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Abstract

Motivation: Recent flow and mass cytometers generate 1,000,000 single cell datasets of dimensions 20 to 40.

Many  tools  facilitate  the  discovery  of  new cell  populations  associated  with  diseases  or  physiology.  These

discoveries require the identification of new gating strategies, but gating strategies become exponentially harder

to optimize when dimensionality increases. To facilitate this step we developed Hypergate, an algorithm which

given a cell population of interest identifies a gating strategy optimized for high yield and purity.

Results: Hypergate achieves higher yield and purity than human experts, Support Vector Machines and Random-

Forests on public datasets. We use it to revisit some established gating strategies for the identification of Innate

lymphoid  cells,  which  identifies  concise  and  efficient  strategies  that  allow  gating  these  cells  with  fewer

parameters  but  higher  yield  and  purity  than  the  current  standards.  For  phenotypic  description,  Hypergate’s

outputs are consistent with fields’ knowledge and sparser than those from a competing method.

Availability  and  Implementation:  Hypergate  is  implemented  in  R  and  available at

http://github.com/ebecht/hypergate under an Open Source Initiative-compliant licence.

Introduction

Analysis of low-dimensional cytometry data has historically relied on a procedure known as manual gating.

Gating is the process of setting thresholds on measured parameters,  to filter out unwanted cells until only a

population of interest  (PoI) is left. Cytometers can only measure a limited number of parameters (10-20 for

modern flow cytometers, around 40 for mass-cytometry). It is thus crucial to carefully select the proteins that

will be measured (a process known as ‘panel design’).  Cytometry panels typically include a large number of

well-characterized ‘lineage markers’ which help identifying cell populations. In addition, panels may include

less-documented proteins, that may be relevant to certain fields or purely exploratory.

Gating in a low-dimensional setting is straightforward. It usually consists of dichotomizing up to each parameter,

which divides the features space into up to 2n volumes. Cell populations are defined by the events contained in

each volume. Quantifying these populations across samples allow the identification of PoI that are associated

with a study’s objectives. In this low-dimensional setting, reporting on the PoI is typically done by reporting the

combination of expressed or absent markers that identify it (Figure 1A).
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Classical  gating  becomes  complex  in  a  high-dimensional  setting,  as  the  number  of  volumes  created  by

exhaustively dichotomizing parameters quickly outgrows the typical number of single cells profiled by these

methods  (Cheng et al. 2016). Exploratory analyses therefore rely on tools designed to operate directly on the

high-dimensional data. These tools include dimensionality reduction techniques for visualization (reviewed in

Saeys et al. (2016)), clustering techniques to define cell populations in an unsupervised manner (benchmarked in

Weber et al. (2016)), trajectory detection methods that output an ordering of the high-dimensional data (reviewed

in  Cannoodt  et  al.  (2016))  and  more  recently  supervised  methods  that  identify  cell  populations  whose

frequencies differ across sample types (Lin et al. 2015; Arvaniti et al. 2017; Lun et al. 2017). While these tools

help identifying PoI in a high-dimensional setting it remains necessary to describe their phenotype in a way that

resonates with current knowledge and a protocol to identify them in independent experiments (Figure 1B).

The  complexities  of  both  tasks  augment  with  dimensionality  and  software  to  facilitate  them  is  needed.

Phenotyping a cell cluster among N cell clusters in a P dimensional space will involve (N-1)*P comparisons. For

typical mass-cytometry values of P = 40 dimensions and N = 10 clusters, up to 360 comparisons are required to

annotate one cluster alone. Manually annotating cell phenotypes in high-dimension is thus a time consuming

process. Finding an optimal gating strategy is theoretically even harder, as the search space grows exponentially

with dimensionality. We for instance show in the  Methods that the search space of possible rectangle-shaped

gating strategies (after filtering out trivially non-optimal ones) for a small PoI of size 100 in a 40-dimensional

dataset is higher than 10146. Since finding a gating strategy also provides a phenotypic label, we focused on

developing a method to identify gating strategies when given a PoI.

