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Abstract 14 

Cross-sectional correlations between two variables have limited implications for causality. We 15 

show here that in a homeostatic system with three or more inter-correlated variables, it is 16 

possible to make causal inferences from steady-state data. Every putative pathway between 17 

three variables makes a set of differential predictions that can be tested with steady state data. 18 

For example, among 3 variables, A, B and C, the coefficient of determination, ���
�  is predicted 19 

by the product of ���
�  and ���

�  for some pathways, but not for others. Residuals from a 20 

regression line are independent of residuals from another regression for some pathways, but 21 

positively or negatively correlated for certain other pathways. Different pathways therefore 22 

have different prediction signatures, which can be used to accept or reject plausible pathways.  23 

We apply these principles to test the classical pathway leading to a hyperinsulinemic 24 

normoglycemic insulin-resistant, or pre-diabetic state using four different sets of 25 

epidemiological data. Currently, a set of indices called HOMA-IR and HOMA-β are used to 26 

represent insulin resistance and glucose-stimulated insulin response by β cells respectively. 27 

Our analysis shows that if we assume the HOMA indices to be faithful indicators, the classical 28 

pathway must in turn, be rejected. Among the populations sampled, the classical pathway and 29 

faithfulness of the HOMA indices cannot be simultaneously true. The principles and tools 30 

described here can find wide application in inferring plausible regulatory mechanisms in 31 

homeostatic systems based on epidemiological data. 32 

 33 

Keywords: Causal inference; correlation, homeostasis, insulin resistance, regression, steady-34 

state, type 2 diabetes.  35 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/278101doi: bioRxiv preprint 

https://doi.org/10.1101/278101
http://creativecommons.org/licenses/by/4.0/


3 

 Introduction 36 

In the field of biomedicine, the nature of causality, and the use of correlations as an evidence 37 

for causality are much debated (1–6). There have been many attempts to develop sound 38 

methods to address questions of causal inference from correlational data which include Hill 39 

criteria (7), path analysis (8–11) the use of instrumental variables (12), Granger causality (13), 40 

Rubin causal model (14), or additive noise models (15). Hill criteria are a set of common 41 

sense criteria useful to avoid making misguided inferences. Path analysis generally assumes a 42 

direction of causality, and is useful in determining the contributions of different causal 43 

pathways to a process or a resultant variable. It generally assumes directed acyclic paths and 44 

its application to pathways with loops and cycles is difficult. Methods like Granger causality 45 

depend upon the assumption that the cause always precedes effect and that the variables show 46 

some degree of chaos or turbulence, so that there are notable events like sudden peaks in the 47 

variables, which can be tracked using longitudinal data. In evolved systems in which 48 

predictive adaptive responses are possible, the assumption that cause always precedes effect is 49 

questionable. Another class of methods like Propensity Score matching based on the Rubin 50 

causal model works well to estimate the effect of a causal factor, but does not take into 51 

account unobserved factors. The Rubin Causal Model also incorporates the structural 52 

equations model as it includes non-parametric forms as well (16,17). Models like additive 53 

noise can suggest the direction of the arrow of causality between two variables, but they 54 

require the assumption that either A causes B, or B causes A, without any confounding, 55 

looping or circularity (18,19).  56 

More specifically, here we look at homeostatic systems which are extremely common in fields 57 

such as physiology. Homeostatic systems have a unique problem for causal inferences. Causal 58 
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inference can be based on time-series analysis with longitudinal data (19,20). Longitudinal 59 

data are of little use however, if the time taken to reach equilibrium is smaller than the 60 

observational window, or if the system is already in a steady-state. Most homeostatic systems 61 

have negative feedback or some loop structures, because of which methods assuming acyclic 62 

causal paths or freedom from confounding are not applicable.  63 

Although the use of correlations to infer causality is doubted, intervention experiments are 64 

generally taken as a convincing evidence of causality. However, causality in steady-state can 65 

be substantially different than causality in a perturbed-state and inferences from a perturbation 66 

experiment may not be applicable to steady-state causality. This necessitates a set of tools to 67 

infer causality in a steady state which is independent of perturbing interventions. We argue in 68 

this paper that it is possible to infer causal relationships among three or more variables from 69 

cross-sectional data in a homeostatic system in which the variables and their relationships are 70 

stable in time.  71 
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Motivation 72 

Our motivation and the need for this tool came from some debated causal pathways in the 73 

pathophysiology of type 2 diabetes (T2D). According to the classical view, obesity-induced 74 

insulin resistance is primary, and rise in insulin levels is a compensatory response to insulin 75 

resistance, mediated by raised levels of glucose (21,22). This  is contested (23), with 76 

increasing evidence suggesting that hyperinsulinemia precedes insulin resistance (24–77 

28).Therefore the causal pathways between insulin levels, insulin resistance and plasma 78 

glucose are uncertain. There is also evidence of neuronal signals affecting insulin production 79 

on the one hand, and controlling glucose production by the liver partly independent of insulin 80 

on the other. Therefore, the causal relationship between insulin resistance, hyperinsulinemia 81 

and hyperglycemia needs to be re-examined (reviewed by (23)).  82 

Elucidation of the causal pathway for a pre-diabetic or diabetic state is critical at the clinical 83 

level because the current approaches to medication are designed assuming one pathway but 84 

have largely failed to cure diabetes. If it is possible to determine causality reliably, it can 85 

potentially change diabetes medicine. It has long been recognized that levels of glucose and 86 

insulin are under homeostatic control, and that fasting is a steady state (29–32). With 87 

substantial data available on fasting levels of glucose and insulin from different populations, 88 

along with many other variables, a tool for inferring causality from a set of inter-correlated 89 

steady-state variables would help understand, and thereby better control T2D. 90 

Beyond the specific problem of causality in pre-diabetes, a set of methods that can infer 91 

causality from steady-state data will find a large number of applications, not only in 92 

physiology and disease, but in many other areas of science. Although our investigations began 93 
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with the pathophysiology of diabetes, the emerging principles are generalizable and valuable 94 

for inferential statistics in general.  95 
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Methods 96 

We show here that when three inter-correlated variables are considered together with two or 97 

more causal arrows connecting them to make a causal pathway, each of the possible pathways 98 

makes a set of differential predictions by which the pathways can be differentiated from each 99 

other. Our approach to develop a method of inferring causality from cross sectional regression 100 

correlation parameters comprises following steps. 101 

1. We first list the perceived possible hypothetical causal pathways among three 102 

variables. 103 

2. For each pathway, we write a set of causal equations arising out of the hypothetical 104 

pathways. Steady-state solutions of these equations lead to a set of four general, and a 105 

few pathway-specific predictions. Each pathway therefore has a unique combination of 106 

such predictions or a prediction signature by which it can be differentiated from other 107 

pathways. 108 

3. We test, using simulated data generated from assumed causal pathways, the conditions 109 

under which the predictions can be used to accept or reject a pathway reliably.  110 

4. Based on these results, we suggest ways of handling multivariate data and infer causal 111 

networks among them.  112 

5. We apply this logic to the specific case of pre-diabetes to examine the pathway 113 

classically thought to give rise to this condition. 114 

 115 

Baseline assumptions and nomenclature 116 
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We consider three variables labelled A, B and C. Additional variables if needed to describe a 117 

pathway will be labelled X, Y and so on. All causal relationships represented by a single 118 

arrow are assumed to be linear, and all primary input variables are assumed to be normally 119 

distributed. In a given operation, the slopes of causal pathways are assumed to be constant; the 120 

errors in causal pathways are assumed to be distributed normally, with a mean zero and a 121 

constant standard deviation, and no covariance with each other. We assume that the errors are 122 

caused by variation in individual responses, and that a given individual’s response is 123 

consistent in time sufficiently long to reach a steady state. So the errors are randomized over 124 

the population, but for a given individual, they are constant in time. We assume no 125 

measurement errors in the baseline models. Since all our predictions are related to correlation 126 

coefficients and regression slopes, we will ignore the intercepts for the sake of simplicity in 127 

deriving many of the predictions. 128 

 129 

The possible pathways 130 

A variety of cyclic and acyclic pathways can exist in three variables. Fig 1 shows the simple 131 

primary pathways that can exist. More can certainly be constructed by combinations of the 132 

primary pathways. It is also possible to consider permutations of the three variables. For 133 

example, the linear pathway among three variables can itself be written in six different ways. 134 

Here we restrict to the primary pathways assuming a fixed sequence of the three variables 135 

denoted by A, B and C. The principles that we derive from this set of primary pathways can 136 

be extended to more complex pathways. 137 

 138 
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Fig 1. Possible primary causal pathways between three variables. More complex pathways 139 

can be visualized by combinations of the primary ones. 140 

 141 

Causal equations versus regression equations 142 

Based on hypothesized pathways, we can write specific causal equations for each. The causal 143 

equations are derived from the hypothesized pathway, while the regression equations can be 144 

obtained from the given cross-sectional data using regression and correlation analysis. Our 145 

causal equations are similar to the structural equations of (17). However, they differ in their 146 

interpretation and treatment. In structural equations, the left hand terms are effects and right 147 

hand terms are causes, and the two cannot be algebraically transferred without changing 148 

causal interpretations. In our approach, after finding equilibrium solutions, we can carry out 149 

algebraic operations freely in order to obtain testable predictions. The parameters of the 150 

regression equation are not necessarily identical to those of the causal equations (Table 1). For 151 

example, for a hypothesized pathway Y = mX + C, m is the causal slope, while the regression 152 

slope would be underestimated if there is post-effect variability in X (33). Such a bias in the 153 

slope is important in making and testing predictions. In the following section, we show that 154 

the parameters of causal equations hold pathway-specific relationships with the parameters of 155 

regression equations based on which, pathway-specific predictions about the regression 156 

correlation parameters can be made.  157 

 158 

  159 
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Table 1.  List of abbreviations used.  160 

 161 

Table 1 legend: Parameters of causal equations are denoted by small letters and those of 162 

regression equations by capital letters. 163 

 164 

Abbreviation Term Remarks 

A, B, C Test variables We have access from data        

X, Y Unknown variables Which affect test variables. We do not have 

access to these from data.  

