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Abstract. We propose a tissue classification method for MRI scans of 6-month old infants, and used it                 
to process the iSeg-2017 challenge data. The method relies on a deep-learning 3D U-Net network,               
trained with MRI scans of 216 infants, aged 6-24 months, from the ACE-IBIS longitudinal database. 
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1 Introduction 

Automatic image processing of infant MRI scans is difficult due to the rapid change of               
anatomy and MR relaxation parameters of human brain tissues during the first year of life. In                
particular, due to ongoing myelination, the contrast between white matter (WM) and gray matter              
(GM) is inverted between birth and 12 months in both T1 and T2 weighted images. This process                 
is gradual and in general follows the maturation pattern from central to peripheral, from inferior               
to superior and from posterior to anterior [Barkovich 1988]. 

Previously published papers describe methods where infants’ longitudinal scans were          
segmented by propagating information about tissue location from later timepoints back to earlier             
time-points [Feng Shi 2010], but the proposed iSeg-2017 dataset only includes images from one              
timepoint in ten 6-month old infants. Therefore, it is impossible to directly use this method.  

In our approach we combine two techniques: i) We first create an extended training dataset by                
applying a standard tissue classification technique to scans of 24-month old infants from a              
separate longitudinal dataset (ACE-IBIS) [Hazlett 2017] and then propagating this segmentation           
back to the 6-month old scans. ii) We then used deep learning to train a 3D U-Net network to                   
automatically perform tissue segmentation on scans of 6-month old infants first on ACE-IBIS             
scans and then on iSEG scans. 

Resulting cross-validation experiment showed that our method achieves good results in terms            
of kappa overlap measure.  
 

2 Methods and materials 

2.1 Materials 

We used data provided by the challenge organizers (iSEG) and another independent dataset             
(ACE-IBIS) from [Hazlett 2017]. The iSEG dataset consisted of 10 pairs of pre-processed T1w              
and T2w scans of 6-month old infants. ACE-IBIS is a longitudinal study comprising 318 infants               
at high familial risk (HR) for autism spectrum disorder (ASD), and 117 infants at low familial                
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risk (LR) for ASD. Out of this dataset we selected a subset of scans corresponding to subjects                 
that have both T1w and T2w scans acquired at 6, 12 and 24 months (n=216 subjects). 

2.2 Methods: longitudinal tissue classification of ACE-IBIS scans 

We used following process to created segmentation training library based on ACE-IBIS            
dataset: 

i) An unbiased population average of T1w scans for each age group was created using the                
method described in [Fonov 2010] ii) The group average for 24-month old scans were manually               
segmented into areas of high probability of GM, WM and CSF. iii) All 24-month old scans were                 
non-linearly registered to the 24-month template using the T1w modality. Tissue priors were then              
transformed to the space of subject’s scan. iv) An expectation-maximization algorithm was run to              
obtain tissue classification. v) Longitudinal non-linear registrations between scans at 6 and 12             
months and then between 12 and 24 months were performed using ANTs with mutual              
information [Avants 2011], using both T1w and T2w image modalities. Non-linear           
transformations from 6 to 12 and from 12 to 24 were concatenated and tissue classification maps                
from 24 months were transformed to match 6-month old scans.  

2.3 Methods: deep learning 

We adopted a 3D U-Net [5] for tissue classification, with 5 downsampling and 5 upsampling               
layers. Max-pooling was used, halving the patch resolution in downsampling steps and            
convolutional kernels that upsample by a factor of 2. Each layer also used batch-normalization              
and ReLU non-linear activation functions. The final layer of the network contains two 1x1x1              
convolutional layers with 64 and 32 channels and includes a dropout layer. The final layer is a                 
linear mapping of 32 features to the three segmentation labels (GM, WM, CSF) implemented              
again as 1x1x1 convolution. The output volume is cropped to remove border voxels to reduce               
edge effects. The loss function used to train the network was chosen as a log softmax of the                  
categorical cross-entropy, and a generalized kappa overlap metric was used to track performance             
on an out-of-sample validation dataset. The total number of trainable parameters in the model              
was 2,810,296. A diagram illustrating the architecture of the network is shown on Fig. 1. The                
parameters of each layer are shown in Table 1. 
We used both T1w and T2w scans, normalized to have zero mean and unit standard deviation. An                 
Adam optimizer was used for both training stages: the ACE-IBIS training stage used 10000              
mini-batches, the iSEG training used 4000 mini-batches, each mini-batch contained a 80x80x80            
voxel patch randomly drawn from ROI around brain. The iSEG data was additionally augmented              
by including samples that were flipped around Y-Z plane, and also applying small random              
rotations and displacements. Hyper-parameters were chosen based on performance of an           
out-of-sample validation dataset.  Figure 2 shows the progress of training. 
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Fig. 1.  Deep net architecture (U-Net), X correspond to minibatch size (1). 

Table 1.  Parameters of U-net 

U-net 
layer 

Input 
Channels 

Output 
Channels 

Convolutio
n kernel 1  

Convolutio
n kernel 2  

Upsamplin
g kernel 

1 4 64 5x5x5 5x5x5 5x5x5 
2 16 64 5x5x5 5x5x5 3x3x3 
3 16 64 3x3x3 3x3x3 3x3x3 
4 16 64 3x3x3 3x3x3 3x3x3 
5 32 64 1x1x1 3x3x3 - 
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Fig. 2.  Progress of deep-net training 

 

Fig. 3.  Results of cross-validation 
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3 Results 

3.1 Cross-validation experiment.  

Hyper-parameters of the deep net were chosen based on leave-one out cross-validation 
experiment. Results of the final version are shown in Fig. 3.  For the application on the testing 
dataset from iSEG challenge, the deep-net was re-trained using all 10 samples from iSEG training 
dataset (with data augmentation as described above). The resulting network was then applied to 
classify testing datasets. All experiments were performed on computer with Xeon CPU E5-2620 
v4 @ 2.10GHz with 64GB of ram and Nvidia Titan-X GPU, with deep-net implemented in 
Torch. Training on ACE-IBIS dataset took approximately 32 hours , final training on iSEG data - 
11 hours. Application on a single dataset, using GPU, takes 8 seconds. 

3.2 iSEG challenge results 

Deep-net was re-trained on the whole iSEG datasets (without validation subset) and 
cross-validation, with 4000 minibatches. Trained deep-net was applied to the testing dataset from 
iSEG web site and sent to the organizers under the name  NeuroMTL. 
Resulting metrics from  http://iseg2017.web.unc.edu/rules/results/   are shown in Table 2, where 
DICE corresponds to Dice overla metric, MHD - Modified Hausdorff Distance in mm, AHD - 
Average Surface Distance 

Table 2.  iSEG challenge results (  http://iseg2017.web.unc.edu/rules/results/  ) 

  CSF   GM   WM  

 DICE MHD ASD DICE MHD ASD DICE MHD ASD 

Mean 0.94 11.06 0.20 0.90 7.11 0.39 0.89 6.87 0.46 

Std 0.02 2.67 0.06 0.01 1.92 0.05 0.02 1.25 0.07 

3.3 Open source implementation 

Scripts used to implement and train deep-net are available at 
https://github.com/vfonov/NeuroMTL_iSEG  
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