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The Shine-Dalgarno (SD) sequence motif facilitates translation initiation and is fre-
quently found upstream of bacterial start codons. However, thousands of instances
of this motif occur throughout the middle of protein coding genes in a typical bac-
terial genome. Here, we use comparative evolutionary analysis to test whether
SD sequences located within genes are functionally constrained. We measure the
conservation of SD sequences across Gammaproteobacteria, and find that they are
significantly less conserved than expected. Further, the strongest SD sequences
are the least conserved whereas we find evidence of conservation for the weak-
est possible SD sequences given amino acid constraints. Our findings indicate
that most SD sequences within genes are likely to be deleterious and removed via
selection. To illustrate the origin of these deleterious costs, we show that ATG
start codons are significantly depleted downstream of SD sequences within genes,
highlighting the potential for these sequences to promote erroneous translation
initiation.

Introduction 1

The Shine-Dalgarno (SD) sequence is a short motif that facilitates translation initiation 2

via direct base pairing with the anti-Shine-Dalgarno (aSD) sequence on the 16S ribosomal 3

RNA [1]. Several previous studies have shown that SD sequences are significantly depleted 4

from within the protein coding genes of many bacterial species [2–4]. Although the deple- 5

tion of SD sequences within protein coding genes is highly statistically significant, many 6

prokaryotic genomes nevertheless contain thousands of these sequences [2, 3, 5]. While SD 7

sequences and their effect on translation initiation have been studied for decades [6–8], the 8

role of these SD sequences within protein coding genes—hereafter referred to as SD-like 9

sequences—is relatively unknown. 10

SD-like sequences may promote spurious internal translation initiation resulting in the 11

production of truncated or frame-shifted protein products that are likely to be deleterious [9]. 12

These sequences are also known to promote ribosomal frame-shifting during translation 13

elongation, which can have a beneficial regulatory function in specific cases [10–12]. More 14

1

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 8, 2018. ; https://doi.org/10.1101/278689doi: bioRxiv preprint 

https://doi.org/10.1101/278689
http://creativecommons.org/licenses/by-nc/4.0/


recently, researchers have suggested a general role for SD-like sequences in regulating the rate 15

of translation elongation [13]. The evidence for translational pausing at SD-like sequences 16

is supported by ribosome profiling studies in several bacterial species [13–16] as well as 17

experimental studies using a variety of techniques [12, 17–21]. If SD-like sequences regulate 18

elongation rates, many of the observed SD-like sequences within genes may actually be 19

beneficial for cells; translational slowdown and pausing has been shown to facilitate proper 20

protein folding in a number of different contexts [22–30]. 21

However, other researchers have hypothesized that the experimental evidence for an 22

association between SD-like sequences and translational pausing in ribosome profiling data 23

may be an experimental artifact rather than a true biological effect [31, 32]. Using a variety of 24

different experimental techniques, other studies have failed to observe an association between 25

the appearance of SD-like sequences and ribosomal pausing events [32–37]. 26

Taken together, the experimental evidence for whether SD-like sequences regulate transla- 27

tion elongation rates is mixed. Further, if this mechanism of translational pausing is real, we 28

still would not know whether organisms rely on the presence of SD-like sequences to regulate 29

the rate of translation elongation. Just as plausibly, the cellular costs related to frame- 30

shifting and spurious initiation may outweigh any benefits that would arise from employing 31

this regulatory strategy. Determining the balance of these various effects is important for 32

recombinant protein production applications that could use knowledge of SD-like sequences 33

to tune elongation rates and encourage the production of properly folded proteins [19, 20]. 34

Here, we apply comparative evolutionary analysis to determine whether SD-like sequences 35

in the genome of E. coli are deleterious, neutral, or beneficial. Evidence for conservation of 36

these sequences would indicate that they are beneficial, perhaps due to a regulatory role in 37

translation elongation. By contrast, our results show that 4-fold redundant codons within 38

SD-like sequences have significantly higher substitution rates than expected according to 39

two different null model controls. These findings hold across a number of attempts to iso- 40

late a pool of functionally constrained sites, and strongly suggest that SD-like sequences are 41

weakly deleterious throughout the E. coli genome. We find that start codons are significantly 42

depleted downstream of existing SD-like sequences, which provides evidence for the deleteri- 43

ous effects related to internal translation initiation that these sequences may promote. Our 44

findings cast doubt on the role of SD-like sequences as a potential regulator of translation 45

elongation rates in native genes, and urge caution when employing methods that use these 46

sequences to tune translation elongation in recombinant designs. 47

Results 48

Assessing the conservation status of Shine-Dalgarno-like sequence 49

motifs within protein coding genes 50

To investigate whether SD-like sequence motifs that occur within protein coding genes have 51

a functional role, we searched for signatures of evolutionary conservation of these sites across 52
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related species. Under the hypothesis that some fraction of the SD-like sequence motifs that 53

are present in any genome may be playing an important functional role, we would expect 54

to observe significantly lower rates of nucleotide substitution within these sequence motifs 55

relative to control sites. Conversely, if these sequences perform no such functional role and 56

are instead generally deleterious to organismal fitness, we should observe significantly higher 57

rates of substitution within these sequence motifs. 58

We assembled a dataset of 1394 homologous protein families from 61 species in the 59

order Enterobacterales and quantified nucleotide-level substitution rates across the coding 60

sequences from this dataset. We used E. coli as a reference organism to identify the location 61

of all SD-like sequence motifs that contain 4-fold redundant nucleotide sites in conserved 62

amino acid positions while ignoring sites at the 5′ and 3′ gene ends (see Materials and Meth- 63

ods). We note that canonical SD sequences are often not perfect complements to the highly 64

conserved anti-SD sequence [38–40], and in this manuscript, unless specified otherwise, we 65

used a binding energy threshold of −4.5 kcal/mol to define SD-like sequences. According to 66

this threshold, 1998 out of 4127 E. coli protein coding genes are preceded by SD sequences, 67

significantly more than expected by chance (Expectation: 638.57, z-test:p < 1016). By the 68

same definition, all E. coli protein coding genes contain 25,001 SD-like sequences, signifi- 69

cantly fewer than expected by chance alone (Expectation: 30,397.57, z-test:p < 1016) but 70

far more than the number of known SD sequences that function in translation initiation 71