���  Slopes of regression of i on j  e.g. ���  is calculated as ��� � 	
���,��
������   

��� Intercept of regression of i on j e.g. ��� is calculated as ��� � �́ � ����́  

	��  Residuals of regression of i on j e.g. 	��  is calculated as  

	�� � � � ���� � ���  


�
�
� Slopes in causal equations We do not have access to these in data 

������ Error distribution in causal 

equations, assumed normal with 

mean zero and standard 

deviations sde1 etc. 

These are post-effect errors of the causal 

relationships which may get incorporated in 

pre-effect errors of a subsequent effect 

�����	 Net variability in A, B and C e.g. ea is calculated as �� � � � �́ 

���� Intercepts in causal equations  

�� Degradation /destruction rate 

constants in causal equations 

Especially necessary to use in case of cyclic 

pathways 
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For ensuring steady-state, we assume that a given variable has a rate of formation/increase and 165 

a rate of degradation/decrease. If the rate of degradation is positively dependent, or the rate of 166 

formation negatively dependent on the standing level, then the variable invariably reaches a 167 

steady state determined by the set of input parameters. Such steady states are characteristic of 168 

homeostatic systems, and this principle is central to our methods. 169 

 170 

For example, in a linear pathway A   B   C,  
��
�� � 
��� � ��  and  

��
�� � 
��� � �� . At a 171 

steady-state the net change in any variable is zero. Therefore, the steady-state levels of B and 172 

C will be  � � ���
��

� � 
�� and  � � ���
��

� � 
��  respectively. 173 

In simple cases, we need not explicitly include the rates of degradation in the equations but 174 

directly use parameters 
� and 
�. For pathways involving loops and feedbacks the 175 

relationships between variables are more complex and for such cases we will explicitly use 176 

the degradation constants in the causal equations for ensuring steady-states. 177 

 178 

Making predictions from steady-state solutions 179 

We make four general predictions across all pathways and then formulate a null hypothesis 180 

for each. In addition, there are certain pathway specific predictions that will be discussed 181 

along with the description of the corresponding pathway. The four general predictions are: 182 

1. Whether ���
�  can be estimated from the product of ���

�  and ���
� . 183 

2. Whether slope �	�can be estimated from the product of the slopes ���  and �	�. 184 
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3. Whether the residuals of the regression of B on A (	��) are correlated with those of C on B 185 

�		��: The errors or residuals in a regression are assumed to be random independent 186 

errors. However, we will show below that if there are loops, convergent or confounding 187 

elements in a pathway, 	��  and 		� do not remain independent. Based on the nature of 188 

dependence between 	��  and 		�, presence of, and possible nature of the loops and 189 

convergence can be inferred. 190 

4. a. Whether correction for A improves or reduces the correlation of B with C, i.e. whether 191 

�����
�  is greater or lesser than ���

� .  192 

b. Whether the extent to which �����
�

 is greater or lesser than ���
�

 can be predicted by ���
� . 193 

We will now state how each of the pathways makes specific predictions. For detailed formal 194 

proofs and derivations refer to S1 Text.  195 
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Making and testing analytical predictions 196 

Acyclic pathways  197 

Linear Pathway (P1) 198 

The causal equations for a linear pathway are: 199 

� � ����� � �́ � �� 

� � 
�� � �� � �� 

� � 
�� � �� � �� 

Where �� , ��, �� are not correlated.   200 

Regression parameters can be derived from the causal equations as follows. Since in 201 

regression of B on A, the slope = cov (A, B)/var A, 202 

��� � ∑  ����
∑  ���

� ∑  ���
��� � ���
∑  ���

� 
� ∑  ��
�

∑  ���
� 
� 

�	� � ∑  �	��
∑  ��

� � ∑  �
��� � �����
∑  ��

� � 
� ∑  ��
�

∑  ��
� � 
� 

�	� � ∑  �	��
∑  ���

� ∑  �
�
��� � 
��� � �����
∑  ���

� 
�
� ∑  ��
�

∑  ���
� 
�
� 

	�� � �� � ����� � 
��� � �� � 
��� � �� 

		� � �	 � �	��� � 
��� � �� � 
��� � �� 

		� � �	 � �	��� � 
��� � �� � 
�
��� � 
��� � �� 

For linear equations, there is little difference between the causal equations and regression 203 

equations (Table 2). The regression equations therefore become 204 

� � ���� � 	�� � ��� � 
�� � �� � �� 

� � ���� � 	�� � ��� � 
�� � �� � �� 
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� � ���� � 	�� � ��� � 
�
�� � �
��� � ��� � �
��� � ��� 

Prediction R1: Based on the equations above and Table 2, it can be shown that 205 

 ��� � ������ � 0 (See S1 Text ‘Linear pathway: Prediction R1: Proof 1’ for formal proof).  206 

Prediction R2: From Table 2, it is obvious that the slope �	� can be predicted from the 207 

product �	���� ;   �	� � �	���� � 
�
� � 
�
� � 0.  208 

Prediction R3: From Table 2, as there is no covariance between �� and ��,  209 

�������
� � �����

� � 0  210 

Prediction R4: For a linear pathway, it can be shown that  211 

(a) ��� � ����� and further, (b)  
���� ������

�

����
� ���

�  212 

Table 2. Relationship between the causal and regression equations for linear pathway.  213 

Slopes Errors 

��� � 
� 	�� � �� 

�	� � 
� 		� � �� 

�	� � 
�. 
� 		� � 
��� � �� 

 214 

Radiating pathway (P2) 215 

The causal equations for this model would be 216 

� � 
�� � �� � �� 

� � ����� � �́ � �� 

� � 
�� � �� � �� 

Note that the relationship between causal parameters and regression parameters is 217 

substantially different in this pathway than the linear pathway (Table 3). For example, the 218 
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causal slope is 
�

��
, but there is an underestimation of the slope during regression which is 219 

predicted exactly by ���
� . 220 

However, this difference is not detectable from cross-sectional data alone. Therefore, the 221 

standard four testable predictions of this pathway remain similar to the linear pathway. We 222 

will describe later that differentiating between pathways P1 and P2 is possible using a 223 

different strategy.  224 

Prediction R1: From Table 3, it can be shown thatr�� � r��. r�� � 0.  225 

Prediction R2: From Table 3; we see slope M�� can be predicted from the product M��M�� 226 

Prediction R3: From Table 3,  
cov�e�, e�� � 0 $ r�	
��	

� � r � �
� � 0 227 

Prediction R4: As formally shown in S1 Text (‘Radiating pathway: Prediction R4: Proof 2’), 
 228 

����� % ��� and  
���� ������

�

����
� ���

�  229 

Table 3. Relationship between the causal and regression equations for radiating pathway 230 

Slopes Errors 

��� � 1

�

���
�  	�� � ���1 � ���

� � � 1

�

���
� �� 

�	� � 
� 		� � �� 

�	� � 
�

�

���
�  		� � 
����1 � ���

� � � 
�

�

���
� �� � �� 

 231 

 232 

Convergent pathway (P3) 233 

The causal equations for this model would be 234 

� � ����� � �́ � �� 
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                                                                    � � 
�� � 
�� � �� � �� 235 

� � ����� � �́ � �	 

where ��, ��,and�	 are uncorrelated. 236 

Regression parameters derived from the causal equations are given in Table 4. 237 

There are two pathway specific predictions for the convergent pathway, shared only by the 238 

different cause pathway. Firstly, we expect no correlation between A and C from this pathway, 239 

unless there are additional external pathways linking the two. The other unique feature of this 240 

pathway is that both A and C have independent causal influence on B. As a result, the effect of 241 

A adds to the error in the correlation between B and C and similarly, the effect of C 242 

contributes to the error in the correlation between A and B. As a result, ���
� � ���

� cannot be 243 

greater than 1, as shown below: 244 

���
� � ���

� � 
�
� ∑  ��

�

∑  ��
� � 
�

� ∑  �	
�

∑  ��
� � 
�

� ∑  ��
� � 
�

� ∑  �	
�

∑  ��
�  

∑  ��
� � 
�

� ∑  ��
� � 
�

� ∑  �	
� � ∑  ��

�, so 245 

���
� � ���

� % 1 

 246 

This prediction is so robust that if ���
� � ���

� � 1, the convergent pathway can be rejected 247 

right away. Since we assume A and C to be independent input variables we assume no 248 

correlation between them. However, if they are correlated due to some cause other than this 249 

pathway, only then  ���
� � ���

�  can be greater than 1. 250 

 251 

Prediction R1: Unlike pathways P1 and P2, for the convergent pathway, it can be seen that 252 

���
� � ���

� . ���
� % 0. 253 
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Prediction R2: Since the expected slope �	� is zero, and both ���  and �	� are non-zero, their 254 

product is not a predictor of �	�. 255 

|�	�| � |�	����| % 0 as |�	�| � 0 256 

Prediction R3: The correlation �������is predicted to have the same sign as Mcb. 257 

Prediction R4: It can be shown that (a) ��� % ����� and further, (b) 
�����
� �����

�����
� � ���

� . 258 

Because this expression differs from R4 (b) of the earlier pathways, we can use a more 259 

generalized form for R4 (b) as  
!���� ������

� !
��"#���� ,�����

� $
� ���

�  260 

Table 4. Relationship between the causal and regression equations for Convergent 261 

pathway 262 

Slopes Errors 

��� � 
� 	�� � �� � 
��	 

�	� � 1

�

���
�  		� � �	�1 � ���

� � � 1

�

���
� �
��� � ��� 

�	� � 0 		� � �	 

 263 

 264 

Common cause pathway (P4) 265 

The causal equations for this model would be 266 

+ � ����� � +́ � �" 

� � 
�+ � �� � �� 

� � 
�+ � �� � �� 

� � 
�+ � �� � �� 
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where �"������  are not correlated. 267 

It needs to be noted that������are important in defining this pathway. If �� is negligible the 268 

pathway approximates to the radiating pathway with B being the mediator between A and C. 269 