METHODS

Datasets: For benchmarking purposes, we downloaded public datasets with manual gating annotations that were

previously collated by Weber and Robinson  (Weber et al. 2016) from FlowRepository  (Spidlen et al. 2012)

accession  number FR-FCM-ZZPH. Briefly,  we used three high-dimensional  flow cytometry and four mass-

cytometry datasets.  One flow cytometry dataset  (‘FlowCAP_ND’) originates from the FlowCAP-I challenge

(Aghaeepour et al. 2013) and profiles the blood of 30 healthy donors. The other two profile either the blood

(Mosmann et al. 2014) or the bone marrow (Rundberg Nilsson et al. 2013) of one healthy donor. The four mass-

cytometry datasets consist of two human bone marrow datasets (Levine et al. 2015) and two mouse bone marrow

datasets (Samusik et al. 2016). We also analyzed two cord-blood samples  enriched for human innate lymphoid

cells (ILCs) available from FlowRepository (FR-FCM-ZYZX, samples Cord Blood #1 and #2). From the ILC

dataset we pre-gated on live (Cisplatin-) singlet (DNAint) immune (CD45+) cells prior to analysis.

Objective function: Hypergate optimizes for the Fβ score, where Fβ = (1+β²)(purity . yield)/(β².purity + yield).

It can be reformulated in terms of the number of True Positive (TP), False Negative (FN) and False Positive (FP)

events as  Fβ=(1+β²) . TP / ( (1+β²)TP + β².FN + FP).  Fβ is in general bounded by 0 (yield or  purity is 0) and 1

(yield and purity are both 100%). Otherwise it is bounded by min(purity,yield) and max(purity,yield). It is also
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known at the harmonic mean of purity and yield. Unlike the arithmetic mean it lies closer to the lowest of the

minimum of purity and yield rather than at their barycentre. 

Hypergate operation (Supplementary Figure 1)

Overview: At initialization, the gating strategy is an infinite rectangle in every direction for every parameter (the

whole feature-space is thus initially gated-in). Yield is thus 100% and purity N+/N, where N is the total number

of  events  in  the  dataset  and  N+ the  number  of  events  of  interest.  From there,  Hypergate  uses  two  basic

operations. We refer to the first one as a contraction, where a given threshold is made more stringent (thus

shrinking the hyperrectangle on one of its faces). A contraction will decrease the number of cells gated in, which

may increase purity at  the cost of yield. We refer  to the second move as an expansion, where the effect  of

enlarging the hyperrectangle so that it contains a gated-out event of interest is evaluated. Expansions increase the

size of the hyperrectangle, and thus may increase yield at the cost of purity. Hypergate performs a succession of

these basic operations to gradually increase Fβ until no move is able to locally increase it further, at which points

it terminates.

Parameters: Hypergate takes as input an expression matrix X of N rows (events) and P columns (parameters), a

boolean vector  S of size  N designating the subset of interest (or the subset of “positive” events) and  β which

specifies the yield versus purity weighting (default to 1, i.e. equal weighting).

Internally,  the algorithm keeps track of both the lower and upper cut-offs  on each parameter  (two numeric

vectors C-
1≤j≤P

 and C+
1≤j≤P), and the Boolean state  B1≤i≤N  which specifies for each  event whether it  is currently

gated-in or gated-out.

Initialization: At initialization, the lower (respectively upper) cut-off of every (parameter, direction) pair p is set

at min1≤i≤N(pi) (resp. max1≤i≤N(pi)) and p is set to inactive.

Updating the state vector: For each datum xi  = (yi,1, …, yi,j, …, yi,p), the corresponding state Bi  is set to True (or

“gated-in”) if and only if  ∀j | 1≤j≤P, Cj
-≤yi,j≤Cj

+, and to False (or “gated-out”) otherwise. This corresponds to

points within the hyperrectangle, including the boundary.

Contractions:  A contraction is the shrinkage of the hyperrectangular gate, which results in less events being

gated-in.  In order  to evaluate only a meaningful  and computationally-manageable  subset  of all  the possible

contractions,  we use  the  following three  ideas:  i.  discretization:  any two shrinkages  on a same side of  the

hypperctangle (i.e. a single (parameter, direction) pair) that both lie between the same two consecutive events

will be equivalent in terms of the gating state  B it produces. We thus only evaluate threshold values that are

present in the dataset. ii. An hyperrectangle that would have no gated-out event of interest on one of its faces

(including their  boundaries  and after  discretization)  would lead to a  suboptimal  gating, as the closest  more

stringent threshold corresponding to the expression of an event of interest on this channel would lead to the same

yield but increased purity and thus increased Fβ. We thus only evaluate contractions on each parameter  for
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values expressed by an event of interest. iii. In order to avoid combinatorial explosion, we only evaluate one-

dimensional contractions. In summary, we evaluate one-dimensional contractions whose thresholds correspond

to gated-in events of interest.