(Supplementary Table S1). 72

We adopted a paired-control strategy to compare substitution rates between nucleotide 73

sites that fall within SD-like sequence motifs to control sites selected from the same gene 74

that do not occur within SD-like sequences. Throughout the remainder of this manuscript 75

we use the nomenclature of ‘codon’ and ‘context’ controls to refer to two different methods 76

for selecting control nucleotides. In codon controls, after identifying a 4-fold redundant 77

codon within a SD-like sequence, we find another occurrence of the same codon within the 78

same gene to use as a control. Similarly, in context controls we find the same tri-nucleotide 79

site (at the -1, 0, and +1 positions, where a 4-fold redundant position is at position 0) 80

within the same gene to use as a paired control (Fig. 1A). These two null models control for 81

possible effects arising from synonymous codon usage bias and biases that may emerge from 82

mutational context, respectively. 83

Since SD-like sequences are relatively rare, there are frequently many possible control 84

sites within a given gene for each synonymous nucleotide that occurs within a SD-like se- 85

quence (Fig. 1B). We thus randomly sampled single control nucleotide sites (from within the 86

same gene) for each applicable SD-like nucleotide. From the resulting paired list of substi- 87

tution rates for SD-like and control sites, we calculated the ratio of the average substitution 88

rates between the two categories (SD-like sites divided by control sites) and repeated this 89

sampling procedure 100 times to estimate the overall effect size. Assuming no difference in 90

substitution rates between SD-like and control sequence categories, the ratios should follow 91

a normal distribution centered around a value of 1. If sites within SD-like sequences are 92

more conserved than control sites, we should observe values significantly less than 1. Fi- 93

nally, if sites within SD-like sequences have elevated substitution rates, indicating that they 94

are generally deleterious, we expect to observe ratios significantly greater than 1. 95

3

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 8, 2018. ; https://doi.org/10.1101/278689doi: bioRxiv preprint 

https://doi.org/10.1101/278689
http://creativecommons.org/licenses/by-nc/4.0/


...CAA GGA GAC TTC GGA ACC CGA GTC...

...CAA GGA GAC CTC GGT --- CGC GTC...

...CAC GGC GAC TTA GGT ACC CGC GTA...

...CAT GGC GAC --- GGT ACC CGC GTC...

...CAA GGT GAC TTC GGA ACC CGC GTC...

SD-like
sequence

4-fold redundant
nucleotide(nt)

Control nt
(codon, GGA)

Control nt
(context, GAG)A

B

D

C

E

*
***

*
***

n.s.
n.s.

n.s.
n.s.

Figure 1. SD-like sequences have elevated rates of nucleotide substitution. (A)
Graphical illustration of methodology for identifying 4-fold redundant sites within SD-like
and control sites. (B) Relative substitution rates for all SD-like sites and control sites. Top
(blue) and bottom (orange) panels depict results for codon and context controls, respectively.
Red lines in violin plots depict category means. (C) The ratio of the average substitution
rates between SD-like and control categories based on a gene-specific bootstrapped approach
discussed in main text (p = 0.003, 0.48, 1.2 × 10−14, 0.53, top to bottom). (D) As in (B),
showing scores for putative SD sites within the 3′ end of genes. (E) Substitution rate ratios
for putative SD sites depicted in (D)(p = 0.001, 0.48, 0.013, 0.51, top to bottom). (*
denotes p < 0.05, *** denotes p < 0.001)

Regardless of which null model strategy that we used to select control nucleotides, we 96

found that the substitution rates of SD-like sequences are higher than that of control se- 97
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quences with an effect size on the order of ∼10–30% (Fig. 1C). By contrast, when we ran- 98

domly assigned nucleotide sites to SD-like or control categories the resulting distribution 99

of substitution rate ratios was centered around the expected value of 1 (‘shuffled’ data in 100

Fig. 1C). We conservatively determined statistical significance by calculating the Wilcoxon 101

signed-rank test between SD-like and control categories for each bootstrap replicate and 102

report the median p-value (p = 0.003 and p = 1.2 × 10−14 for codon and context controls, 103

respectively). These results remain qualitatively unchanged when we used different thresh- 104

olds to define SD-like sequences (Supplementary Fig. S1), as well as a different organism (Y. 105

pestis) to identify the locations of SD-like sequences (Supplementary Fig. S2). 106

To ensure that our methodology was capable of predicting conservation of sequence motifs 107

that are known to be functionally constrained, we leveraged the fact that some genes in our 108

dataset are directly followed by another gene in the 3′ direction. Thus, the SD sites of certain 109

downstream genes are expected to occur within the 3′ coding sequence of upstream genes. 110

We therefore repeated our analysis by considering only putative SD sites that occur within 111

the −50 to −1 region (relative to the stop codon) in the subset of genes where another 112

gene directly follows (while still selecting control sites from the internal regions of the gene). 113

Despite the low number of motifs that met this criterion, 4-fold redundant sites within this 114

restricted set of putative SD sequences had a substitution rate that is roughly 1/3 that of 115

control nucleotides, indicating strong evolutionary conservation of these known SD sites and 116

validating our overall statistical approach (Fig. 1D,E). We ensured that this result was not 117

simply an artifact of differential substitution rates at the 3′ end of genes by conducting the 118

same analysis on sites that occur within the 3′ region of genes that do not have any annotated 119

genes directly following, and thus are not expected to function as true SD sites. We detected 120

no significant signal of evolutionary conservation for this set of sites (SI Fig. S3). 121