Similarly, at small ��, A becomes the mediator and at small ��, C becomes the mediator in a 270 

radiating pathway. For the way we have defined our predictions, ��is the most important error 271 

term in this pathway (Table 5).  272 

One very special feature of this pathway is that qualitatively it is highly symmetric with 273 

respect to all the three variables A, B and C. This means that any permutation of them does not 274 

change the qualitative nature of any prediction. This can be used as a pathway specific 275 

prediction and a distinct signature for this pathway. 276 

Prediction R1: It can be shown that r��
� � r��

� . r��
� for this pathway. 277 

Prediction R2: |M��| � M��M�� , 0 278 

Prediction R3: The sign of the correlation r�	
��	 is decided by the signs of m1 and m2. When 279 

both have the same signs r�	
��	 � �ve and when they have opposing signsr�	
��	 � �ve. In 280 

other words the correlation multiplied by the sign of M��is always negative. 281 

Prediction R4: For this pathway (a) ����� % ��� and (b) 
���� ������

�

����
���

�  282 

Table 5. Relationship between the causal and regression equations for common cause 283 

pathway 284 

Slopes Errors 

��� � 
�

�

��%
�  	�� � 
��"�1 � ��%

� � � �� � ��%
� 
�


�
�� 

�	� � 
�

�

��%
�  		� � 
��"�1 � ��%

� � � �� � ��%
� 
�


�
�� 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/278101doi: bioRxiv preprint 

https://doi.org/10.1101/278101
http://creativecommons.org/licenses/by/4.0/


19 

�	� � 
�

�

��%
�  		� � 
��"�1 � ��%

� � � �� � ��%
� 
�


�
�� 

 285 

Single different cause pathway (P5a) 286 

The causal equations for this model would be 287 

+ � ����� � +́ � �" 

� � ����� � �́ � �� 

� � 
�� � 
�+ � �� � �� 

� � 
�+ � �� � �� 

where �"������  are not correlated. Regression parameters derived are in Table 6. 288 

Two specific predictions of this pathway shared only by the convergent pathway (P3) are that 289 

���
� � 0 and that���

� � ���
� % 1.  290 

Prediction R1: ���
� � ���

� . ���
� % 0 291 

Prediction R2: |�	�| % �	���� , 292 

 Prediction R3: The correlation �������is predicted to have the same sign as Mcb. 293 

Prediction R4: (a) ��� � ����� and further (b 
!���� ������

� !
��"#���� ,�����

� $
� ���

� is true. 294 

Table 6. Relationship between the causal and regression equations for Single Different 295 

Cause pathway 296 

Slopes Errors 

��� � 
� 	�� � 
��" � �� 

�	� � 
�

�

��%
�  		� � 
��" � �� � 
���%

� -
���

�

� �" � ��

�

. 
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�	� � 0 		� � 
��" � �� � 
��� 

 297 

Double different causes pathway (P5b) 298 

The causal equations for this model would be 299 

+ � ����� � +́ � �" 

/ � ����� � /́ � �& 

� � 
�+ � �� � �� 

� � 
�+ � 
�/ � �� � �� 

� � 
�/ � �� � �� 

where �"�&������  are not correlated. Regression parameters derived are in Table 7. 300 

Two specific predictions of this pathway shared only by the convergent pathway (P3) are that 301 

���
� � 0 and that���

� � ���
� % 1.  302 

Prediction R1: ���
� � ���

� . ���
� % 0 303 

Prediction R2: |�	�| % �	���� , 304 

Prediction R3: The correlation �������is predicted to have the same sign as Mcb. 305 

Prediction R4: (a) ��� � ����� and further (b)   
!���� ������

� !
��"#���� ,�����

� $
� ���

� is true. 306 

It can be seen that all predictions of pathways P5a and P5b are identical and henceforth we 307 

will treat both of them in a single group as pathway P5.  308 

  309 
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Table 7.  Relationship between the causal and regression equations for Double Different 310 

Cause pathway. 311 

Slopes Errors 

��� � 
�

�

��%
�  	�� � 
��"�1 � ��%

� � � 
��& � �� � 
�

�

��%
� �� 

�	� � 
'

�

��(
�  		� � 
'�&�1 � ��(

� � � �� � 
'

�

��(
� �
��" � ��� 

�	� � 0 		� � 
'�& � �� 

 312 

Pathways with loops  313 

In pathways with loops, since there is a cyclic dependence between the variables we begin 314 

with differential equations with variable-specific constant rates of disintegration that assure 315 

steady states.  This set of equations is then used to derive equilibrium solutions. 316 

 317 

Positive or negative feedback pathway (P6) 318 

The causal equations for this model would be 319 

� � ����� 

�
� � 
�� � �� � �� � 
)� � �� 

�
� � 
�� � �� � �� � �� 

where ������ are not correlated, and � and � are positive. For a consistent definition of 320 

feedback, we assume 
�and 
� to always be positive, and that the sign of 
)  decides 321 

whether it is a positive or negative feedback loop. Feedback loops depend crucially on the 322 
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relative strength of the forward versus backward causation. If the feedback term, i.e. the effect 323 

of C on B is weak, it approximates to a linear pathway, and if the forward term i.e. effect of B 324 

on C is weak, it approximates to a convergent pathway. Therefore the predictions of linear or 325 

convergent pathways can be expected if the forward or feedback links respectively are weak. 326 

Additionally however, the negative feedback pathway is associated with a problem of 327 

definition. If the feedback effect of C on B is stronger than the effect of B on C, the signs of 328 

the slope in the causal and regression equations could be opposite, implying that while 
� is 329 

positive, �	� could become negative. This happens when 330 

�	�=
��

��
� ∑  �� ��

∑  ���
% 0 i.e. 0
)

∑  ���
∑  ���

�
,���������-0 � ��

��
 331 

This results in a paradoxical transformation of a causally negative feedback into an apparent 332 

positive feedback since the sign of the slope and that of the feedback effect is the same. 333 

Further, when the negative feedback is much stronger than the forward effect, the predictions 334 

of convergent pathway are more applicable than the predictions of negative feedback 335 

pathway. At equilibrium where both 
��
��  and 

��
�� � 0, the equilibrium concentrations of B and C 336 

are given by 337 

� � 
��
1�� � 
�
)2 � � ��� � 
)��

�� � 
�
)
� 
)�� � ���

�� � 
�
)
 

� � 
�
�

� � ��
�

� ��
�

 

For simplification we take 
�
� � ����

,���������- , ��
� � ����.����

���������
 and ��

� � ��/�./���
���������

 338 

� � 
�
� � � ��

� � ��
�  

Similarly  
�
� � ��

��
 , ��

� � ��
��

 and ��
� � /�

��
 339 
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� � 
�
� � � ��

� � ��
�  

It should be noted that ��
� � ����.����

���������
 and ��

� � ��
��

 share��, and would therefore co-vary. 340 

The sign of this covariance is decided by the sign of 
), i.e. whether the feedback is 341 

positive or negative. 342 

Regression parameters can be derived from the above as in Table 8. 343 

Prediction R1: When the feedback is negative ���
� � ���

� . ���
�  344 

The reverse applies for positive feedbacks where ���
� % ���

� . ���
�  345 

Prediction R2: In negative feedback �	� � �	����  and in positive feedback|�	�| %346 

�	����. 347 

Prediction R3: The sign of this correlation will be decided by the sign of 
) which is 348 

negative for negative feedback and positive for positive feedback.  349 

Prediction R4: (a) It can be shown that for negative feedbacks����� % �����. For positive 350 

feedback the prediction is more conditional. The inequality ����� % ����� will be true 351 

above a threshold ���. For smaller ��� it is difficult to make a definite prediction. (b) for 352 

negative feedback 
���� ������

�

����
� ���

�  and for positive feedback 
���� ������

�

����
% ���

�  is true above 353 

a threshold ���. 354 

  355 
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Table 8. Relationship between the causal and regression equations for Positive or 356 

negative feedback pathway. 357 

Slopes Errors 

��� � 
� � 
��
1�� � 
�
)2 	�� � �� � ��� � 
)��

�� � 
�
)
 

�	� � 
� � ∑  �� ��
∑  ��

�

� 
�
�

� ∑  �� ��
∑  ��

�  

		� � �� � ∑  �� ��
∑  ��

� ��

� ��
�

�
345 - ��� � 
)��

�� � 
�
)
. 6���

7
∑  ��

� �� 

�	� � 
� 
�

� 
�
�


��
1�� � 
�
)2 

		� � 
� �� � �� � 
�
�

��� � 
)��
�� � 
�
)

� ��
�

 

 358 

Positive or negative feed-forward pathway (P7) 359 

The causal equations for this model would be 360 

� � ����� � �́ � �� 

� � 
�+ � �� � �� 

�
� � 
�� � �� � �� � �� 

�
� � 
�� � 
�� � �� � �� � �� 

where ������ are not correlated. At equilibrium 361 

� � ��

��
� � ��

��
� /�

��
� 
� � � �� � ��  taking  
� � ��

��
 , �� � ��

��
 and , �� � /�

��
 362 

� � 
�
� � �
)
��

� � - 
�
��

�� � 1
�

��. 
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� � 
�
� � 
)�
�
�

� � 
)

��

�� � ��
�

� ��
�

 

We will take 
� � ����.����
����

�� � 
���

����
�� � ��

��
 363 

Note that since �� decides both ��  and �� , the covariance between ��   and ��  will be  364 

���

����
��, which will be positive when 
) is negative i.e. for negative feed-forward, and 365 

negative when 
) is positive i.e. positive feed-forward. 366 

For simplifying the definition of feed-forward, we assume 
� and 
� to be positive, and the 367 

sign of 
) decides whether the feed-forward is positive or negative; a negative feed-forward 368 

pathway is once again associated with a problem of definition. If the feed-forward effect of A 369 

on C is stronger than that through B, and if their signs are opposite, the signs of slope in the 370 

causal and regression equations could be opposites. That is, if 
)� � 
�
� then �	� can be 371 

negative although the causal relationship between B and C is positive. This results in a 372 

paradoxical transformation of a causally negative feed-forward pathway into an effectively 373 

positive feed-forward pathway as the product ����	� and �	� both have the same sign. 374 