Expansions: An expansion increases the size of the hyperrectangular gate, which results in more events being

gated-in. As for contractions, the expansion(s) that maximize Fβ given a current stage of the hyperrectangle and

after discretization have events of interest on their faces. For a gated-out event of interest x  = (y1, …, yj, …, yp)

and a given hyperrectangle H=(C1
-,…,Cp

-, C1
+,…,Cp

+), the inclusion of xi into the gate will lead to an updated

hyperrectangular gate H’=(min(C1
-,y1), …, min(Cp

-,yp), max(C1
+,y1), …, max(Cp

+,yp)). Given H’, we compute a

new state B’, associated with a new score Fβ’.  The gated-out event of interest associated with the highest-

scoring expansion (if any) is used to update the hyperrectangular gate.

Operations’  order  of  priority:  Hypergate  prioritizes  expansions  over  contractions  of  an  active  (parameter,

direction) pair over contractions of an inactive (parameter, direction) pair. This is equivalent to first maximizing

yield as long as Fβ increases, then maximizing purity, and as a last resort using a new channel in the gating

strategy.

Termination:  The  algorithm  terminates  when  no  move  increases  Fβ  or  if  the  last  channel  added  did  not

contribute more than a user-specified threshold (default 0).

Time  complexity  for  the  brute  force  approach:  The  design  of  Hypergate  is  justified  by  the  following

considerations which show that a brute force evaluation of hyperrectangles is impractical: for a given parameter

P, the hyperrectangle is defined by a lower threshold Cp
- and an upper threshold Cp

+ with Cp
-≤ Cp

+. If we restrict

the possible thresholds to values expressed by one of the N+ events of interest (as described in the Contractions

section),  then there are N+(N+-1)/2 = N+ choose 2 possible pairs for (Cp
-
, Cp

+),  provided the N+ events have

distinct expression values for the parameter P. For a given dataset of p parameters with N + events of interest, the

number of hyperrectangle to evaluate by brute force is in the order (as here we are not accounting for possible

duplicated values) of (N+(N+-1)/2)p
.  For a small population of 100 events and 40 markers, the search space is for

instance higher than 10146
. Hypergate proposes an approximate solution for this problem.

Ranking of output’s parameters: Given a cytometry dataset and a subset of interest, Hypergate outputs an Fβ

score ranging from 0 to 1 using a finite number of (parameters, direction) pairs. In order to evaluate which ones

are the most significant within the output, we evaluate the difference between the Fβ score at the end of the

optimization procedure, and the one obtained when the same gating strategy is used but omitting the use of one

parameter. Omitting a parameter will necessarily lead to a decrease in Fβ, and the difference δFβ is used as a

proxy for parameter importance. This metric could fail to capture certain effects, for instance if two parameters

are redundant (so that removing one will have little effect and thus both will appear relatively unimportant, yet

removing both will not). It nonetheless appears to perform well in practice.
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Transformations:  For the public manually-gated datasets,  we used the data as transformed by Weber et al.

(namely x→ arcsinh(x/5) and x→arcsinh(x/150) for mass and flow cytometry datasets, respectively). For the

ILC dataset we used the transformation x→arcsinh(x).

t-SNE: For the ‘Samusik_01’ dataset, we randomly sampled up to 100,000 events, while retaining the manually-

gated populations frequencies. We then used the Rtsne function from the Rtsne R package, which implements

Barnes-Hut t-SNE  (van der Maaten et al.  2008; Van Der Maaten 2014), using up to 1000 iterations,  and a

perplexity of 30. For the ALL (respectively ILC samples), we ran t-SNE independently on each sample, using

pre-gated CD19+ cells  (respectively  DNAint  CD45+Cisplatin- cells)  without  down-sampling using up to 1000

iterations, and a perplexity of 30.

Reproducing manual gating strategies (Figure 1B and Figure 3): We referred to the Supplementary Figure 5

of the Samusik et al publication (Samusik et al. 2016) to identify the channels that were used by the authors to

gate on each cell population. We formalized this graphical  depiction of the gating strategy into a tree using

mathematical logic (a population positive for two markers A and B will be noted as (A+ and B+), and the rest

will be noted (A- or B-)). In figure 1B, we used the convex hull of gated-out events on each of the sequential bi-

axial plots to reproduce the gating steps.