Substitution rates differ according to mutational effects on SD-like 122

sequence strength 123

In the preceding section, we showed that 4-fold redundant sites within SD-like sequences 124

have significantly higher substitution rates than control sites. This finding provides support 125

for the model of SD-like sequences being deleterious and evolutionarily transient within 126

genes. However, the SD sequence binds facilitates translation initiation by binding directly 127

to the anti-SD(aSD) sequence on the 30S ribosomal subunit, and this binding strength 128

spans a range of values according to the actual SD nucleotide sequence in question. We thus 129

separately investigated SD-like sites according to how many synonymous mutations to the 130

4-fold redundant nucleotide in question were predicted to increase the strength of binding 131

to the aSD sequence (see Fig. 2A for an example). Note that this designation does not 132

refer to the absolute strength of aSD sequence binding, but rather the capacity for strictly 133

synonymous mutations to the site in question to either increase or decrease the relative 134

aSD sequence binding. We refer to the ‘locally strong’ and ‘locally weak’ sites hereafter as 135

those where any synonymous mutation is guaranteed to decrease or increase, respectively, 136

the strength of aSD sequence binding. 137
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..GG GAG G..

..GA GAG G..

..GC GAG G..

..GT GAG G..

Mutations resulting in
a stronger SD-like seq

Example
SD-like sites

∆G binding 
to aSD

-8.83

-5.06
-5.10

-4.92

0 (locally strong)

2
1

3 (locally weak)

A

Codon control Context controlB

**** *** **** ***
***

*

Figure 2. Local mutational effects on SD strength alter substitution rate pat-
terns. (A) Synonymous mutations to SD-like sequences may either increase or decrease
SD-like sequence strength depending on the identity of the 4-fold redundant nucleotide. (B)
Substitution rate ratio results as in Fig.1C. Data shown here by stratifying ‘all’ sites into cat-
egories that correspond to the expected change in SD strength given a synonymous substitu-
tion. Results shown for synonymous codon (left, (p = 0.003, 2.7×10−12, 0.006, 0.0004, 4.2×
10−5) and nucleotide context (right, p = 1.2× 10−14, 1.3× 10−22, 0.17, 0.2, 0.026) controls.
(* denotes p < 0.05, *** denotes p < 0.001)

Based on our previous results, we hypothesized that if SD-like sites are deleterious, we 138

should observe conservation of locally weak sites. For this subset of sites, any synonymous 139

mutation would, by definition, result in an increased aSD sequence binding strength. Indeed, 140

substitution rates for this category of sites were significantly lower than expected (substi- 141

tution rate ratios less than 1, p < 0.01), regardless of our method for selecting control 142

nucleotides (Fig. 2B). By contrast, when we analyzed the subset of locally strong SD-like 143

sites, where any mutation to the 4-fold redundant position is guaranteed to result in a weaker 144

interaction with the aSD sequence, we observed the opposite effect. These sites—which are 145

the majority of identified SD-like sites—had substantially elevated substitution rates com- 146

pared to paired controls on the order of ∼10–40% (see Table 1 for the number of data 147

points included in each category, which are highly skewed towards locally strong sites in this 148

analysis). 149

We stress that these findings are not indicative of conservation of intermediate or weak 150

SD-like sites, but rather the weakest possible sites given the amino acid constraints of the 151

sequence. To further address this point, we performed the same analysis on weak SD-like 152
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sites, which we define as having aSD sequence binding free energy values between −3.5 and 153

−4.5 kcal/mol. We observed the same pattern of locally strong sites having significantly 154

elevated substitution rates; this is despite the fact that these sites are weaker in absolute 155

terms than all sites depicted in Fig. 2 (SI Fig. S4). This nucleotide dependent analysis 156

shows that the magnitude of negative selection acting against SD-like sites is stronger than 157

we initially observed in Fig. 1. As before, to ensure the robustness of these results we we used 158

different thresholds to define SD-like sequences (Supplementary Fig. S5), as well as a different 159

organism (Y. pestis) to identify the locations of SD-like sequences and their classifications 160

(Supplementary Fig. S6) and observed consistent results. 161

Consistent results across protein abundance bins 162

While we have thus far shown that SD-like sequences as a whole are less conserved than 163

expected, this does not preclude the possibility that some fraction of SD-like sequences have 164

a functional role and are evolutionary constrained. The SD-like sequences that we have 165

analyzed may actually be a mixture of deleterious and functionally beneficial sites that look 166

weakly deleterious in aggregate. We reasoned that the most highly abundant proteins are 167

most likely to have been purged of deleterious SD-like sequences leaving the SD-like sequences 168

that remain within these genes particularly attractive candidates for functional conservation. 169

Thus, if SD-like sequences are a mixture of effects, we expect to find SD-like sites within 170

highly expressed genes to be relatively more conserved than other categories. By contrast, if 171

SD-like sites are a uniform pool in terms of their overall negative effects, we predict that the 172

substitution rates between different gene expression categories will not systematically vary. 173

To test this hypothesis, we separated our dataset into quintiles of genes according to their 174

overall protein abundances in E. coli, and analyzed the substitution rate ratios of SD-like 175

and control categories as before. 176

We confirmed that the most highly abundant proteins contain fewer SD-like sequences 177

(Fig. 3A). Since the the fraction of conserved amino acids per gene varies according to bins 178

of protein abundance (Fig. 3B), the overall fraction of SD-like sites eligible for analysis 179

is variable between different protein abundance bins (Fig. 3C). However, we nevertheless 180

observed largely consistent results across all protein abundance bins: locally strong 4-fold 181

redundant nucleotides within SD-like sequences have significantly higher substitution rates 182

than paired controls (Fig. 3). These results remained robust to our assumptions with regard 183

to SD-like thresholds (Supplementary Fig. S7) and species used to identify SD-like sites 184