Note that while all the expressions are the same as in feedback pathways (Table 9), the 375 

differences lie in the meanings of  ∑  ��
� ��

�  , 
�
�  etc. 376 

Prediction R1: For positive feed-forward ���
� � ���

� . ���
� , and for negative feed-forward 377 

���
� % ���

� . ���
� , but under conditions in which the result mimics positive feedback, ���

� �378 

���
� . ���

� . This is the condition when a causally negative feed-forward transforms into an 379 

apparent positive feed-forward. 380 
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Prediction R2: When 
) is positive,�	���� % �	�. In the case of negative feed-forward 381 

�	���� � �	�  but under conditions in which a negative feed-forward transforms into a 382 

positive feed-forward, �	���� % 
� 
� � �	�. 383 

Prediction R3: For positive feed-forward, we expect a negative correlation, and for negative 384 

feed-forward, a positive correlation. Therefore, for positive feed-forward, the correlation  385 

�������  will have the opposite sign of that of�	�. For a negative feed-forward pathway, under 386 

conditions when it transforms into an effective positive feed-forward correlation,  �������  will 387 

have the opposite sign of that of�	�. 388 

Prediction R4: (a) In the case of positive feed-forward ����� % ��� and in the case of negative 389 

feed-forward prediction is conditional. Under the conditions when a causally negative feed-390 

forward becomes apparently positive feed-forward, the prediction of positive feed-forward is 391 

true. When a negative feed-forward is effective ����� % ��� will be true above a threshold ���.  392 

(b) For positive feed-forward 
���� ������

�

����
� ���

� . For negative feed-forward a universal 393 

prediction cannot be made. When the effect is that of a positive feedback the prediction of 394 

positive feedback is true, otherwise
���� ������

�

����
% ���

� . 395 

  396 
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Table 9. Relationship between the causal and regression equations for Positive or 397 

negative feed-forward pathway. 398 

Slopes Errors 

��� � 
� � 
��

��
 	�� � �� � ��

�
 

�	� � 
� � ∑  �� ��
∑  ��

�

� 
�
� � 
)�
�
�

� ∑  �� ��
∑  ��

�  

		� � �� � ∑  �� ��
∑  ��

� ��

� �
)

��

�� � ��
�

� ∑  �� ��
∑  ��

� ��  

�	� � 
� 
� � 
�
� � 
)�
�
�

. 
�
�

 		� � 
� �� � ��

� 
�
� � 
)�
�
�

. ��
�

� �
)

��

��

� ��
�

 

 399 

Testing the null hypotheses 400 

Testing in real life data needs to be different for equality and inequality predictions. The 401 

prediction can serve as the null model wherever equality is predicted, but needs to be treated 402 

as an alternative hypothesis wherever inequality is predicted. For pathways that predict 403 

equality, a two-tailed probability is used, and for pathways predicting one-way inequality, a 404 

one tailed test is used. In the results of simulations reported below, the convention 405 

consistently followed through Figs 2 and 3 is that if H0 is true, it is indicated by green, while 406 

H1 being true is indicated by red and H2 being true by yellow. 407 
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R1: H0: ���
� � ���

� . ���
� , H1: ���

� % ���
� . ���

�  and H2: ���
� � ���

� . ���
� .  Since every correlation 408 

coefficient is associated with a confidence interval, to test the null hypothesis, we check that  409 

the confidence interval of  ���
� � ���

� . ���
�  includes zero.   410 

R2: H0: �	� � �	����  (green), H1: �	� % �	����  (red) and H2: �	� � �	����  (yellow).  411 

R3: Since the signs of causal slopes 
�and 
�are allowed to be positive or negative in the 412 

models, the correlation coefficients are multiplied by the sign of the slope �	�. 413 

H0: �������
� . 8�9���	�� � 0 (green), H1: �������

� . 8�9���	�� % 0 (red) and H2: 414 

�������
� . 8�9���	�� � 0 (yellow).  415 

R4a: H0: ���
� � �����

�  (green), H1: ���
� % �����

�  (red) and H2: ���
� � �����

�  (yellow).  416 

R4b: H0:  
!���� ������

� !
��"#���� ,�����

� $
� ���

� , H1: 
!���� ������

� !
��"#���� ,�����

� $
% ���

� , H2: 
!���� ������

� !
��"#���� ,�����

� $
� ���

� . Since the 417 

prediction is about whether 
!���� ������

� !
��"#���� ,�����

� $
  is predicted by  ���

� , in the simulations results 418 

reported below we show a scatter plot between the two where good predictions lie along the 419 

diagonal and failure of prediction strays away from it. 420 

 421 

Fig 2. Analytical signatures for each pathway. Summarizing the analytical signature for 422 

each pathway in a color code where green represents acceptance of the null hypotheses H0, 423 

and red and yellow represent the acceptance of H1 and H2 respectively. Asterisks indicate 424 

conditional prediction e.g.*���
�  above a threshold, **���

� above a threshold. 425 

 426 

Fig 3. Simulation results of all pathways against all predictions. For all acyclic pathways 427 

and predictions from R1 to R4a, the result of every simulation run is plotted as a point with 428 
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���
�  and ���

�  on X and Y axes respectively. Green represents null hypothesis true, red for H1 429 

and yellow for H2. The results match very well with the predictions in Fig 2. For converging 430 

and different cause pathways, a pathway specific prediction is that the sum of the two 431 

correlation coefficients never exceeds unity. This is also evident in the simulation results.  432 

For feedback and feed-forward pathways predictions from R1 to R4a, the X axis is ���and Y 433 

is  
��1���
��1���

  which reflects the relative strength of the feedback or feed-forward term as 434 

compared to the forward relation between B and C. The feed effect is strong when the ratio is 435 

close to zero and weak moving away from it. For negative feedback and feed-forward the Y 436 

axis goes from -1 to 0 and for positive feedback and feed-forward from 0 to 1. With negative 437 

feedback and feed-forward, there is an apparent conversion to positive feedback and feed-438 

forward respectively under a set of conditions. When this happens ���becomes negative and 439 

the predictions of positive feedback and feed-forward respectively apply. It can also be seen 440 

that when the ratio is close to zero, predictions of converging pathway hold true.  441 

Predictions from R4b for all pathways are shown as scatter plots with 
!���� ������

� !
��"#���� ,�����

� $
and ���

� . 442 

When they are predicted equal, most points lie along the diagonal. Wherever inequality is 443 

predicted, they are on one side of the diagonal. 444 

Rejection due to overfitting inequality: For all inequality predictions, overfitting is possible. 445 

For example, if we expect that ���
� � ���

� . ���
� , it is also possible that ���

�  is too large than what 446 

can be predicted by the pathway under consideration. It is possible to test this either 447 

analytically using equations derived for the corresponding predictions (see S1 Text), or using 448 

simulations only if the parameters of the causal equations are known. If parameter estimates 449 

for the pathways are known from independent empirical sources, it should be possible to test 450 
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over-fitting inequality. We will illustrate this with real life data later in the section ‘Testing 451 

specific pathways and questions: The case of pre-diabetes.’ 452 

 453 

Simulations to test the sensitivity and robustness of 454 

predictions 455 

We used simulations to test the sensitivity and reliability of the analytical predictions. The 456 

simulations were run using the causal pathway equations for each of the pathways P1 to P7 to 457 

generate data, assuming the errors to be distributed normally around a mean zero. Up to 10000 458 

simulations are run, with each run using randomly drawn parameters and error standard 459 

deviations from a given range (see S1 Text ‘Simulations used for testing the sensitivity and 460 

robustness of the predictions’ for details). The error standard deviation ranges were selected 461 

such that the coefficients of determination were well spread between zero and one. The 462 

generated data were then used to test the predictions of the corresponding pathway. 463 

Simulations used in this section are not based on real life data, and are mainly employed to 464 

test the reliability of the predictions over a range of regression correlation coefficients.  465 

 466 

Agreement between analytical predictions and simulation results  467 

Figs 2 and 3 show that simulations generally follow the analytical predictions quite well, but 468 

with certain limitations. Many of the predictions, particularly when H1 and H2 are expected to 469 

be true, work well above threshold values of r. When either ���
�  or ���

�  or both are small, the 470 

null hypothesis fails to get rejected. This threshold of sensitivity can be reduced by increasing 471 

sample size (n) (Fig 4). In the case of cyclic pathways, many predictions are conditional as 472 
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described above, and that is clearly reflected in the simulations. The agreement between 473 

predictions and simulation results is weaker for a few specific pathway-prediction 474 

combinations, in the sense that they work in a narrow range of conditions. This was seen in 475 

case of P5 (different cause) prediction from R4b, and P7 (negative feed-forward) prediction 476 

from R2. The predictions become more reliable at higher n. This implies that we need to be 477 

conservative in rejecting pathways in such pathway-prediction combinations, particularly 478 

when the correlation coefficients are small. Further, wherever the predictions are themselves 479 

the null models, its rejection will naturally become conservative at low correlations. However 480 

for inequality predictions, where the null hypothesis is equality, failure of rejecting the null 481 

hypothesis should not be taken as rejection of the prediction when correlations are weak. 482 

When we take such a conservative approach, rejection of a prediction can be confidently taken 483 

to mean rejection of a pathway. 484 

 485 

Fig 4: Effect of n on the reliability of prediction. Note that the parameter area over which 486 

the simulation results match the prediction increases with n. 487 

 488 

It can be seen from Table 10 that each pathway makes a set of predictions by which some 489 

pathways can be differentiated from others. However, some have an identical set of 490 

predictions among the general predictions described so far. Table 10 shows that there are 6 491 

different signatures among 9 primary pathways. Some of the predictions are conditional, and 492 

therefore, it may not always be possible to differentiate between pathways. For example, some 493 

predictions do not work for very small r2 values, or if feedback is not distinguishable from 494 

linear pathways unless the feedback arrow is sufficiently strong. Such limitations are common 495 
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to all statistical tools, and they need to be used and interpreted in light of the appropriate 496 

context and conditions. 497 
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Table 10. Summary of predictions of all pathways considered. 498 