Supplementary  Video:  We  chose  to  illustrate  Hypergate’s  operation  on  the  “Non  classical  monocytes”

population  of  the  Samusik_01  dataset  as  there  is  a  high  concordance  between  this  population  and  the

corresponding t-SNE cluster. We trained Hypergate on the whole dataset using this entire cell population as the

population of interest, with a beta parameter of 1 (default value). 

Hypergate applied to t-SNE-like macrophages:  We applied Hypergate using the authors’ gating strategy on

the cluster of macrophages defined by t-SNE (as highlighted in Fig 2A), using a value of 1 for the beta argument

(default  value),  and  using  either  the  parameters  chosen  by  the  authors  or  letting  Hypergate  identify  the

parameters to use. In the latter case, we restricted the gating strategy to the 8 most significant parameters (see

Ranking of output’s parameters).

Automated  phenotypic  description  of  cell  clusters:  To  obtain  cell  clusters,  Phenograph  was  ran  on  the

‘Samusik_01 ‘dataset, using a k=30 nearest neighbours (default parameter). This resulted in 23 clusters. From
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each cluster, we sampled up to 1000 positive events, the corresponding proportion of negative events, and ran

Hypergate on the resulting data subset. We then scored the importance of the parameters’ in Hypergate outputs

for each cluster (see  Ranking of output’s parameters), and labelled each cluster with its four  most defining

parameters.

Automated  phenotypic  description  of  manually-gated  cell  populations:  From  each  cell  population,  we

sampled up to 1000 positive events, the corresponding proportion of negative events, and ran Hypergate on the

resulting data subset. For each Hypergate output, we computed each parameter’s significance (see Ranking of

output’s  parameters).  We  then  used  the  wordcloud R  package  (version  2.5)  using  the  square-root  of  the

parameters’  significance  to map the size  of the words,  with a  four-to-one ratio  between the maximum and

minimum size.

MEM scores: MEM scores were computed according to the formula published by Diggins et al. (2017) using a

de-novo R script.

Binary classification:  From each  dataset  and  for  each  cell  population manually gated by the  authors’,  we

sampled 1000 events if the population was larger than 2000 events, or half of the events otherwise. We also

sampled  a  corresponding  proportion  of  negative  events.  We then  trained  6  classifiers  on  this  training  set:

Hypergate,  Nelder-Mead  optimization of  an  hyperrectangle,  four  Support  Vector  Machines,  and  a  Random

Forest. For Nelder-Mead optimization, we used the optim function of the stats  R package (version 3.4.2). For

Random Forests, we used the  randomForest  function of the  randomForest R package (version 4.6-12) with

default parameters. For Support Vector Machines, we used the svm function of the  e1071 R package (version

1.6-8), using default arguments except for the ‘kernel’ argument (which we set either to ‘linear’ or ‘radial’) and

the ‘class.weights’ argument which we set either to 1 (constant) or to the inverse frequency of the classes (thus

weighting the rarer class more). We then used these 6 models to predict the class of the left-out data (the ‘test

set’), and computed the corresponding F1-scores and accuracies. This workflow was repeated for each of the 95

populations defined by the authors of the datasets used. We used the same algorithms to analyze the ALL data.

Acute Lymphoblastic Leukemia samples

Procurement and processing of samples:  Bone marrow samples from 5 patients with newly diagnosed acute

lymphoblastic leukaemia (ALL), aged 1-23 (median, 7) years, were obtained at diagnosis and during treatment.

Bone marrow samples obtained during treatment from another 5 patients, aged 1-12 (median, 5) years, that were
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leukemia-free by both flow cytometry and polymerase chain reaction-amplification of antigen receptor genes,

were used as a reference. Samples were obtained following informed consent and approval from the Domain

Specific Ethics Board governing Singapore’s National University Hospital. Mononucleated cells were labelled

with fluorochrome-conjugated antibodies as previously described (Coustan-Smith et al. 2011).

Identification of blasts at diagnosis: We examined the expression of ALL markers color-coded on t-SNE biplots

at the diagnosis time point to manually identify the malignant population. This information was validated by an

expert haematologist.

