical implementation. For example, instead of 

carrying out three whole-exome molecular profiles per tumour sample, we now know that it 

suffices to determine the mutational status of just two genes to predict BRCA tumour response 

to Paclitaxel (Figure 4). This example also highlights that the most responsive tumours to a 

cytotoxic drug can also be accurately predicted. The latter indicates that the applicability of 

precision medicine in current standard of care oncological therapeutic regimes is not restricted 

to targeted agents, but also includes cytotoxic chemotherapy
12,45

. While this is not the aim of 

the study, we have commented on the cancer relevance of the genes selected to predict 

treatment response for the three best RF-OMC predictors. This literature review can be found 

in the supplementary information file (pages 7-14). 

We have also discovered that multi-gene predictors of in vivo drug response generally have 

higher recall than single-gene markers, which confirms in vivo previous findings in vitro
12,39

. 

The recall of a single-gene marker will be necessarily poor in all cases in which the prevalence 

of the mutation is much lower than the response rate. It is therefore not surprising that the three 

cases where markers have higher recall than RF-OMC in Figure 6 are based on genes with high 

to very high prevalence (KIF20B, TMEM184A and LSR with respective prevalence across 

tumours of 47%, 61% and 85%). Albeit exceptions, this general trend makes sense because a 
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marker by construction can only detect those responsive tumours with the actionable mutation. 

In other words, the marker is blind to responsive tumours arising from alternative molecular 

mechanisms as illustrated by the example in Figure 1. By contrast, a ML algorithm can 

implicitly learn all such mechanisms from the data itself. Therefore, an important conclusion is 

that, without generating any additional data, many more patients should benefit from precision 

oncology by applying multiple ML algorithms to existing clinical pharmacogenomics data. 

Algorithms able to generate classifiers combining a few data-selected gene alterations such as 

RF-OMC are particularly promising.  

Given the accuracy of some of these predictors, their eventual application to translational 

clinical pharmacogenomics research would be highly beneficial for the biomedical community 

and would ultimately improve clinical decision making. Likewise, our study has made a set of 

data modelling recommendations that can be applied to the analysis of any similar data set. As 

PDXs capture the diversity and complexity of their originating tumours
8
, the translational 

potential of our approach to the clinical setting is anticipated. Improved predictors for 

Paclitaxel and Cetuximab, both of which are standards of care for breast and colon cancers, 

respectively should impact on cancer treatment effectiveness, and consequently clinical 

practice in the near future. Our approach is also a useful tool to identify improved predictors for 

drug responses of compounds in drug development (e.g. Binimetinib), supporting the use of 

ML for patient selection in clinical trials.  Beyond these immediate clinical applications, our 

study shows that ML can provide specific information to improve our understanding of cancer 

biology. Before drug testing, ML can identify those sensitive PDXs not harbouring any 

actionable mutation (these would have therefore been missed by existing single-gene markers). 

Going further, the OMC strategy provides a concise list of gene alterations that control drug 
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response in the considered cancer type. An alternative hypothesis explaining drug reponse can 

be generated by combining both streams of information.  

METHODS 

NIBR-PDXE data 

The NIBR- PDXE data set29 is publicly available as the Supplementary Table 1 at 

http://www.nature.com/nm/journal/v21/n11/full/nm.3954.html#supplementary-information. 

This Excel file has five tabs named RNASeq_fpkm, copy_number, pdxe_mut_and_cn2, 

PCT_raw_data and PCT_curve_metrics. The first three tabs contain three molecular profiles of 

the xenografted tumours. The RNASeq_fpkm tab contains gene expression values. The copy 

number tab contains the actual copy number of each gene. Copy number is also available as a 

categorical variable at the pdxe_mut_and_cn2 tab (this table also contains detected mutations 

per gene). Around 400 PDX models were profiled at each of these omic levels. The other two 

tabs are for treatment response data. The raw response data tab (PCT_raw_data) includes the 

percentage of tumour volume change relative to tumour volume at the start of treatment 

(%∆TVol) of each treated PDX recorded every 3-4 days. Lastly, the processed response data 

tab (PCT_curve_metrics) includes the categorisation of PDX responses into one of four classes 

calculated from raw response data. Further information about how this data set was generated 

can be found in the original study29. 