(Supplementary Fig. S8)—though we note in the latter case E. coli values were still used 185

to classify homologs into protein abundance bins. We also found that the locally weak SD- 186

like sites had significantly lower substitution rates than expected across nearly all protein 187

abundance bins with the only exceptions being for the sites within the very lowest protein 188

abundance bins (SI Fig. S9). 189

Importantly for our goal of trying to delineate between competing hypotheses, we found 190

no evidence of a consistent trend that would indicate that sites within highly expressed 191

proteins were more or less likely to show evidence of functional constraint. By contrast, the 192

overall pattern of relative substitution rate ratios across different protein abundance bins 193
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Dataset Codon control Context control
Full dataset 1740 1161
Putative SD sites 31 15

Locally strong 1137 734
Locally weak 298 234

Protein abundance, locally strong
0-20% 139 79
20-40% 257 160
40-60% 297 193
60-80% 255 175
80-100% 187 127

Post domain, locally strong 69 43
Post domain, locally weak 24 21

Table 1. Number of sites analyzed in each bootstrap replicate used to calculate
substitution rate ratios. Note that this number differs from the total number of all SD-
like sites identified for a given criteria as some SD-like sites lack suitable control sites and
are discarded from further analysis. Additionally, when the number of SD-like sites in a gene
exceeds the number of control sites for a given criteria, pairs of sites are randomly sampled
without replacement until no control sites remain for a given bootstrap replicate and all
further SD-like sites discarded from analysis for that particular replicate.
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D

E

A

B

C
*** *** *** *** ***

* * * * ***

Figure 3. SD-like sequences have similarly elevated substitution rates across
protein abundance bins. (A) The most highly abundant proteins contain fewer SD-like
sequences. (B) Highly abundant proteins are have a higher fraction of conserved amino
acids. (C) Combined, the effects from (A) and (B) affect the fraction of SD-like sites within
genes that are eligible for our analysis. (D) Substitution rate ratios of the locally strong SD-
like sequences are elevated across all levels of protein abundance compared to synonymous
codon controls (p = 0.009, 0.003, 0.004, 0.001, 0.0005). (E) As in (D), shown according
to context controls(p = 0.0001, 2.3 × 10−6, 1.9 × 10−5, 8.4 × 10−7, 4.0 × 10−5). (* denotes
p < 0.05, *** denotes p < 0.001)

is highly similar, casting doubt on the hypothesis that SD-like sites within a genome are 194

actually composed of a mixture of functionally constrained and deleterious sites. 195

Consistent results for sites following protein domain boundaries 196

Most studies that have explored the possible functional benefits resulting from elongation 197

rate variability have focused on the role that slow translation or translational pausing may 198

have in helping to enhance co-translational protein folding. Past research has indicated that 199

slow translation at domain boundaries may enhance protein solubility by allowing one domain 200

to properly fold before the next domain fully emerges from the ribosome exit tunnel [27, 29, 201

41, 42]. The most probable candidates for functional SD-like sites may thus be those sites 202

that occur after protein domains. 203

To test this hypothesis, we relied on previously curated protein domain annotations from 204

Ciryam et al. (2013)[41]. After merging datasets, we were left with 415 proteins in our 205

dataset with domain annotations. We repeated our analysis within this subset of proteins, 206

while only considering SD-like sites that occur after protein domains. We define this region 207

as the 30-150 nucleotides downstream of 3′ domain boundaries to account for uncertainty in 208

annotations, and maintained our previous restriction of discarding data from the first 100 209
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and the last 50 nucleotides for each gene. We specifically looked at the locally strong and 210

locally weak sites, expecting that these categories would show the strongest signal based on 211

our findings in Fig. 2B. 212

Under the hypothesis that SD-like sites after protein domains may have a functional role, 213

we expected to observe conservation of this subset of SD-like sites (substitution rate ratios 214

less than 1). A slightly weaker version of this hypothesis is that these SD-like sites should be 215

relatively more conserved than SD-like sites overall. If instead SD-like sites following protein 216

domain boundaries do not represent any special category of sites, we should observe results 217

similar to our prior findings where we observed elevated substitution rates in locally strong 218

sites and conservation of locally weak sites. 219

For both codon and context controls, we found that substitution rates are significantly 220

greater than 1 for locally strong sites following protein domains with no substantial difference 221

between these sites and the aggregated set of all locally strong SD-like sites (Fig. 4A). Our 222

results for locally weak sites were also consistent with the hypothesis that SD-like sites 223

following protein domains are not obviously a distinct category of SD-like sites (Fig. 4B). In 224

both cases, we found more heterogeneity in the estimates for the mean substitution rate ratios 225

for the post-domain categories, and note that this reflects the comparably small number of 226

SD-like sites that meet the relevant criteria for this analysis (Table 1). 227

SD-like sequences and internal translation initiation 228

All of our results with regard to sequence conservation point to SD-like sequences having 229

elevated rates of substitution indicative of their being largely detrimental to long-term cel- 230

lular fitness. But exactly what are these detrimental effects? A natural hypothesis is that 231

SD-like sequences may result in erroneous translation initiation, which would produce trun- 232

cated or frame-shifted protein products. To test whether there is evidence of this effect, we 233

extracted nucleotide sequences downstream of all SD-like sites within the E. coli genome 234

(n = 25, 001). For a given downstream window, we asked how many ATG tri-nucleotide 235

sequences occur (regardless of reading frame). We observed a significant depletion of ATG 236

tri-nucleotide sequences within a relatively narrow window downstream of SD-like sites (4- 237

12 nucleotides) that is in line with expectations from the characteristic spacing observed 238

in true SD sites [43]. We calculated random expectation by drawing an equivalent number 239

of random locations per-gene, performing the same analysis, and repeating this procedure 240