Hypergate training and translation to follow-up samples:  Each diagnosis sample was concatenated with data

from 5  leukaemia-free  bone  marrow  samples.  We then  trained  Hypergate  to  obtain  a  gating  strategy  that

identifies  the  malignant  population,  using  a  beta  parameter  of  1  (default  value).  We  applied  these  gating

strategies  to  follow-up  samples  using  the  same  cut-offs  (as  these  clinical  samples  present  little  technical

variability).

Statistical tests: We used paired t-tests assuming unequal variances to compare F1-scores and accuracies across

cell populations for each binary classifier against Hypergate.  We used a test against the t-distribution to assess

non-null  correlation  between  log-frequencies  measured  by  Hypergate  and  other  classifiers  and  an  expert

haematologist.

Results

Development of the Hypergate algorithm

We developed Hypergate (for automated HYPERrectangular GATE), an algorithm which given a PoI outputs a

corresponding gating strategy (Figure 1C). Hypergate operates by finding a hyperrectangle (or high-dimensional

rectangle)  that  specifically  encapsulates  the  cell  cluster  of  interest.  It  does  so  by  iteratively  modifying  the

boundaries of the hyperrectangle while optimizing for an Fβ-score (by default the F1-score, the harmonic mean

of  yield  and  purity).  Hypergate  is  a  deterministic  algorithm and  thus  enables  easily  replicable  results.  Its

operation is depicted in Supplementary Figure 1, detailed in the Methods, and an example of its execution is

shown in Supplementary Video 1.

Hypergate overcomes issues associated with manual gating strategies

Figure 1A represents a publicly-available (Samusik et al. 2016; Weber et al. 2016) mass-cytometry mouse bone-

marrow dataset  manually-annotated for 24 haematopoietic populations. We analyzed it using t-SNE  (van der

Maaten et al. 2008) for dimensionality reduction and Phenograph (Levine et al. 2015) for clustering. Phenograph

identified 23 clusters. For each cluster, we overlaid on the t-SNE space the 3 most frequent manually-gated cell
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types. This analysis highlights various pitfalls associated with manual gating and that are particularly manifest in

high-dimension. For instance, the number of events belonging to some cell populations seems underestimated by

a factor of 3-4 by manual gating as compared with well-delineated Phenograph clusters (clusters C2 enriched in

Common Lymphoid Progenitors and C16 enriched in Macrophages).  In addition, examination of cluster C23

highlights that NK cells are likely contaminating the manual IgM-IgD- B cells, and examination of C11 suggests

that Eosinophils contaminate the Intermediate Monocytes gate. Contaminations can be especially troublesome

for the interpretation of data from FACS-sorted cell populations, such as transcriptomics. Nonetheless, some

clustes  are  highly  concordant  with  manual  labels  (C1  with  plastmacytoid  Dendritic  Cells,  C20  with  Non-

Classical Monocytes). Projection of manual-gating labels on the t-SNE map is shown in Supplementary Figure 2

and highlights the same limitations.

Projection of the macrophage-rich cluster C16 on the gating strategy used by the authors to identify macrophages

showed that  a  low CD3- threshold and too stringent  F4/80+ and CD64+ thresholds contributed most to this

underestimation (Figure 2B).  Applying Hypergate this C16 cluster produced a wider CD64+F4/80+ gate that

accommodated the large background expression of these markers (Figure 2C). Interestingly, 3 out of 12 markers

used by the authors to define macrophages were not contributing to the final output (CD138, IgM, and MHCII).

We thus ran Hypergate in an unconstrained mode, where parameters’ selection solely depends on the algorithm.

This led to a shorter 8-parameters strategy (Figure 2D) that enabled comparable purity, but higher yield (Figure

2E,  20.9%  for  the  authors’  gating  versus  79.3%  and  82.9%  for  supervised  and  unsupervised  Hypergate

respectively) and the highest F1 score (0.334 versus 0.836 and 0.859 respectively. Interestingly, while crucial to

the gating strategy, CD64 thresholding was more loosely enforced in the final strategy, primarily due to the use

of CD44 (Supplementary Figure 3) which appears as a useful exclusion marker to gate on macrophages in this

context.