Prediction/ 

Rule → 

Pathway ↓ 

R1 R2 R3 R4 a R4 b Pathway specific 

prediction 

P1 linear ���� � ���� . ���� � 0 

 

|Mca|= |Mba.Mcb| rEba,Ecb= 0 rEbc,C/rBC < 1 ���ba�
� � �BC

� �

max
�
�ba�

� , �
BC

� �
� �AB

�
 

 

P2 radiating ���� � ���� . ���� � 0 |Mca|= |Mba.Mcb| rEba,Ecb= 0 rEbc,C /rBC < 1 ���ba�
� � �BC

� �

max
�
�ba�

� , �
BC

� �
� �AB

�  
 

P3 convergent ���� � ���� . ����  0 |Mca|< |Mba.Mcb| rEba,Ecb> 0 rEbc,C /rBC > 1 ���ba�
� � �BC

� �

max
�
�ba�

� , �
BC

� �
� �AB

�  
rAC=0,  

r2
AB+r2

BC<1 

P4 common 

cause 

���� � ���� . ���� � 0 |Mca|> |Mba.Mcb| rEba,Ecb< 0 rEbc,C /rBC < 1 ���ba�
� � �BC

� �

max
�
�ba�

� , �
BC

� �
���AB

�  
Symmetry around 

A,B,C 

P5 different 

cause 

���� � ���� . ����  0 |Mca|< |Mba.Mcb| rEba,Ecb> 0 rEbc,C /rBC > 1 ���ba�
� � �BC

� �

max
�
�ba�

� , �
BC

� �
� �AB

�  
rAC=0 

r2
AB+r2

BC<1 

P6 feedback 

negative 

���� � ���� . ���� � 0 |Mca|> |Mba.Mcb| rEba,Ecb< 0 rEbc,C /rBC < 1 ���ba�
� � �BC

� �

max
�
�ba�

� , �
BC

� �
���AB

�  
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P6 feedback 

positive 

���� � ���� . ����  0 |Mca|< |Mba.Mcb| rEba,Ecb> 0 rEbc,C /rBC < 1 ���ba�
� � �BC

� �

max
�
�ba�

� , �
BC

� �
���AB

�  
 

P7 feed-

forward 

negative 

���� � ���� . ����  0 |Mca|< |Mba.Mcb| rEba,Ecb> 0 rEbc,C /rBC < 1 ���ba�
� � �BC

� �

max
�
�ba�

� , �
BC

� �
��AB

�  
 

P7 feed-

forward 

positive 

���� � ���� . ���� � 0 |Mca|> |Mba.Mcb| rEba,Ecb< 0 rEbc,C /rBC < 1 ���ba�
� � �BC

� �

max
�
�ba�

� , �
BC

� �
���AB

�  
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Table 10 legend: Note that there are 6 distinct signatures among 9 pathways. Pathways with 499 

identical predictions are shaded with the same colour. There is some redundancy between the 500 

predictions. For example the results of R1, R2 and R3 are tightly correlated. We feel that the 501 

redundancy serves to validate and reinforce the predictions. Also when there are complex 502 

pathways arising through combinations of primary pathways, different predictions show 503 

differential departures from the primary pathway predictions. Therefore all predictions are useful 504 

in spite of some redundancy. 505 

 506 

Sensitivity analysis 507 

The predictions derived and tabulated above are based on the typical assumptions of mainstream 508 

statistics that the input variables are distributed normally and that all causal links are linear. 509 

However, it is important to ask how critical these assumptions are for the predictions to work. In 510 

experimental biology, the input variable is often designed to have uniform intervals and is not 511 

normally distributed. A moderate deviation from linearity is also common in physiological and 512 

other biological systems. If the predictions are too sensitive to these assumptions, they may 513 

prove to be of limited use in real-life. We used Monte-Carlo simulations to assess whether the 514 

predictions work under moderate deviations from these assumptions. When the input variables 515 

were selected randomly from a uniform rather than a Gaussian distribution, all predictions 516 

worked with nearly the same differentiating ability (data not shown). Similarly, when non-517 

parametric Spearman ranked correlations were used instead of Pearson’s correlations, the 518 

correlation related predictions (from R1 and R4) worked similarly (data not shown). This 519 

demonstrates that the tools are not too sensitive to the assumptions of normality of input variable, 520 

linearity of relationships, and parametric or non-parametric nature of correlations. 521 
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Applications of the method 522 

Accepting or rejecting pathways using real-life data 523 

Two approaches are possible by which the predictions of a pathway can be tested using real-life 524 

data. (i) Based on confidence intervals of correlations and regression slopes: The null hypotheses 525 

for every prediction can be tested using calculation of confidence intervals of regression 526 

correlation parameters. Simulations have shown that except when the underlying correlation 527 

coefficients are too low, this approach can be reliably used to test the predictions. The sensitivity 528 

of predictions depends upon the sample size as well as the position in the parameter space (Fig 529 

3). It is likely therefore that at smaller sample sizes, or at lower ���
�  or ���

� , pathways that predict 530 

H1 or H2 may fail to get support even if true. On the other hand, at lower ���
�  or ���

� if a pathway 531 

predicts H0 to be true and the null hypothesis gets rejected, the rejection can be highly reliable. 532 

(ii) Monte-Carlo simulation approach: An alternative approach, which will be more conservative 533 

in rejecting pathways, is the Monte-Carlo approach. Assuming a specific pathway to be true, it is 534 

possible to back calculate the causal equation parameters from the regression correlation 535 

parameters obtained in the data (Tables 2 to 9). For pathways such as negative or positive 536 

feedback, it is not possible to estimate all causal parameters from regression parameters. In such 537 

cases, if empirical estimates of one or a few causal parameters can be obtained, the remaining 538 

causal parameters can be worked back. Using the estimated parameters of causal equations, 539 

Monte-Carlo simulations can be run to obtain the probabilities of getting the observed results. 540 

This approach can be particularly useful when the correlations obtained in the data are weak, and 541 

a conservative inference is preferred.   542 

 543 
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Distinguishing between pathways with identical signatures 544 

From the predictions summarized in Table 10, it can be seen that some pathways share prediction 545 

signatures. For example, the linear pathway cannot be distinguished from radiating or 546 

convergent, is indistinguishable from different cause. There are three possible ways of resolving 547 

between pathways with similar signatures: (i) Swapping variables: In the generalized predictions, 548 

common cause pathway and negative feedback pathway have the same predictions. However, the 549 

predictions of the common cause pathway are symmetric around A, B and C, and flipping the 550 

positions of the three variables does not alter the predictions, which is not the case with negative 551 

feedback pathway. (ii) Involving a fourth variable whose causal relationship with at least one of 552 

the triad is already known, or (iii) involving more variables to cross validate pathways. We will 553 

discuss (ii) and (iii) in a different context below. 554 

 555 

Inferring causality between two variables 556 

It is extremely difficult to infer causal relationship between two correlated variables. Although 557 

some solutions have been suggested, their applicability is limited (15, 16). However, it is 558 

possible to infer the causal relationship between two variables if we have data on a third variable 559 

that is correlated with one or both of them with known causality. For example, in men, 560 

testosterone levels and muscle strength are correlated, but the direction of the causal arrow might 561 

be uncertain since testosterone can increase muscle mass, while  (34) exercise can also induce a 562 

testosterone response (35,36). The causal relationship can be revealed in cross-sectional data if 563 

we use chronological age as a third variable. Neither testosterone nor muscle mass decides the 564 

chronological age, but age may affect one or both the variables. If age shows significant 565 

correlation with one or both the variables, the predictions from different possible pathways can 566 
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be tested using the set of predictions as described. By testing these predictions, it should be 567 

possible to determine the causal relationship between muscle mass and testosterone.  568 

 569 

Inferring causal pathways with three variables 570 

To infer causal pathways within three intercorrelated variables, three alternative approaches are 571 

possible. The first approach is to test and resolve between preconceived hypothetical pathways. 572 

It is likely that prior knowledge or some insights into mechanisms allow us to start with a few 573 

plausible alternative pathways. It is possible to perceive more complex pathways by 574 

combinations of the primary pathways that we considered in this paper. For example, a pathway 575 

may contain both feedback and feed-forward elements. Such complex or combinational 576 

pathways can be used to make a set of predictions by the analytical approach described above, 577 

and testing these predictions can resolve between pathways. If we do not have such preconceived 578 

pathways, it would be necessary to consider all possible combinations of pathways between the 579 

three variables, and make differential predictions from each of them. In such cases, we must also 580 

consider permutations of the variables. At the end, it may not be possible to ascertain a single 581 

unique causal pathway since the prediction signatures of some of them may be identical. 582 

Nevertheless, it would still be possible to reject some pathways based on their prediction 583 

signature. In addition, if available, we can involve a fourth variable correlated to one or more of 584 

the three, if there is some pre-existing knowledge about its causal relationship.  585 

 586 

Inferring causal networks with more than three variables 587 

In complex systems, often there are large causal networks. In such networks, combinations of 3 588 

membered motifs can be identified. Out of the possible pathways among three variables some 589 
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can be rejected using analysis of the three variables. Bringing in a fourth one can provide 590 

additional insights which can be used for cross checking or validating our first set of inferences. 591 

In complex causal networks, there can be many such cross check and validation possibilities. For 592 

large networks algorithms requiring massive computational power may be needed that may pin 593 

down one or a few network structures from the large number of possible ones using 594 

combinations of three member motifs and cross validation facility among the motifs. 595 

 596 

Testing specific pathways and questions: The case of pre-597 

diabetes 598 

Apart from some common pathways described above, it is possible that real life problems have 599 

some added complications due to which, the standard solution of testing a fixed set of predictions 600 

may not be sufficient. However, one can apply similar foundational principles to handle such 601 

pathway-specific questions. We will illustrate this using a classical hypothesis that attempts to 602 

explain a human physiological state designated as an insulin resistant, hyperinsulinemic, 603 

normoglycemic, pre-diabetic state. In this state, the plasma levels of fasting insulin (FI) are 604 

raised although fasting glucose (FG) remains normal. The classical interpretation of this state 605 