Processing treatment response data for modelling 

For each treated PDX, we retrieved its category from the processed response data. We also 

calculated its category from raw response data as indicated by Gao et al.
29

. This calculation was 

based on the variables Best Response (the minimum value of %∆TVol for t ≥ 10 days) and Best 

Average Response (the minimum value of the set of average responses spanned by all t values 
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with t ≥ 10 days). In particular, CR (Complete Response) was assigned if Best Response < -

95% and Best Average Response <-40%; PR (Partial Response) if -95% ≤ Best Response < -

50% and -40% ≤ Best Average Response <-20%; SD (Stable Disease) if -50% ≤ Best Response 

< 35% and -20% ≤ Best Average Response < 30%; otherwise PD (Progressive Disease) was 

assigned as the response category. Retrieved and calculated response categories differ in 277 of 

the 4758 PDX-treatment pairs. Although such discrepancies were small (mostly swaps between 

contiguous categories) and not numerous (5.8% of the cases), we decided to use the calculated 

categories in these cases so that all PDX-treatment pairs were categorised following the same 

set of rules. Gao et al.
29

 further subdivided PDX response into two classes: responders as those 

PDXs exhibited some level of sensitivity to the treatment (CR, PR or SD) and non-responders 

(PD) as those resistant to the treatment. 

Processing molecular profiling data for modelling  

For each gene, the Single-Nucleotide Variant (SNV) feature for that gene is assigned a value of 

1 if at least one SNV was detected in this gene region (i.e. reported in the pdxe_mut_and_cn2 

tab). If no SNV was detected in this gene, the gene was labelled as Wild Type (WT) and the 

SNV feature was assigned a value of 0. This encoding scheme is commonly used
46–48

, as it has 

the advantage of leading to a much less sparse data instances vs features matrix than if a binary 

feature was defined for each SNV (a gene typically has several SNVs).  In this way, each PDX 

profiled at the SNV level was characterised by a set of 15,232 binary features (one feature per 

gene). On the other hand, the copy_number tab contains the actual copy number (CN) of each 

gene as determined by Gao et al.
29

. This is the CN profile composed by 23,853 real-valued 

features (one per gene). Gao et al. categorised these measurements as follows: Amp5 if the 

gene is moderately amplified with copy number in the range >= 5 and < 8, Amp8 if the gene is 

strongly amplified with copy number >= 8 and Del0.8 if the gene is deleted with copy number 
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<=0.8 (these per-gene CN categories were reported in pdxe_mut_and_cn2). As previously done 

elsewhere
46,47

, we binarised copy-number data to generate less sparse features: the Copy-

Number Alteration (CNA) feature of a gene has a value of 1 for aberrant copy number (Amp8, 

Amp5 or Del0.8) and 0 otherwise. Thus, each PDX profiled at the CNA level is described by a 

set of 21,534 binary features (one per gene). By contrast, the fourth molecular profile, Gene 

EXpression (GEX), is directly the data provided in the RNASeq_fpkm tab. Thus, each PDX 

profiled at the GEX level is characterised by 22,665 real-valued features (one per gene as well).  

Processed data sets for modelling  

Only a part of the PDX models from NIBR-PDXE have been both treatment-response and 

molecularly profiled. A previous cancer pharmacogenomics modelling study showed that it is 

possible to predict drug response of held-out tumours with a ML model trained on just 35 

tumours
49

. As we are not aware of successful studies using smaller training sets, we focused on 

the two cancer types with the highest numbers of profiled PDXs per treatment, Breast Cancer 

(BRCA) and Colorectal Cancer (CRC), where all but one of these 26 treatment-cancer type 

pairs had at least 35 PDXs. Overall, a set of 13 treatments were administered to BRCA PDX 

models and another set of 13 treatments were administered to CRC PDX models. The first two 

tabs of Supplementary Table 1 state the numbers of sensitive and resistant PDXs per treatment 

for BRCA and CRC, respectively.  