Generation of parsimonious phenotypic descriptions

The fact that 5 out of the 8 markers identified by Hypergate to define macrophages-like cells are consistent with

the experts’ selection suggested that our method could be used to output concise phenotypic descriptions of cell

populations,  by  measuring  the  relative  contribution  of  each  marker  to  the  computed  gating  strategy  (see

Methods). The phenotype of C16 macrophages-like cells would for instance read as F4/80+CD64+CD11b-CD11c-

SiglecF-CD44-Ly6C-CD43-.  An  informed  interpretation  of  this  gating  strategy  would  be  to  enrich  for

macrophages (F4/80+CD64+) and to exclude monocytes (using CD11b-CD43-Ly6C-), dendritic cells (CD11c-)

and eosinophils (SiglecF-) and non-macrophage myeloid cells (CD44-). It shows that excluding T cells (using

CD3+) or B cells (B220+) is not necessary, as F4/80+CD64+ double positivity is sufficient to exclude virtually all

of these cells (Supplementary Figure 4).

To study the accuracy of Hypergate’s phenotypic characterizations, we applied it systematically to each of the 24

populations defined by Samusik et al., and found that they were consistent with authors’ definitions (Figure 3).

For  instance,  myeloid  dendritic  cells  were  algorithmically-labelled  as  CD11c+MHCII+,  basophils  as
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FceR1a+CD49b+CD3-SiglecF-NKp46-  and  gamma-delta  T  cells  as  CD3+TCRgd+CD49b-TCRb-.  Discrepancies

were nonetheless found in labels for Hematopoietic Stem Cells and Common Lymphoid Progenitors due to low

cell counts (3 and 59 events in this dataset, respectively). The MEM scoring method has recently been proposed

as a metric weighting markers’ relevance to a cell cluster phenotype (Diggins et al. 2017). Unlike MEM whose

output is  of the same dimensionality as  the input,  Hypergate  only selects for  a subset  of  the parameters  to

characterize a cell population and thus produces more concise phenotypic characterizations which is important

for their readability (Figure 4A). Moreover, Hypergate can identify markers as intermediately expressed (e.g. pro

B-cells  are accurately  as  expressing  intermediate  levels  of B220,  Fig 3).  Combining Hypergate,  t-SNE and

Phenograph clustering allowed for  an unsupervised pipeline that  output cell  clusters  annotated with human-

readable  labels (Figure 4B).  Cluster  C8 was for instance  labelled as CD4+CD3+CD5+F4/80-   (CD4 T cells),

various  B  cell  clusters  were  defined  by  combinatorial  expression  of  IgD  and  IgM,  and  C21  as

CD49b+CD16_32+CD44-Ly6C- (Basophils).

Performances as a binary classifier

To  evaluate  the  performance  of  our  method  in  terms  of  producing  high  efficiency  gating  strategies,  we

considered it as a binary classifier. We benchmarked it on 95 cell populations defined across 7 public datasets

(Weber et al. 2016). For each population, we trained Hypergate, a general optimization method to solve the same

optimization problem (Nelder et al. 1965), Support Vector Machines (SVMs) and Random Forests (RFs) on a

subset of the data and assessed each classifier’s performance on the remaining unseen data. Hypergate led to

higher  F1  values  than  other  method  (Figure  5A),  and  higher  total  accuracy  than  SVMs and  Nelder-Mead

optimization, comparable to RFs despite optimizing for the F1 score (Figure 5B). These results suggest that

Hypergate is able to output high-performance gating strategies. Furthermore, unlike Nelder-Mead optimization,

SVMs  and  RFs,  Hypergate’s  outputs  are  straightforward  to  interpret  in  terms  of  each  cell  population’s

phenotype.

Binary classification has applications in clinical haematology. One of them is the diagnosis of Minimal Residual

Disease (MRD) in the context of Acute Lymphoblastic Leukaemkia (ALL) (Coustan-Smith et al. 2011). MRD is

evaluated after chemotherapeutic treatment and based on the quantification of remaining malignant cells in the

bone marrow. Positive MRD (high frequency of surviving blasts) is associated with faster relapse. By using a

combination of Hypergate and t-SNE, we reproduced this clinical workflow. We trained Hypergate to gate on

malignant cells at diagnosis for 5 patients and applied them to follow-up samples (from 1 to 3 samples per

patient,  Supplementary  Figure  5).  The  computed  log-frequencies  of  malignant  cells  among  total  PBMCs

significantly correlated with those measured by expert haematologists (Figure 5C, r=0.86, p=0.0013). Across all

follow-up samples and using the usual 1/10000 malignant cell per PBMC for a positive MRD detection, we

obtained  80% accuracy  in  diagnosing  MRD,  significantly  higher  than  random chance  (p=0.011).  Although

Hypergate has  the advantage to define the malignant cells’  phenotype, SVMs and RF yielded higher linear

correlation coefficients (r>0.96) and higher diagnostic accuracies (100%) across these 10 test cases. This is likely
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due to the ability of both methods to leverage the high-dimensional data for classification, which may be helpful

in a setting where some biological variability between the training and test samples can be expected.