(Fig 5a) is that a rise in insulin resistance, presumably as a result of obesity, is primary. Insulin 606 

resistance interferes with insulin-induced glucose uptake by muscle and other insulin-dependent 607 

tissues. The reduced uptake raises plasma glucose levels. The raised plasma glucose induces 608 

extra insulin secretion so that plasma insulin levels go up. The extra insulin compensates for 609 

insulin resistance and normalizes glucose level. As a result, the fasting steady state of an insulin-610 

resistant individual is characterized by raised FI and normal FG. At steady state, insulin 611 
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resistance is measured by the index, HOMA-IR (defined as  
����	
����.�	��������

��
�

���  ), and the β 612 

cell response to glucose, by the index, HOMA β (defined as 
���.����	
����
�	��������

��
����

 ). Both the indices are 613 

based on the assumption of a steady state.  614 

 615 

Fig 5: Possible pathways between insulin resistance, FG and FI: a) A simplified single feedback 616 

pathway that approximates the negative feedback pathway P6. b) A null model assuming FG and 617 

FI to be independent and HOMA-IR a derived construct. c) An improvised null model with an 618 

external causal factor influencing FG and FI. d) The classically perceived pathway with dual 619 

feedback from glucose and insulin. 620 

 621 

A logical flaw in this interpretation is that, after the glucose levels return to normal, there is no 622 

reason why FI should remain high. Insulin has a short half-life of about 6 minutes (32,37) and 623 

therefore a steady state level can be achieved quite fast; 12 hour fasting should be sufficient to 624 

achieve such a steady state. Therefore, a steady state in which FI is raised but FG remains normal 625 

is not well explained by the classical theory. In spite of this flaw, the main stream thinking in this 626 

field has held on to this interpretation for over four decades, and the indices HOMA-IR and 627 

HOMA- β continue to be commonly used in epidemiological research. Challenges to this causal 628 

interpretation come from the arguments and evidence that rise in FI precedes insulin resistance 629 

(24–28,38). Therefore, there is a need to reexamine the classical causal pathway. We will test 630 

this pathway based on our interpretations of the interrelationships of the regression-correlation 631 

parameters. 632 

The pathway in question is more complex than the basic set of pathways P1 to P7. For regulation 633 

of glucose production by the liver and glucose uptake by tissues, there is a dual negative 634 
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feedback. One feedback is exerted by glucose itself, which enhances tissue uptake and 635 

suppresses liver glucose production. The other feedback operates through insulin, which 636 

facilitates glucose uptake by insulin-dependent tissues and suppresses liver glucose production. 637 

If we ignore the direct glucose feedback and assume that feedback regulation operates only 638 

through insulin, then there is a single negative feedback. Thus the pathway can be simplified to 639 

the negative feedback pathway P6. If we incorporate dual feedback, as the equations show 640 

below, the relationship between insulin resistance and FG is not strictly linear. We could 641 

therefore use the standard set of predictions of a negative feedback model, assuming a single 642 

feedback. Alternatively, we can use the dual feedback model, and apply simulations to make and 643 

test predictions, since empirical estimates for most of the parameters are available from 644 

experiments (see S2 Text). 645 

However, the main problem in testing these pathways is that we have no direct measure of 646 

insulin resistance. HOMA-IR and HOMA-β are believed to measure insulin resistance and β cell 647 

response respectively, but they are derived from the other two variables, which makes the 648 

problem tricky and circular. We approach the problem using more than one set of assumptions. 649 

(i) First, we test the dual feedback pathway (Fig 5d) assuming HOMA-IR and HOMA-β to 650 

faithfully represent insulin resistance and β cell response respectively. (ii) Then, we examine the 651 

constraints laid down by deriving these two parameters from the other two variables. (iii) In 652 

comparison, we use a null model (Fig 5b) in which the classical pathway is not true, there is no 653 

relationship between FG and FI, and HOMA-IR and HOMA-β are artificial constructs derived 654 

from the two measured variables and may not reflect any real phenomenon. We also test the 655 

typical convergent model, in which FG and FI determine HOMA-IR. (iv) Using some 656 

oversimplification, ignoring non-linearity of the model and assuming that HOMA-IR and 657 
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HOMA-β are faithful indicators, we test the classical predictions of the negative feedback 658 

pathway (Fig 5a) as described earlier. We use epidemiological data on FG and FI measurements 659 

in four populations to test the classical causal pathway using our approach.  660 

 661 

Data sources 662 

We used four data sets of sample studies by two research groups. All the four sets contain 663 

individuals with and without overt type 2 diabetes. Since we are addressing the prediabetic state 664 

here we have taken the non-diabetic subset of n individuals from the four samples.  (i) Coronary 665 

Risk of Insulin Sensitivity in Indian Subjects (CRISIS) Study, Pune, India (39) (n=558).  (ii and 666 

iii) Newcastle Heart Project (NHP), England, (40) which has data on populations of two different 667 

ethnic origins namely European white (n=595) and south Asian (n=413). (iv) Pune Maternal 668 

Nutrition Study (PMNS), Pune, India (41) (n=299).  All the predictions are tested independently 669 

in all the four data sets.   670 

 671 

The dual feedback model (Fig 5d) 672 

We assume that the standing plasma glucose level is a result of baseline rate of glucose 673 

production by the liver; suppression of this production as well as muscle glucose pickup which is 674 

proportional to the standing glucose level (direct glucose feedback); the insulin mediated 675 

suppression as well as uptake (insulin mediated feedback) and individual variability. The 676 

standing insulin levels are a result of glucose stimulated insulin secretion on the one hand and 677 

insulin degradation on the other. Thus, the causal equations can be written as 678 

 679 
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��

��
� � � 	�. � � ����� . 	�. � � 1 

 680 

��

��
� 	�. � � �. � � � 

 681 

Where G and I are plasma levels of glucose and insulin respectively, and FG and FI are the 682 

fasting steady state levels of the same. K1 denotes the rate constant for negative feedback of 683 

glucose on liver glucose production and tissue glucose uptake; K2 denotes the rate constant for 684 

insulin-mediated feedback which is proportional to ISENS, the insulin sensitivity of tissues; K3 is 685 

the rate constant for glucose-induced insulin release; and d, the rate of insulin degradation.  686 

 687 

Steady state solution: By assuming the net change to be zero in a steady state, we get  688 

�� �
��� � �� � �����	��

�	� � �����	�	�
 

�� �
	��� � �

�
 

It can be seen that the steady state glucose level is a function of insulin resistance (IR) which is a 689 

reciprocal of insulin sensitivity. Using the reciprocal, we can write 690 

 691 

�� �
��. ��� � �� � 	��

��. �	� � 	�	�
 

 692 

Thus the relationship between FG and IR is non-linear and follows a saturation curve.  693 

Testing the pathways by the four different approaches described above: 694 
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(i) Assuming classical pathway and faithful indices: The following predictions of the 695 

classical pathway depicted in Fig 5d and modeled above are testable. 696 

(a)  HOMA-IR, FG and FI should be positively correlated to each other. This 697 

prediction is true in all the four data sets except that the correlations between FG 698 

and FI are weak in all the four data sets. In terms of the variance explained (range 699 

2.6 to 4.9 %) FG and FI are poorly related (Table 11a). The glucose homeostasis 700 

model expects a positive correlation between FG and FI. It is important to realize 701 

this since in the classical thinking, a prediabetic state is characterized by increased 702 

insulin but normal glucose levels. If the compensatory insulin response is mediated 703 

through glucose, it is impossible to have a raised FI without a proportionate rise in 704 

FG. In the pathway predictions, a positive correlation between FG and FI is 705 

expected independent of the feedback loop. However the classical thinking tries to 706 

explain a hyperinsulinemic normoglycemic state achieved through this pathway. 707 

The poor correlation between FG and FI, and a large coefficient of variation in FI 708 

compared to FG indicates that a normoglycemic hyperinsulinemic state may 709 

indeed be achieved, but whether the classical pathway offers a sound explanation 710 

for this state is the question. In an insulin resistant state, the level of FI can 711 

increase by about 10-fold the normal. However, the difference between the lower 712 

and upper limit of glucose in a pre-diabetic state is less than 1.5-fold. To achieve a 713 

tenfold increase in the effect resulting from a 1.5 fold increase in the causal 714 

variable, the slope needs to be of the order of 7 to 8. However in the data, the 715 

regression slope ranges between 0.05 and 0.2 (Table 11). Therefore the variance in 716 

FI is unlikely to be caused by variance in glucose following insulin resistance. 717 
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Therefore, we need to conclude that most of the variation in FI appears to be 718 

random error independent of insulin resistance. 719 

 720 

Table 11. Testing the putative pathway leading to a hyperinsulinemic, normoglycemic, 721 

insulin resistant prediabetic state. 722 

a. Fasting glucose and fasting insulin in the four datasets 723 

Data source FG mean (s.d.) FI mean (s.d.) 