Measuring the predictive performance of a classifier  

The pharmacogenomics data set for a given cancer type, molecular profile and the i
th

 treatment 

can be represented as  

                                  {(      
   

  
   

)}
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Where   is a high-dimensional vector with the features from the considered profile and the i
th

 

treatment has been administered to ni PDX models. In these binary classification problems, 

positive data instances are PDXs sensitive to the considered treatment (class=sensitive), 

whereas negatives are resistant PDXs (class=resistant). Note that, while they have slightly 

different meanings, we use the terms responder and sensitive PDX interchangeably as it is 

customary (same applies to the terms non-responder and resistant PDX).  

Each of these data sets is employed to train classifiers to predict the class of a PDX from its 

corresponding molecular profile. Predictive performance is always reported on PDXs not used 

to train the classifier making the predictions. In particular, classifiers not employing model 

selection are evaluated with standard leave-one-out cross-validation (LOOCV). Moreover, 

classifiers employing model selection are evaluated with nested LOOCV to avoid 

overestimating their performance
50,51

. It is worth noting that nested LOOCV is nothing but a 

standard LOOCV where the model optimised (selected) with the training set of a given fold is 

applied to the test set of that fold (i.e. instead of training and testing the same model per fold). 

Once observed classes are compared to predicted classes, PDXs in the considered data set can 

be broken down into true positives, true negatives, false positives and false negatives (their 

numbers being TP, TN, FP and FN, respectively). Thus, the discrimination offered by a 

classifier can be summarised by the Matthews Correlation Coefficient (MCC)
52

  

    
           

√                               
 

MCC can take values from -1 to 1, where 1 means that the classifier provides perfect agreement 

between observed and predicted classes, -1 indicates a perfect disagreement and 0 means that 

the classifier performance is equivalent to that of predicting the class at random.  
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To investigate how the two sources of error contribute to the overall predictive performance 

represented by MCC, we also calculate Precision (PR) and Recall (RC) for each predictor. PR 

and RC are two classical metrics
53

 whose definitions are: 

   
  

     
                           

  

     
 

In this study, a PR value of 0 would mean that all the PDXs predicted sensitive by the classifier 

are actually resistant, whereas a PR value of 1 would indicate that all the PDXs predicted 

responsive were experimentally confirmed to be responsive. On the other hand, RC is 0 when 

none of the sensitive PDXs is correctly identified as such, whereas RC is 1 if no sensitive PDX 

is missed by the classifier. 

Multi-gene classifiers with built-in Feature Selection (FS) 

Some ML algorithms can construct classifiers with built-in FS to mitigate the impact of the 

high dimensionality of data on their generalisation to unseen data. Random Forest (RF)
54

 is one 

of these algorithms, as it generates trees that ignore irrelevant features by construction and thus 

is often found effective in modelling high-dimensional omic data
55

. We used the recommended 

values for RF hyperparameters (1000 for the number of trees and the square root of the number 

of considered features for mtry). We preferred this to tuning these hyperparameters for each 

training set, as RF tuning generally results in just marginal improvements at the cost of being 

much more computationally expensive
38,56,57

.  As no model selection was carried out for this 

algorithm, standard LOOCV was performed to estimate the performance of RF using all the 

features (RF-all) on each data set (treatment-cancer type-molecular profile). To assess the 

variability introduced by the stochastic character of RF, we perform 10 repetitions of LOOCV 

per case, each using a different random seed (see corresponding boxplots in supplementary 

figures 4 and 5). 
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The proportion of responsive and non-responsive PDXs changes from case to case (see tabs 

data_by_treatment_BRCA and data_by_treatment_CRC in the Supplementary Tables). 

Although class imbalances are not strong, these could still introduce some loss in performance. 

Thus, we enabled class weighting in the RF algorithm (R package 'randomForest' version 4.6-

12), which counterbalances class imbalances by putting a heavier penalty on misclassifying the 

minority class. The misclassification penalty of the minority class was set to the proportion of 

the majority class, thus promoting RF trees that are equally accurate regardless of the class. 