Redefining a gating strategy for the isolation of cord-blood innate lymphoid cells

We challenged Hypergate on a practical immunology task: the gating of innate lymphoid cells (ILCs). ILCs are a

recently-described lymphoid population that, akin to NK cells, do not rely on rearranged antigen receptors for

their activation. ILCs are, like T helper (Th) cells, non-cytotoxic and cytokine-producing cells. The exact number

of distinct ILC subsets is still debated, but the ILC2 (Th2-like) and ILC3 (Th17-like) subsets are consensual

(Hazenberg et al. 2014; Eberl et al. 2015; Simoni et al. 2017).

On a cord blood sample first depleted for T and B cells using magnetic cell sorting and then profiled using mass-

cytometry, t-SNE identified two well-delineated clusters corresponding to ILC2s and ILC3s (Figure 6A).  The

standard  gating strategy  for  the identification of  ILC2s or  ILC3s requires  more than  eight  surface  markers

(Figure  6B).  ILCs  are  commonly  defined  as  CD45+CD14–CD34–CD5–Lineage(FceR1,CD19,CD123)–CD94–

CD127+ and  subdivided  into  CRTH2+ ILC2s  and  CRTH2–c-Kit+NKp44+/– ILC3s  (Figure  6B).  Taking  the

corresponding t-SNE clusters as gold standards, these manual gating strategies resulted in F1 scores of 0.87 and

0.70, respectively.

Hypergate identified shorter gating strategies for ILC2s and ILC3s (Fig 6C), both relying on CD94- (exclusion of

NK cells) and CD25+. In addition, ILC2s were identified as CD127+ and CRTH2+, ILC3s as CRTH2-, cKit+ and

KLRG1- (Figure 6C). These strategies strikingly did not rely on the lineage 'dump' channel (FceR1/CD19/CD123

all conjugated to a Gd156 tag), nor Hematopoietic Stem Cells (CD34), monocytic (CD11c) or T cells (CD5)

exclusion markers. Consistent with previous reports showing that not all ILC3-like cells express CD161 (Simoni

et al.  2017; Li et al.  2018),  this marker was not included in this Hypergate gating strategy. Both strategies

resulted in F1 scores higher than 0.9.

A manual blinded replication of this gating strategy on an independent sample (Figure 6D) resulted and using de-

novo t-SNE clusters as a gold standard resulted in a good purity and recovery of both subsets (F1 of 0.90 and

0.89 respectively for ILC2s and ILC3s). The gated-in cells featured expected levels of expression for various

markers (CD34-CD5-T-bet-GZMA-), CD161hiGATA3hi for ILC2s and CD161intGATA3int for ILC3s, confirming

their  cellular  identities  (Figure   6E).  These  results  demonstrate  the  ability  of  Hypergate  to  produce  short,

reproducible and high-performance gating strategies.

Discussion and future works

Herein we introduce Hypergate as a new tool that extends current high dimensional cytometry analysis pipelines,

allowing automated phenotypic annotation of cell subsets as well as the optimization of sorting strategies. Unlike

manual gating, this approach is less prone to certain biases such as too conservative gating which leads to an
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underestimation of the frequencies, and is not biased against poorly documented markers nor in favour of well-

documented ones.

Phenotypically labelling a cell  subset  either involves finding textbook labels matching its phenotype, or the

identification of useful metrics to accurately illustrate the significance of each parameter in relation to the cell

subset. The later case is notably suitable for new subsets and for subsets whose definitions are still controversial.

Unlike  other  methods  such  as  median  or  mean  summarization  or  the  MEM scoring  (Diggins  et  al.  2017)

approach, Hypergate outputs coefficients that are mostly null or close to null. These parsimonious phenotypic

descriptions are faster to interpret which is relevant when the number of clusters is important (as it is commonly

the case when studying immunological datasets).