CRISIS (n=558) 94 (18.70) 7.58 (1.82) 

KEM (n=299) 86.35 (11.21) 11.84 (10.82) 

NHP-SA (n=413) 98.86 (7.37) 11.11 (9.26) 

NHP-EU (n=595) 99.90 (6.40) 8.41 (5.29) 

 724 

b. Correlations between FG, FI, HOMA-IR and HOMA beta in the four data sets 725 

 726 

 727 

 728 

 729 

c. C730 

onv731 

erg732 

ent 733 

pat734 

hw735 

 FG:FI FG:HOMA IR FG:HOMA beta FI:HOMA IR FI:HOMA beta HOMA 

IR:HOMA beta 

r(M) ρ r ρ r ρ r ρ r ρ r ρ 

CRISIS 

(n=558) 

0.217 

(0.055) 

0.284 0.525 0.465 -0.209 -0.403 0.931 0.975 0.232 0.698 0.312 0.543 

KEM 

(n=299) 

0.198 

(0.191) 

0.241 0.317 0.352 -0.219 -0.259 0.985 0.990 0.532 0.811 0.633 0.746 

NHP-SA 

(n=413) 

0.163 

(0.206) 

0.282 0.236 0.464 -0.198 -0.145 0.995 0.990 0.763 0.875 0.833 0.810 

NHP-EU 

(n=595) 

0.223 

(0.185) 

0.261 0.309 0.464 -0.064 -0.055 0.994 0.993 0.891 0.933 0.904 0.886 
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ay (A=Glucose, B=HOMA IR, C=Insulin) 736 

 737 

Prediction R1 

r2AC 

<r2AB.r2BC 

 CI of  r2AC CI of r2AB.r2BC Accepted/Rejected 

Lower Upper Lower Upper 

CRISIS  0.013 0.081 0.180 0.300 Accepted 

KEM  -0.004 0.082 0.035 0.162 Not rejected 

NHP-

SA 

-0.004 0.057 0.013 0.098 Not rejected 

NHP-

EU  

0.016 0.084 0.050 0.139 Not rejected 

Prediction R2 

Mca<Mba.Mcb 

 CI of  Mca CI of Mba.Mcb Accepted/Rejected 

Lower Upper Lower Upper   

CRISIS  -0.053 0.163 0.104 0.146 Accepted   

KEM  -0.185 0.568 0.195 0.413 Accepted   

NHP-

SA 

-0.199 0.611 0.1761 0.418 Accepted   

NHP-

EU  

-0.178 0.548 0.190 0.320 Accepted   
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Prediction R3 

rEbaEcb>0 

 CI of  rEbaEcb 

 

Accepted/Rejected   

Lower Upper     

CRISIS  0.390 0.521 Accepted   

KEM  0.118 0.333 Accepted   

NHP-

SA 
0.081 0.268 Accepted 

  

NHP-

EU  
0.178 0.328 Accepted 

  

Prediction 4a 

rEbaC>rBC 

 

 

 CI rEbaC CI rBC Accepted/Rejected   

Lower Upper Lower Upper   

CRISIS  0.953 0.965 0.918 0.941 Accepted   

KEM  0.966 0.978 0.982 0.988 Rejected   

NHP-

SA 

0.980961 0.987 0.994 0.995 Rejected   

NHP-

EU  

0.968 0.977 0.993 0.995 Rejected   

 738 

d. Negative feedback pathway (A= HOMA IR, B=Glucose, C=Insulin) 739 
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Prediction R1 

r2AC 

>r2AB.r2BC 

 CI r2AC CI of r2AB.r2BC Accepted/Rejected 

Lower Upper Lower Upper 

CRISIS  0.845 0.886 0.003 0.300 Accepted 

KEM  0.9652 0.978 -0.001 0.161 Accepted 

NHP-

SA 

0.988 0.99 -4.8695E-05 0.006 Accepted 

NHP-

EU  

0.986 0.990 0.001 0.012 Accepted 

Prediction R2 

Mca>Mba.Mcb 

 CI Mca CI of Mba.Mcb Accepted/Rejected 

Lower Upper Lower Upper  

CRISIS  -3.242 9.967 0.222 0.641 Accepted 

KEM  0.083 0.299 0.080 0.587 Rejected 

NHP-

SA 

0.085 0.326 0.038 0.334 Accepted 

NHP-

EU  

-3.766 11.581 0.132 0.457 Accepted 

Prediction R3 

rEbaEcb<0 

 Lower rEbaEcb Upper rEbaEcb Accepted/Rejected 

CRISIS -0.574 -0.452 Accepted 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/278101doi: bioRxiv preprint 

https://doi.org/10.1101/278101
http://creativecommons.org/licenses/by/4.0/


49 

KEM -0.414 -0.210 Accepted 

NHP-

SA 
-0.325 -0.142 

Accepted 

NHP-

EU 
-0.379 -0.234 

Accepted 

Prediction R4a 

rEbaC<rBC 

 CI rEbaC CI rBC Accepted/Rejected 

 Lower Upper Lower Upper 

CRISIS  -0.392 -0.243 0.136 0.294 Rejected 

KEM  -0.231 -0.008 0.087 0.305 Rejected 

NHP-

SA 

-0.168 0.023 0.068 0.256 Rejected 

NHP-

EU  

-0.167 -0.008 0.145 0.298 Rejected 

 740 

Table 11 footnote: The classical pathway leading to a prediabetic state is tested using the 741 

pathway prediction approach. (a) Means and standard deviations from the four data sets (b) 742 

correlations obtained from empirical data (c) testing the four predictions for the null model (fig 743 

5b) (d) testing the four predictions of a simplified classical negative feedback pathway (fig 5a). 744 

 745 
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(b) By the steady state equations, the slope of the regression of FI on FG should be 746 

K3/d. Empirical estimates for both K3 and d are available (see S2 Text) and 747 

therefore this prediction can be tested. The empirical estimates are K3 = 0.08 748 

microIU.mg/min and d = 0.15/min respectively, and thereby the expected slope is 749 

0.533. In all the four data sets, the slopes are significantly smaller than the ones 750 

predicted from the empirical estimates (0.05 to 0.2). Thus, apart from a mismatch 751 

between the slope required to cause the observed variation in FI and actual slopes, 752 

the slopes expected from the empirical estimates of parameters and those obtained 753 

in regression also do not match. The latter mismatch by itself may not be sufficient 754 

to reject the pathway since a large measurement error in the X variable, i.e. FG can 755 

lead to underestimation of regression slope, but this explanation implies that a 756 

substantial part of variation in glucose is independent of insulin resistance, and is 757 

akin to random error with respect to the hypothetical causal pathway.  758 

(c) HOMA-β in our assumption represents K3. However K3 is a constant in our model, 759 

and although it may have some variability in the population, it is uncorrelated with 760 

the three variables of concern. Therefore, HOMA-β should show no significant 761 

correlation with FG, FI and HOMA-IR. However, in all the four data sets HOMA-762 

β is significantly positively correlated with FI, but negatively correlated with FG 763 

and positively correlated with HOMA-IR.  764 

(d) In a negative feedback pathway ���
� � ���

� . ���
� . Qualitatively this inequality is true 765 

for HOMA-IR, FG and FI in the data. However, simulations show that there is 766 

overfitting of the inequality. ���
�  in all the four sets of data are substantially higher 767 

than the distribution obtained in the simulations (Fig 6). The correlation between 768 
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FI and HOMA-IR is far greater than that predicted by the simulations, leading to 769 

an overfitting rejection.  770 

Thus if we assume the two HOMA indices to faithfully represent insulin resistance 771 

and beta cell response respectively, then classical pathway needs to be rejected 772 

owing to mismatches with many of its predictions. 773 

 774 

Fig 6: Frequency distribution of correlation coefficients in simulations of the classical pathway 775 

leading to prediabetic state: Bars represent the distribution of Pearson’s correlations obtained in 776 

10000 runs of simulations. The arrows indicate Pearson’s correlations in the four sets of 777 

empirical data. The distribution generated by simulations matches well with the real life 778 

correlations for true IR-FG (grey bars and arrows), FG-FI (red bars and arrows), and the product 779 

of the two (purple bars and arrows). The correlation between true IR and FI is greater than the 780 

product as predicted by the pathway (green bars, we do not have empirical estimates of these 781 

correlations) but the correlation between HOMA-IR and FI (blue bars and arrows) is 782 

substantially greater than the predicted leading to an overfitting rejection. This indicates that 783 

either HOMA-IR as currently calculated is substantially different from true insulin resistance or 784 

the pathway get rejected based on this prediction. 785 

 786 

e. Effects of deriving HOMA-IR and HOMA-β from FG and FI: Since HOMA-787 

IR and HOMA-β are not independently measured but derived from FG and FI 788 

measurements, some correlations will follow from the derivations themselves. 789 

The overfitting anomaly observed above can be explained as an artifact 790 

coming out of the calculation of HOMA-IR.  However, some other anomalies 791 
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remain unexplained. Here we are assuming that the classical pathway is true 792 

and therefore, FI is a linear function of FG. If FI is represented as m.FG + e, 793 

HOMA-IR will be correlated to FG2.  Similarly, HOMA-β should be 794 

represented as m.FG/(FG – 63)+e. Under normal physiological range, FG > 795 

63 and therefore HOMA-β is a decreasing function of FG. As a result both FI 796 

and HOMA-IR should be negatively correlated to HOMA-β. Simulations of 797 

the pathway results in a negative correlation between HOMA-IR and HOMA-798 

β as long as the errors are small to moderate. These expectations do not match 799 

the empirical data, in which FI and HOMA-IR have significant positive 800 

correlations with HOMA-β. Thus, accepting the classical pathway with some 801 

allowance for artifacts coming out of the derived variables is not sufficient to 802 

explain the empirical correlations. 803 

f. Testing the predictions of the null model: If FG and FI are independent of 804 

each other and have some variance around a mean, HOMA-IR is expected to 805 

be positively correlated with both since it is a product of the two. FI should be 806 

positively correlated with HOMA-β, but FG should be negatively correlated 807 

with HOMA-β. In the HOMA-IR- HOMA-β relationship, FI is in the 808 

numerator of both. FG is in the numerator of HOMA-IR but in the 809 

denominator of HOMA-β. Nevertheless, since the coefficient of variation of 810 

FI is substantially greater than that of FG, FI is expected to dominate the 811 

relationship and result in a positive correlation between HOMA-IR and 812 

HOMA- β. All these predictions are observed in the data. The mismatch of the 813 

null model with the data is that it assumes FG and FI to be independent and 814 
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uncorrelated. In all the four sets of data, there is a significant but weak 815 

correlation between the two. The r2 ranges from 0.026 to 0.049, and thus not 816 

more than 5 % of variance is explained by the relationship.  817 

If we consider FG and FI to be independent and HOMA-IR and HOMA-β derived 818 

from them, they constitute a convergent pathway that can be tested by the pathway 819 

predictions. It can be seen that predictions from R1, R2 and R3 of the convergent 820 

pathway are accepted. However, prediction from R4 and the pathway-specific 821 

prediction are rejected (Table 11b). These rejections can be explained by the positive 822 

correlation between FG and FI. We have seen in the analysis of pathway P3 that if A 823 

and C are positively correlated then ���
� � ���

�  can be greater than 1. The rejection of 824 

the null model suggests that there is a relationship between FG and FI, but does not 825 

indicate whether it comes from the classical pathway or through any other source as in 826 