100 times. We observed no qualitative decrease in ATG counts according to this null model 241

at different windows and calculated the significance of each window in the observed data 242

according to this null expectation using a z-test. These results show that coding sequence 243

patterns are constrained as a result of SD-like sequence occurrence so as to minimize possible 244

translation initiation events. The detrimental effects of such erroneous translation initiation 245

events likely explain at least part of the selection against the occurrence of SD-like sequences 246

within protein coding genes. 247
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Context controlCodon control

A

B

******
*

*** *

Figure 4. Consistent results following protein domain boundaries. (A) Locally
strong SD-like sites downstream of protein domain boundaries exhibit elevated substitution
rates similar to all SD-like sites (p = 2.7 × 10−12, 0.2, 1.3 × 10−22, 0.04). (B) Similar
results to (A) for locally weak SD-like sites following protein domain boundaries (p = 4.2 ×
10−5, 0.4, 0.026, 0.3). The greater heterogeneity for post-domain sites in both panels reflects
the comparably small number of sites meeting the indicated criteria (see Table 1). (* denotes
p < 0.05, *** denotes p < 0.001)

Discussion 248

Several previous studies have shown that SD-like sequences are somewhat depleted within 249

the protein coding genes of bacteria [2–5, 13]. These studies, however, could not comment 250

on whether SD-like sequences are deleterious to organismal fitness or whether they are spar- 251

ingly used because they serve a potentially important regulatory function. Recently, there 252

has been a debate in the literature as to the possible role that SD-like sequences may play 253

in regulating translation elongation rates with different experimental protocols yielding con- 254

flicting results [13, 32]. Here, we pursued a complementary approach to investigate the 255

possible function of SD-like sequences within bacterial protein coding genes. We performed 256

a comparative evolutionary analysis and found that SD-like sequences are weakly deleterious 257

throughout the E. coli genome. 258

Using a relatively strong definition to classify SD sequences, we found that roughly 2,000 259

of the 4,000 E. coli protein coding genes are preceded by an identifiable SD sequence slighty 260

upstream of the start codon (Table S1). This is substantially more than the ∼600 that 261

would be expected based off the nucleotide composition of UTRs. However, according to 262
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*** *** *** ******

Figure 5. Start codons are depleted downstream of SD-like sequences. We tallied
the number of ATG tri-nucleotide sequences that occurred within the indicated windows
downstream of SD-like sequences throughout the E. coli genome. An equivalent number
of random sites within each gene were selected as a control calculate significance (p =
8.6×10−5, 3.6×10−15, 5.2×10−27, 9.3×10−5, 0.0003 for comparisons marked as significant).
(*** denotes p < 0.001)

this same definition, there are nearly 25,000 SD-like sequences scattered throughout E. coli 263

protein coding genes (after excluding the first and last 60 nucleotides). The number of these 264

SD-like sequences is significantly fewer than the ∼30,000 that would be expected based off 265

of codon usage biases and amino acid sequences, but the overall magnitude of depletion is 266

relatively modest in scale. While these exact numbers are subject to change based on various 267

thresholds and definitions, the facts remain that (i) there are greater than 10 times more 268

SD-like sequences inside E. coli protein coding genes than there are true SD sequences, (ii) 269

the overall depletion of SD-like sequences relative to expectation is highly significant yet 270

small in magnitude, and (iii) in the majority of cases, we do not know whether the existing 271

SD-like sequences have any function at all. 272

Sequence conservation remains one of the gold standards for assessing the functionality of 273

DNA sequences or regions [44–46]. We therefore looked at the evolutionary conservation of 4- 274

fold redundant sites that occur within SD-like sequences across E. coli protein coding genes. 275

We compared the conservation sites within SD-like sequences to gene-specific control sites 276

to determine whether there was any evidence of functional constraint. We failed to find any 277

evidence of evolutionary conservation for the set of all SD-like sequences within our dataset 278

of Gammaproteobacteria, and instead found that these sequences actually have significantly 279

elevated rates of substitution, on the order of ∼10–40% depending on the method used to 280

select control sites. In addition to looking at all SD-like sequences, we performed a number 281

of robustness checks and attempted to isolate subsets of likely functionally constrained SD- 282

like sequences. However, considering sets of SD-like sequences according to (i) their overall 283

strength of binding to the aSD sequence, (ii) their occurrence within highly or lowly expressed 284

genes, or (iii) their locations relative to known protein domain boundaries did not alter our 285

findings. 286

By contrast, we know that some SD-like sequences are functional and we did find that 287
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SD-like sequences that are true SD sequences for downstream genes in multi-gene operons 288

are highly conserved. We also found that locally weak SD-like sequences are conserved; in 289

these sequences, any mutation to the 4-fold redundant site in question would actually result 290

in an increased SD-like strength. Conservation of nucleotides within these locally weak sites 291

is therefore evidence for avoidance of strong SD-like sequences and supports our conclusion 292

that SD-like sequences are generally deleterious. 293

Researchers have previously shown that SD-like sequences are capable of promoting in- 294

ternal translation initiation [9]. We therefore hypothesized that the deleterious effects of 295

SD-like sequences may be due to their role in encouraging internal translation initiation 296

which would create truncated and/or frame-shifted protein products. Indeed, we found 297

strong support for this hypothesis by observing that the occurrence of ATG start codons 298

is significantly depleted within a narrow window downstream of existing SD-like sequences 299

in E. coli. These data suggest that when SD-like sequences appear, they induce additional 300

downstream constraints on coding sequence evolution and these constraints are consistent 301

with the avoidance of translation initiation sequence features. 302

Since our analyses were performed on aggregates of SD-like sequences, we could not rule 303

out whether any individual SD-like sequence or any particular set of sequences are highly 304

conserved. In fact, we observed numerous examples of 4-fold redundant sites within SD-like 305

sequences that are entirely conserved across all 61 species. However, the number of these sites 306

is simply no more (and in fact, substantially fewer) than our two different null model controls. 307