Multi-gene classifiers with Optimal Model Complexity (OMC) 

An effective way to improve predictive performance is to reduce the dimensionality of the data. 

Here data dimensionality can be defined as the number of considered features over the number 

of PDXs. One route to reduce dimensionality is hence to use more training data, but these are 

usually not available. An alternative route is to only consider the most informative features in 

the data, thus typically discarding the many thousands of less informative features (hence 

strongly reducing data dimensionality while retaining most the initial information content).  

However, the optimal number of features and their identities depend on various factors 

(treatment, profile, cancer type and data set). Consequently, we designed OMC as a strategy to 

build ML models employing only the most relevant features. In a nutshell, OMC is made of 

three modules: one to rank features according to their relevance to treatment response, another 

to train a ML model per considered subset of features and third one to select the optimal model 

among those trained. Regarding ranking features, we used p-values from two-sided Fisher’s 

exact tests to rank binary features within a given binary profile (SNV or CNA) and p-values 

from two-sided unpaired t-tests to rank real-valued features (GEX or CN). For each profile, 

treatment and cancer type, we considered n/2 subsets of features (n is the number of PDXs 

available for that case): the subset with the top 2 features, that with the top 3 features, …, that 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 4, 2018. ; https://doi.org/10.1101/277772doi: bioRxiv preprint 

https://doi.org/10.1101/277772
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

with top n/2 features and finally all features for that profile. This limit of n/2 ensures that the 

ML algorithm will not be challenged by high-dimensional data (i.e. all trained models will have 

at least two data points per considered feature), except for the run using all features intended to 

find out whether the case requires more than the top n/2 features. Lastly, the best among these 

n/2 models is selected as that with the highest LOOCV MCC. To estimate its performance, 

nested LOOCV MCC is calculated with model selection in the inner loop
50,51

 (the same values 

of the hyperparameters used for RF-all were also used here for RF-OMC). Sometimes the best 

RF-OMC model is that only employing the top 2 or the top 3 features (i.e. more complex 

models are not more predictive). As the RF model reduces in these cases to a set of redundant 

shallow trees, we are probably wasting computer time, as running RF with 10-50 trees should 

do just as well.  

Random model based on the prior probability of each case 

The following protocol was followed for each case. First, the proportion of sensitive PDXs in 

each LOOCV training fold was taken as an estimate of the probability of a PDX to be sensitive. 

Second, a random number between 0 and 1 was generated to decide whether the held-out PDX 

in the LOOCV test fold was predicted sensitive or not according to the estimated prior 

probability. Third, the process was iterated over all LOOCV folds. Once the response class of 

every PDX had been predicted in this way, a single MCC value was computed from predicted 

and actual classes of the PDXs. Lastly, we repeated this process 10 times with the same 10 

different random seeds employed with RF-OMC and RF-all. From the 10 MCCs for the case 

and the other 10 MCCs for the RF-model (either RF-OMC or RF-all), we carried out a one-

sided paired t-test to determine whether the performance of the RF model was better than that 

of this random model (P<0.05). Results can be found in supplementary figures 2 to 5. 

Single-gene markers  
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We identified the best single-gene marker for each of the 26 treatment-cancer type pairs using 

exactly the same data as RF-all and RF-OMC via LOOCV. The SNV profile was used as the 

source of detected somatic mutations, as there is currently a strong interest in using them as 

pharmacogenomic markers in oncology
5
. For each fold, the response of the PDX held-out in the 

test fold was predicted with the most significant sensitive marker (i.e. predicted sensitive if a 

SNV is detected in the marker gene, predicted resistant otherwise). Such marker was 

determined by calculating two-sided Fisher’s exact tests across training fold PDXs, one per 

gene, leading to p-values and effect sizes (ϕ
58

) for 15,232 genes. The gene with the lowest p-

value among those constituting sensitive mutations (ϕ>0) was identified. The operation was 

repeated for each fold resulting in a LOOCV predicted class for each treated PDX and thus the 

LOOCV MCC for the best marker. After evaluating its predictive performance, we recalculated 

each best single-gene marker using now all the data so that these markers are ready to be used 

on forthcoming tumours. These results are in the Supplementary Tables (single-gene_marker 

tab). 