Fig 5c.  827 

 828 

g. If we ignore the non-linearity of the model and assume HOMA-IR and 829 

HOMA-β to faithfully represent insulin resistance and beta cell response, we 830 

may use the 4 predictions of the standard negative feedback pathway. It is 831 

seen that predictions from R1, R2 and R3 are accepted but the outcome of 832 

prediction from R4 is complex (Table 11c). After correcting for the effect of 833 

HOMA-IR, the FG-FI correlation should be weakened and that difference 834 

would be predicted by the correlation between HOMA-IR and FG. However 835 

instead of weakening, the FG-FI correlation becomes negative. Because of the 836 

strong positive correlation between HOMA-IR and FI, correcting for HOMA-837 
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IR subtracts from every value of FG, a quantity proportionate to FI, leading to 838 

a negative correlation between the corrected FG and FI. Additionally, 839 

simulations of the pathway show that if true insulin resistance is assumed to 840 

be correlated to FG by the same order as HOMA-IR, the correlation of true 841 

insulin resistance with FI is far less than that between HOMA-IR and FI (a 842 

result similar to Fig 6 and therefore not separately shown). Thus, there is an 843 

overfitting rejection of prediction from R1 as well. Rejection of this pathway 844 

based on two predictions is due to the unrealistically strong correlation 845 

between HOMA-IR and FI, which comes from the calculation of HOMA-IR 846 

itself.  847 

 848 

We need to examine now to what extent HOMA-IR faithfully represents the true insulin 849 

resistance because if it does, the classical pathway certainly gets rejected. This can be examined 850 

in the simulations since the true insulin resistance is an input variable and HOMA-IR can be 851 

calculated as an outcome of the simulations. We see that HOMA-IR is correlated well with true 852 

insulin resistance when both e1 and e2 are close to zero (Fig 7). As the errors increase, the 853 

correlation becomes weaker. In the data, we do not have access to e1 and e2 but since the FG-FI 854 

correlation also becomes weaker with e2, we can look at how HOMA-IR represents true insulin 855 

resistance at different levels of FG-FI correlation. It can be seen that as FG-FI correlation 856 

becomes weak, HOMA-IR correlation with the true insulin resistance also becomes weak (Fig 857 

7), but this relationship is affected by e1. When e1 is close to zero, i.e. almost all the variation in 858 

FG is explained by variation in true insulin resistance, even at low FG-FI correlation, HOMA-IR 859 

represents true insulin resistance fairly well, their correlation ranging between 0.58 and 0.7. On 860 
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the other hand if we assume e1 to be large i.e. most of the variation in FG is due to random error 861 

or effects independent of insulin action, HOMA-IR is poorly correlated with true insulin 862 

resistance, the correlation coefficient declining to 0.2. Thus if we assume that the variance in FG 863 

is mainly caused by insulin resistance, then we have to reject the classical pathway leading to 864 

hyperinsulinemia. Alternatively, it is likely that the classical pathway is true but HOMA-IR does 865 

not represent true insulin resistance and that most of the variation in FG is not caused by insulin 866 

resistance. The substantially lower than expected slope of the FG-FI regression suggests large 867 

random errors in FG making the second interpretation more likely. In any case the classical 868 

pathway and the faithfulness of HOMA indices cannot be simultaneously true, and we have to 869 

reject at least one of them.  870 

Results of the four alternative approaches to analyze the classical pathway and the null model 871 

converge on the inference that the null model is rejected on the basis of a weak but significant 872 

correlation between FG and FI. But the weak correlation in FG and FI is not adequately 873 

explained by the classical pathway owing to multiple mismatches and rejection of many of its 874 

predictions. The pathway rejection may be partially saved by saying that HOMA-IR and HOMA- 875 

β are not good indicators of insulin resistance and beta cell response and that we do not have 876 

access to true insulin reistance to test the predictions. However the FG-FI regression slope also 877 

has a large mismatch with expectations derived from the variance in FI as well as from empirical 878 

estimates of K3 and d. Therefore, it seems more likely that FG and FI are related by causes other 879 

than the classical pathway, and HOMA-IR and HOMA- β are derived artificial constructs that do 880 

not represent any real life phenomena.  881 

There are a number of real life interpretations of the pathway in Fig 5c. Autonomic inputs from 882 

the nervous system are known to affect both insulin secretion and liver glucose production, 883 
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which might be represented by the common cause arrows of Fig 5c. Alternatively, a small error 884 

in data collection can also result in the observed FG-FI correlation. The fasting sampling is done 885 

by instructing the subjects to have no food or drink after the last evening meal. However, if even 886 

a small proportion of subjects happen to consume bed tea an hour or two before sampling, their 887 

glucose as well as insulin levels could be slightly elevated simultaneously. This can result in a 888 

weak positive correlation between FG and FI in the data. Since the fasting state is based on the 889 

honesty of the subjects and there is no independent monitoring, this source of error cannot be 890 

ignored. Thus, there are more than one possible reasons for external factors causing a weak 891 

correlation between FG and FI, and the correlation is not sufficient to support the classical 892 

pathway in the presence of multiple other mismatches. 893 

 894 

Fig 7: The reliability of HOMA-IR as an index of true insulin resistance: The pathway 895 

simulations were carried out at a standard deviation of e1=1 (blue dots) and 10 (red dots). The 896 

FG-FI correlation weakens with increase in e2 which also affects the correlation between true IR 897 

and HOMA-IR. It can be seen that HOMA-IR is a reliable indicator of insulin resistance when e1 898 

is small, but at large e1 it is a poor indicator as suggested by a weak correlation with true insulin 899 

resistance. 900 

 901 

It should be noted that the correlational patterns in the four data sets used are remarkably similar 902 

although they come from populations differing in location, ethnicity and culture. It would be 903 

important to see whether the same correlational patterns are observed in other populations as 904 

well, but we can be confident in rejecting the classical pathway at least in the populations 905 

sampled.  906 
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 907 

What can type 2 diabetes research gain from our analysis 908 

Putting the results together, it can safely be concluded that HOMA-IR and HOMA-β appear to be 909 

artificial constructs and reflect very marginally, if at all, the true insulin resistance and β cell 910 

response in a steady state. Until our approach for testing a causal pathway was available, there 911 

was no way to test whether HOMA-IR and HOMA-β truly represent the intended states of the 912 

system. Because of this limitation, insulin resistance was a circular argument. The inability of 913 

insulin to regulate glucose was assumed to be because of insulin resistance, but insulin resistance 914 

was measured as the inability of insulin to regulate glucose. This circularity had made the 915 

hypothesis of insulin resistance and compensatory hyperinsulinemia non-falsifiable. Our 916 

approach to pathway predictions breaks the circularity, and makes it possible to test whether the 917 

insulin resistance and glucose-mediated compensatory hyperinsulinemia hypothesis is supported 918 

by epidemiological data. At least in the populations tested, many serious anomalies in the 919 

classical pathway leading to a hyperinsulinemic, normoglycemic, insulin resistance prediabetic 920 

state are exposed. Conservatively we can argue that since HOMA-IR and HOMA-β do not 921 

represent insulin resistance and β cell response faithfully, and we do not have alternative 922 

measures for them, it may not be possible to clearly reject the classical pathway, but the data 923 

clearly show that even if true, the classical pathway has a very limited role in deciding FG, FI 924 

and their inter-relationship. Both the steady state levels have a large component of error or 925 

effects independent of the pathway under consideration. Although our analysis is restricted to the 926 

prediabetic state at present, establishing causality in the prediabetic state has implications for the 927 

over diabetic state. According to classical thinking, a failure of compensatory insulin response 928 

leads to diabetic hyperglycemia. Since our analysis questions the compensatory insulin response 929 
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itself, the pathway leading to hyperglycemia is also in question. Even a highly conservative 930 

inference would demand rethinking of the causal process leading to diabetes.  931 

Doubts about the classical pathway are raised independently by experiments using insulin 932 

receptor knockouts or insulin suppression. Muscle-specific insulin receptor knockouts show 933 

altered glucose tolerance curves but normal fasting insulin (42). Insulin suppression experiments 934 

do not result in elevated fasting glucose (43–45). Inactivation of insulin degrading enzyme raises 935 

steady state insulin levels but does not decrease glucose levels (46,47). These experiments have 936 

already challenged the classical pathway. Thus, there are multiple reasons to doubt the classical 937 

pathway. On the other hand, a number of factors other than the mutual effects of FG and FI are 938 

known to affect insulin response as well as glucose homeostasis  (48–58), but these factors have 939 

not been integrated into the mainstream glucose homeostasis models. We do not intend here to 940 

test all possible alternative pathways deciding FG and FI. But our study lays down a set of 941 

methods by which this can be done, once the pathway hypotheses are clearly spelt out and the 942 

causal variables are measured. An important contribution of our methods is that physiological 943 

causal pathways can be evaluated based on epidemiological data, which is potentially a very 944 

important tool in understanding complex disorders. Experimental biology reveals what can 945 

happen in a system, but what does happen at the population level is better revealed by 946 

epidemiological data. Therefore, discerning causal signatures of pathophysiological pathways in 947 

epidemiological data is likely to be an important breakthrough. 948 
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Conclusions 950 

Making causal inferences from cross sectional correlational data is a long-standing problem. A 951 

correlation between two variables does not give reliable information about causal relations. 952 

However, we demonstrate here, in the context of steady state homeostatic systems, using 953 

mathematical proofs as well as simulations from causal pathways that, in a set of three or more 954 

correlated variables, it is possible to test causal hypotheses based on the interrelationships of 955 

regression-correlation parameters. This is potentially a highly valuable tool in making causal 956 

inferences from cross sectional data in several fields.  957 

Using this set of principles, we tested the classical causal assumption behind the 958 

hyperinsulinemic, normoglycemic, insulin resistant or pre-diabetic state. The analysis showed 959 

that this causal pathway and the measures of insulin resistance and insulin response were not 960 

supported by epidemiological data. Thus, the objections raised recently to the classical causal 961 

pathway are validated and alternative causal pathways that already have substantial experimental 962 

evidence need to be integrated in the mainstream clinical thinking.  963 
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