Our results do not rule out the possibility that some alternative grouping of particular 308

genes or regions within genes that we did not consider may show increased conservation 309

compared to null expectation. Nevertheless, based on our results and previously identified 310

examples, the numbers of functionally constrained SD-like sequences that are involved in 311

known regulatory processes—such as programed frame-shifting [10–12]—appear to be a small 312

minority of all the existing SD-like sequences. 313

While SD-like sequences may cause spurious internal translation initiation, another pos- 314

sible role they may play is in regulating translational pausing [13, 32]. Many studies have 315

argued that pausing during translation can be beneficial, because it may facilitate proper 316

protein folding [19, 22–29, 41, 42, 47–51]. However, our results here show that the majority 317

of SD-like sequences are likely deleterious. Therefore, we think it is unlikely that SD-like 318

sequences are commonly used as a means to regulate translation elongation and protein 319

folding in endogenous genes. We cannot, of course, rule out that this effect may exist in a 320

limited number of cases. 321

Taken together, our findings show that SD-like sequences tend to be either purged from 322

closely-related genomes or maintained in their weakest possible state given amino acid se- 323

quence constraints. The appearance of so many SD-like sequences throughout bacterial 324

genomes is likely explained by a combination of constant mutational supply, amino acid 325

constraints, and relatively weak selective pressures acting to remove these sequences. Prac- 326

tically speaking, our findings suggest that SD-like sequences should be avoided in the design 327

of recombinant protein expression applications until more is known about their possible 328

deleterious effects to cellular fitness. 329
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Materials and Methods 330

Dataset compilation 331

We assembled a dataset of 1394 homologous proteins from 61 genomes within the order 332

Enterobacterales, unique at the individual species level (see Supplementary Tables S2 for 333

a complete list of analyzed genomes). We chose this set of species as a balance between 334

identifying relatively large numbers of homologous proteins for comparative analysis (which 335

becomes progressively more difficult with more highly-diverged species) while minimizing the 336

confounding effects of population-level polymorphisms that may occur when analyzing mul- 337

tiple members of a single species. We selected species based off of their inclusion in either the 338

PATRIC ‘reference’ or ‘representative’ species designations [52] and used PATRIC-derived 339

gene annotations since these annotations derive from a consistent pipeline. For each genome, 340

we extracted all amino acid sequences and performed a reciprocal USEARCH [53]comparison 341

against E. coli amino acid sequences to find 1:1 best hits (using a 70% identity threshold 342

and a strict e-value cutoff of 10−10). We included all homologs that appeared in at least 45 343

species. 344

We next individually aligned the amino acid sequences of each homolog family using 345

MUSCLE [54] and used RAxML (GTR model, 100 bootstrap and 20 maximum likelihood 346

replicates) [55] to create a phylogenetic tree on the concatenated amino acid sequences of 108 347

genes identified in all species with the fewest number of insertions/deletions. With this tree 348

topology, we next calculated relative nucleotide substitution rates at each position by back- 349

translating aligned amino acid sequences into codon sequences and running HyPhy [56, 57] 350

under a GTR model to estimate position-specific substitution rates within each gene. We 351

trimmed any 5′ and 3′ extensions based on the E. coli reference sequence annotations and 352

then normalized each nucleotide substitution rate according to the mean of each gene. 353

We confirmed that the overall accuracy of relative substitution rate scores by performing 354

several tests. We show via a meta-gene analysis that median substitution rates at 3rd 355

positions of codons are significantly higher than 1st or 2nd positions and that substitution 356

rates at the 5′ end of genes are lower than internal positions reflecting selection on mRNA 357

structure surrounding the start codon (SI Fig. S10). 358

Quantifying substitution rate differences between motifs 359

To assess the conservation status of longer sequence motifs while controlling for gene-specific 360

effects, we focused on 4-fold redundant codon sites. We identified SD-like sites according 361

to the computationally predicted hybridization energies between all sequential 6 nucleotide 362

motifs within each gene and a putative anti-Shine-Dalgarno sequence (5′-CCUCCU-3′) us- 363

ing the ViennaRNA [58] co-fold method with default parameters. We used a threshold of 364

−4.5 kcal/mol based-off of the distributions of true SD sequences in the E. coli genome (SI 365

Fig. S11) to classify sequences as SD-like. 366
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For each SD-like sequence motif that we identified, we assessed whether there are any 367

4-fold redundant nucleotide sites present within that sub-sequence (excluding the terminal 368

nucleotides). If so, and if the amino acid site was almost entirely conserved (allowing for one 369

possible amino acid change across the species set) we next found all occurrences of the same 370

synonymous codon within the same gene (so long as it too does not occur within a SD-like 371

motif) subject to the same conservation constraint. We use these 3rd position nucleotides 372

as controls. For both categories (SD-like and matched controls) we excluded nucleotides 373

from our analysis if they fell within 100 nucleotides downstream from the E. coli annotated 374

start codon or 50 nucleotides upstream from the stop codon to avoid potentially confounding 375

effects related to translation or termination. 376

Additionally, we conducted a separate analysis that relied on nucleotide context for se- 377

lecting control nucleotides. After finding a 4-fold redundant codon in a conserved amino acid 378

site within a SD-like sequence motif as before, we searched for another occurrence within the 379

same gene where there is a 4-fold redundant site with the same nucleotide identity and hav- 380

ing the same flanking nucleotides at both the +1 and −1 positions, regardless of whether the 381

synonymous codon is the same (i.e. the −2 position). The rest of the calculation proceeded 382

as above, with the exception that we introduced a further constraint here by requiring the 383