ABBREVIATIONS 

FN: number of False Negatives 

FP: number of False Positives 

PDX: Patient-Derived tumour Xenograft model 

NIBR-PDXE: Novartis Institutes for Biomedical Research - PDX encyclopedia 

MCC: Matthews Correlation Coefficient 

PR: PRecision 

RC: ReCall 

SG: Single-gene 

RF: Random Forest 
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OMC: Optimal Model Complexity 

TN: number of True Negatives 

TP: number of True Positives 

WT: Wild-Type 

LOOCV: Leave-One-Out Cross-Validation 

CN: Copy Number 

CNA:  Copy-Number Alteration 

SNV: Single-Nucleotide Variant 

GEX: Gene EXpression 

FIGURE CAPTIONS 

 

Figure 1: Venn diagram showing the performance of a representative single-gene marker. 100 NSCLC 

patients were treated with Erlotinib
8
, 19 of them harbouring EGFR-mutant tumours. However, despite being a 

FDA-approved genomic marker
2
, the mutational status of EGFR was a modest predictor of NSCLC tumour 

response to Erlotinib. Indeed, 84% (16/19) of EGFR-mutant tumours did not respond. This false positive (FP) 

rate also means that only 16% (3/19) of these tumours turned out to be responsive (precision of 0.16). 

Furthermore, 7% (6/81) of NSCLC tumours with wild-type EGFR actually responded to the drug. This false 

negative (FN) rate means that only 33% (3/9) of the responsive tumours were recalled by this predictor (recall 

of 0.33). Thus, Erlotinib-NSCLC-EGFR.snv is representative of single-gene markers in that their performance 
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is generally quite modest
5,6

. Intuitively, one can see how combining multiple gene alterations could result in a 

predictor (blue circle) having a better overlap with the set of responsive tumours (green circle) by decreasing 

FPs and FNs. The overlap corresponds to the number of true positives (TP). Lastly, patients who do not fall 

into any of these three non-overlapping categories are true negatives (TN). 

 

Figure 2: Predictive performance of the best single-gene (SG) marker, Random Forest (RF) with Optimal 

Model Complexity (RF-OMC) and RF using all features (RF-all). (left) Best predictor per treatment and 

classification model type on BRCA PDXs. Each row shows the results for one treatment and shows the number of 

top features with which the best classifier for that treatment was trained on. Furthermore, the colour and shape of 

each classifier indicates the employed molecular profile and model type, respectively. For instance, paclitaxel (2 

fts) appears as a green triangle, which means that Paclitaxel had RF-OMC-SNV as the classifier with the largest 

median MCC on LOOCV held-out PDXs and this classifier employed the top 2 features from the SNV profile 

(MUC20 and UPK3BL). All treatments have at least one predictor performing above random level (MCC=0), with 

the accuracy in predicting BRCA PDX response being strongly treatment-dependent. Importantly for clinical 

implementation, the best classifier per treatment is usually a model that only requires a handful of features to 

operate. (right) Best predictor per treatment and classifier type on CRC PDXs. Strong predictors of treatment 

response were also found for this cancer type. However, there were fewer of these predictive models in CRC than 

in BRCA (five treatments were predicted with MCC>0.4 in BRCA, but only two treatments were predicted at this 

level in CRC). Top models are more frequently associated with CN profiles in CRC than in BRCA. It is also clear 
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that CNA profiles, using CN as a binary feature (altered/wild type), leads to less predictive models than real-

valued CN. 