+1 nucleotide to be almost perfectly conserved (less than one substitution) in addition to 384

the amino acid under investigation. 385

To conservatively estimate the effect size and assess statistical significance between SD- 386

like nucleotides and controls (given their non-normal distribution and unequal n’s), we 387

adopted a paired approach as described in the text. For each gene we randomly selected one 388

of the SD-like nucleotide values and one paired-control value (without replacement) until 389

there are either no more SD-like nucleotides or no suitable control nucleotides for the given 390

gene. We then repeated this procedure across all genes in the dataset. This paired analysis 391

method controls for gene-specific effects and creates equally sized categories, which allowed 392

us to estimate the effect size as the ratio between the average relative substitution rates for 393

the SD-like and control site categories. We repeated this sampling procedure 100 times to get 394

a distribution of these ratios and assessed the significance of each bootstrap by performing 395

a Wilcoxon signed-rank test, reporting the median observed p-value across all replicates. 396

Further analyses described in text were performed following the same basic procedure as 397

above, by either stratifying all SD-like sites into categories based on their local mutational 398

effects, their positions within genes, or by classifying sites separately according to different 399

gene sets. 400

Protein abundance data 401

We downloaded protein abundance measurements from the PaxDB database (integrated 402

dataset, accessed 07/2017) [59] and matched gene ids to the PATRIC genome annotation of 403

E. coli. We were able to unambiguously map 1,386 of the 1,394 coding sequences in our com- 404

plete dataset to protein abundance measurements. We split these into equally sized quintile 405

bins (each containing ∼277 coding sequences) and analyzed SD-like sequence conservation 406

15

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 8, 2018. ; https://doi.org/10.1101/278689doi: bioRxiv preprint 

https://doi.org/10.1101/278689
http://creativecommons.org/licenses/by-nc/4.0/


separately within each set. 407

Protein structural data 408

Protein domain annotations were downloaded from Ciryam et al. [41]. We cross referenced 409

annotations between our dataset and theirs, and for each annotated domain analyzed SD-like 410

sites that occurred within 150 nucleotides downstream of the domain end (while maintaining 411

previous restrictions on 5′ and 3′ gene ends). Control sites were selected from anywhere 412

within the same gene (outside of SD-like sequences). 413
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Observed Expected p-value
Total protein coding genes 4127 - -

Threshold (-4.5 kcal/mol)
Genes with upstream SD sequence 1998 638.57 < 10−16

SD-like sites within protein coding genes 25001 30397.57 < 10−16

Threshold (-3.5 kcal/mol)
Genes with upstream SD sequence 2806 1129.72 < 10−16

SD-like sites within protein coding genes 55242 57802.7 < 10−16

Threshold (-5.5 kcal/mol)
Genes with upstream SD sequence 1502 429.05 < 10−16

SD-like sites within protein coding genes 11355 15864.69 < 10−16

Supplementary Table S1. SD sequence motif occurrence throughout the E. coli
genome. Data shown for annotated protein coding genes that: i) have a nucleotide length
is a multiple of 3, ii) are between 60 and 1000 amino acids in length, iii) contain no internal
stop codons, and iv) end with a canonical stop codon. Genes with an upstream SD sequence
were defined according to the presence of a 6-nt motif between -20 to -4 (relative to the start
codon) that pair with the aSD sequence (5′-CCUCCU-3′) with a binding free energy less than
the indicated threshold. Expectation was determined by shuffling the nucleotides between
-20 to -1 for each gene within a genome, calculating as above, and repeating 100 times.
SD-like sequences were similarly defined after excluding the first and last 60 nucleotides of
each gene, testing each sequential 6 nucleotide motif, and counting the number of strong
binding sequences. We only considered SD-like sequences where the binding energy was less
than the defined threshold and was less than the two immediate neighboring sequences (i.e.
motifs that are shifted one nucleotide up and downstream) to avoid double counting strong
SD sequences that may have a signal in multiple sequential motifs. Expectation for SD-like
sequences was performed by shuffling synonymous codons within each gene (preserving amino
acid sequences, GC content, and gene-speciifc codon usage biases), calculating the number
of SD-like sites for one instance of this shuffled genome, and repeating this procedure 100
times.
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Genome ID Species Name
579405.3 Dickeya dadantii Ech703
665029.3 Erwinia amylovora CFBP1430
1028307.3 Enterobacter aerogenes KCTC 2190
634499.3 Erwinia pyrifoliae Ep1/96
290338.8 Citrobacter koseri ATCC BAA-895
1333848.3 Citrobacter freundii CFNIH1
637910.3 Citrobacter rodentium ICC168
1235834.6 Kosakonia sacchari SP1
640131.3 Klebsiella variicola At-22
393305.7 Yersinia enterocolitica subsp. enterocolitica 8081
300269.12 Shigella sonnei Ss046
511145.12 Escherichia coli str. K-12 substr. MG1655
693216.3 Cronobacter turicensis z3032
218493.5 Salmonella bongori NCTC 12419
630626.3 Shimwellia blattae DSM 4481 = NBRC 105725
291112.3 Photorhabdus asymbiotica strain ATCC 43949
1286170.3 Raoultella ornithinolytica B6
1249634.3 Serratia marcescens FGI94
158822.7 Cedecea neteri M006
214092.21 Yersinia pestis CO92
1166016.3 Pectobacterium sp. SCC3193
498217.4 Edwardsiella tarda EIB202
561230.3 Pectobacterium carotovorum subsp. carotovorum PC1
198628.6 Dickeya dadantii 3937
1484157.3 Pantoea sp. PSNIH2
406818.4 Xenorhabdus bovienii SS-2004
343509.12 Sodalis glossinidius str. ’morsitans’
585054.5 Escherichia fergusonii ATCC 35469
1006551.4 Klebsiella oxytoca KCTC 1686
1076550.3 Pantoea rwandensis ND04
561229.3 Dickeya zeae Ech1591
529507.6 Proteus mirabilis HI4320
99287.12 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2
745277.3 Rahnella aquatilis CIP 78.65 = ATCC 33071
198214.7 Shigella flexneri 2a str. 301
640513.3 Enterobacter asburiae LF7a
592316.4 Pantoea sp. At-9b
634500.5 Erwinia billingiae Eb661
634503.3 Edwardsiella ictaluri 93-146
290339.8 Cronobacter sakazakii ATCC BAA-894
399741.7 Serratia proteamaculans 568
215689.3 Erwinia sp. Ejp617
693444.3 Enterobacteriaceae bacterium strain FGI 57
768490.3 Serratia sp. AS12
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300267.13 Shigella dysenteriae Sd197
701347.4 Enterobacter lignolyticus SCF1
218491.5 Pectobacterium atrosepticum SCRI1043
1441930.4 Serratia fonticola RB-25
561231.5 Pectobacterium wasabiae WPP163
1157951.4 Providencia stuartii MRSN 2154
300268.11 Shigella boydii Sb227
243265.5 Photorhabdus luminescens subsp. laumondii TTO1
1239307.3 Sodalis sp. HS1
741091.4 Rahnella sp. Y9602
502801.6 Yersinia pseudotuberculosis PB1/+
465817.9 Erwinia tasmaniensis Et1/99
553.3 Pantoea ananatis LMG 5342
768492.3 Serratia plymuthica AS9
716541.4 Enterobacter cloacae subsp. cloacae ATCC 13047
158822.6 Cedecea neteri SSMD04
1125630.4 Klebsiella pneumoniae subsp. pneumoniae HS11286

Supplementary Table S2. List of genomes analyzed in this study.
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Supplementary Figure S1. As in Fig. 1B,C. Here we show similar results for weaker
(top) and stronger (bottom) thresholds for defining SD-like sequences. All patterns remain
similar to those depicted in Fig. 1 with the exception of synonymous codon controls for the
weakest thresholds, which show no substantial difference in substitution rate patterns and
only borderline significance.
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***
n.s.

n.s.
n.s.

Supplementary Figure S2. As in Fig. 1B,C. Here we show similar results when using Y.
pestis as a reference genome to determine the location of SD-like sites. The exception being
that, though slightly elevated, there is no significant difference in substitution rates between
SD-like sites according to the synonymous codon control. (*** denotes p < 0.001)
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n.s.
n.s.

n.s.
n.s.

Supplementary Figure S3. Using the same methodology as in Fig. 1D,E. Here we an-
alyzed putative SD sites in the 3′ terminus of genes that are not directly followed by an
annotated coding sequence. Due to the fact that these sequences are likely not acting as
true SD sequences despite being in the 3′ terminus, we expected and observed no significant
difference in substitution rates according to either null model.
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-4.5 kcal/mol < Weak SD-like sites < -3.5 kcal/mol

** *** **** ***
***

***

Supplementary Figure S4. Weak SD-like sites follow the same patterns of substitution
rate ratios as SD-like sites. All sites analyzed here are weaker in absolute terms compared
to the weakest sites analyzed in Fig. 2. Nevertheless, we still observe elevated substitution
rate ratios in the sites that are locally strong compared to those that are locally weak. In
particular, locally strong sites here (where no mutations will result in a stronger SD-like
sequence) exceed the substitution rate ratios of sites depicted in Fig. 2 that are stronger
in the absolute sense (more negative ∆G) but relatively weak given their local mutational
context (any mutation will result in stronger SD-like sequence). (* denotes p < 0.05, ***
denotes p < 0.001)
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SD-like sites
threshlold = -5.5 kcal/mol

SD-like sites
threshlold = -3.5 kcal/mol

**** *** **** ***
***

***

*** ** * *

Supplementary Figure S5. As in Fig. 2. Here we show similar results for weaker (top)
and stronger (bottom) thresholds for defining SD-like sequences. Breaking mutations up
by their local mutational context reveals that the patterns for individual classes remain
un-changed from conclusions presented in the main text. For the most stringent SD-like
sequence threshold (bottom), no locally-weak sites are strong enough to be analyzed, thus
categories “2” and “3” are empty. (* denotes p < 0.05, *** denotes p < 0.001)

29

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 8, 2018. ; https://doi.org/10.1101/278689doi: bioRxiv preprint 

https://doi.org/10.1101/278689
http://creativecommons.org/licenses/by-nc/4.0/


**** * * ***
***

*

Supplementary Figure S6. As in Fig. 2. Here we show similar results when using Y.
pestis as the reference genome to determine the location of SD-like sites. (* denotes p < 0.05,
*** denotes p < 0.001)
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Supplementary Figure S7. As in Fig. 3. Here we show similar results for weaker (top)
and stronger (bottom) thresholds for defining SD-like sequences. For stringent thresholds,
very few analyzable sites remain within each bin and statistical significance is frequently not
observed.
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* *** *** *

* *** * *

Supplementary Figure S8. As in Fig. 3. Here we show similar results when using Y.
pestis as the reference genome to determine the location of locally strong SD-like sites. Note
that protein homologs are still partitioned into bins according to their measured abundances
in E. coli. (* denotes p < 0.05, *** denotes p < 0.001)
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* *

* *

Supplementary Figure S9. As in Fig. 3, regardless of protein abundance bin, substitution
rate ratios for locally weak sites are inconsistent with the hypothesis that the highest abun-
dance proteins may contain more evolutionarily constrained SD-like sequences. (* denotes
p < 0.05)
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Supplementary Figure S10. Substitution rates using a meta-gene analysis follow ex-
pected patterns of sequence conservation. Notably, 3rd position nucleotides have substan-
tially elevated median substitution rates and substitution rates are lower towards the 5′ end
of coding sequences.
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Supplementary Figure S11. Distribution of the binding strengths for the strongest aSD
sequence binding hexamer between positions -20 to -1 for each protein coding gene in E. coli
(blue). Shown in grey is the expected distribution of binding strengths when first shuffling
the 20 nucleotides upstream of each gene. The solid red line depicts the threshold used
throughout the main text to determine SD-like sequences (-4.5 kcal/mol), while dotted and
dashed lines to the left and right depict more and less stringent thresholds used to test the
robustness of findings (-5.5 and -3.5 kcal/mol).
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