 

Figure 3: Predicting BRCA PDX response to the MAPK inhibitor Binimetinib. Each line represents one 

PDX. The vertical axis shows the % of tumour change relative to the tumour volume at time zero (T0; i.e. 

immediately before the first administration of the drug) and the horizontal axis shows when measurement time in 

days after T0. From the legend, red discontinuous lines represent false negatives (responsive PDXs that were 

predicted to be non-responsive) and blue discontinuous lines represent false positives (non-responsive PDXs that 

were predicted responsive). The better the predictor is, the higher the proportions of lines at the bottom appear in 

blue (higher recall) and at the top in red (higher precision). (left) Binimetinib (14 fts): RF-OMC model predicts 

BRCA tumour response to Binimetinib by optimally combining the expression levels of only 14 genes (CRB3, 

NDUFA1, MPG, ECI1, ING2, KIF9, TSTD1, FAM100A, TCEAL3, HAGH, PEX11G, SNORA72, SNORA70 

and PIN1). A high level of predictive accuracy was achieved on PDXs not used to train the model: MCC=0.57 

(PR=0.77 and RC=0.91). (right) Binimetinib (1 fts): Using the same input data and evaluation protocol, the best 

single-gene marker of Binimetinib sensitivity was the mutational state of PABPC3. The RF-OMC model 

obtained a substantially higher level of prediction than that of this standard single-gene procedure: MCC=0.24 

(PR=0.68 and RC=0.68). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 4, 2018. ; https://doi.org/10.1101/277772doi: bioRxiv preprint 

https://doi.org/10.1101/277772
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

 

Figure 4: Predicting BRCA PDX response to the tubulin inhibitor Paclitaxel. (left) Paclitaxel (2 fts): RF-

OMC predicts BRCA tumour response to Paclitaxel by optimally combining the mutational states of 2 genes 

(MUC20 and UPK3BL). A high level of predictive accuracy was achieved on PDXs not used to train the model: 

MCC=0.49 (PR=0.82 and RC=0.88). (right) Paclitaxel (1 fts): Using the same input data and evaluation protocol, 

the best single-gene marker of Paclitaxel sensitivity was the mutational state of HYDIN. The RF-OMC model 

obtained a much higher level of prediction than that of this standard single-gene procedure: MCC=-0.82 (PR=0.00 

and RC=0.00).  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 4, 2018. ; https://doi.org/10.1101/277772doi: bioRxiv preprint 

https://doi.org/10.1101/277772
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

Figure 5: Predicting CRC PDX response to the EGFR inhibitor Cetuximab. (left) Cetuximab (4 fts): RF-

OMC predicts CRC tumour response to Cetuximab by optimally combining the mutational states of 4 genes 

(ACR, DENND4B, NOTCH1 and RPL22). Again, a high level of predictive accuracy was achieved on PDXs not 

used to train the model: MCC=0.47 (PR=0.62 and RC=0.81). (right) Cetuximab (1 fts): Using the same input data 

and evaluation protocol, the best single-gene marker of Cetuximab sensitivity was the mutational state of ACR. 

The RF-OMC model provided a slightly lower level of prediction than that of this standard single-gene procedure: 

MCC=0.59 (PR=0.90 and RC=0.56). 

 

Figure 6: ML multi-gene classifiers exhibit a higher recall than single-gene markers in 23 of the 26 

treatment-cancer type pairs. (left) In 12 of the 13 treatments for BRCA, multi-gene markers achieve a higher 

recall than the single-gene marker. The exception was the BGJ398-KIF20B association. (right) In 11 of the 13 

treatments for CRC, multi-gene markers achieve a higher recall than the single-gene marker. These two single-

gene markers with higher recall are the association BYL719-TMEM184A and the association BYL719+LJM716-

LSR. Note that these three genes (KIF20B, TMEM184A and LSR) all have very high prevalence (47%, 61% and 

85%, respectively) in addition to having the lowest p-value as sensitive marker in their respective cancer types.  

SUPPLEMENTARY INFORMATION  

Supplementary Tables: Description of processed NIBR-PDXE data and the discovered multi-omics 

predictors of in vivo treatment response.  
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Supplementary Figures: Visualisation of the criteria for categorising PDX responses, p-values of ML models 

with respect to a null distribution, comparison RF-OMC vs RF-all across cases and plots showing how 

considering multiple classifiers and molecular profiles collectively improve predictive accuracy.  
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