Gating strategies are also widely used in cell sorting experiments, where a particular population is isolated for

further studies. Sorting requires gating strategies that are short (as even modern cell sorters can only incorporate

up to a dozen markers) and efficient. Purity is often the major criteria to avoid contamination of the population

of interest, but it is hard to control for when using only a limited number of markers. Yield is harder to control

for when using traditional manual gating, as the proof-reading process involved (known as “backgating”) focuses

on improving purity rather than yield due to its non-commutativity. By identifying unbiased gating strategies

established on large flow or mass-cytometry panels, Hypergate enables the task-specific definition of high-purity

and high-yield gating strategies for sorting experiments.  Applying our method to ILC subsets allowed us to

identify them manually with high accuracy.

The current  Hypergate implementation can only gate on a single cell  cluster at  a time. Gating strategies  to

identify many cell subsets could be implemented by optimizing for the mean F1 score across all subsets instead

of  a  single  measure,  but  the  issue  of  matching  subspaces  to  clusters  arises.  Weber  et  al.  (2016) used  the

Hungarian algorithm for cluster-population assignment in their clustering benchmark, which could help automate

this step while keeping the clusters distinct in the gating scheme.

Many studies  (Aghaeepour et al. 2013; Samusik et al. 2016; Li et al. 2017) have proposed automated gating

procedures whose focus is on the result of the gating procedure (the cell labels). Thus, while these methods can

be powerful clustering tools, they do not easily allow mapping identified populations on independent data. We

thus suggest that the method we describe herein will purposefully complement other available tools and could

also prove useful to other types of high-dimensional data.

Software availability

Hypergate is available for download at http://github.com/ebecht/hypergate
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Figure legends

Figure 1

Schematic  description  of  the  analysis  of  A)  a  low-dimensional  or  B)  high-dimensional  cytometry  dataset.

Framed are steps for which only limited software assistance exist. C) Summary of Hypergate’s workflow. The

red-colored events represent a ‘population of interest’.

Figure 2

A) t-SNE representation of the ‘Samusik_01’ dataset color-coded by cluster identity output by Phenograph. B)

Reproduction of  the gating strategy  defining Macrophages  according  to  Samusik et  al,  using cut-off  values

defined by the authors. The blue area is excluded at each step and the non-excluded events are represented on the

next step. The red events correspond to t-SNE-defined macrophages.  C)  Reproduction of the gating strategy

defining Macrophages according to Samusik et al, using cut-off values computed by Hypergate.  D) 8-channels
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gating strategy for  t-SNE-defined Macrophages identified by Hypergate.  E) Comparison of the three gating

strategies in terms of purity (light gray), yield (dark gray) and their harmonic mean (F1-score, black).

Figure 3

Comparison of Hypergate-computed cell phenotypes and Samusik et al. gating strategies. The middle part of the

graph  (the  gating  tree)  summarizes  the  authors’  gating  scheme.  The  leaves  of  the  gating  tree  represent

populations. Wordclouds around the populations show the parameters selected by Hypergate to gate on each

expert-defined  population.  Significance  of  each  parameter  is  encoded  by  its  size  (bigger  denotes  more

significant).

Figure 4

A) Heatmap showing phenotypic labels as computed by Hypergate (top) or MEM scores (bottom). Right panels

feature  histograms  representing  the  densities  of  the  corresponding  scores.  B)  t-SNE  map  color  coded  by

Phenograph clusters and annotated using Hypergate.

Figure 5

Biplots comparing the A) F1 scores and B) accuracy in binary classification across 95 populations and 7 datasets

for Hypergate, Nelder-Mead optimization, four support vector machines and random-forests. The dashed-line

represents the first diagonal (line of slope 1 that crosses the origin). p-values are computed from a paired Student

t-test assuming unequal variances.  C) log10-proportion of malignant cells among PBMCs estimated either by

expert  haematologists  (y-axis)  or  other  classifiers  (x-axis).  Pearson  correlation  coefficients  and  the

corresponding p-values are reported, as well as diagnostic accuracy (using expert diagnosis as a gold standard).

Figure 6

A) Identification of ILC2s ans ILC3s using t-SNE. B) Manual gating strategy for the identification of ILC2s and

ILC3s.  Purity,  yield  and  the  F1  score  are  defined  using  the  t-SNE cluster  as  the  ground  truth.  C)  Gating

strategies identified by Hypergate for ILC2s (top) and ILC3s (bottom).  D) Blinded reproduction of the learnt

gating strategy on an independent sample. E) Phenotype of the blindly-gated ILC subsets as well as NK cells and

Hematopoietic Stem Cells as controls.

Supplementary Material

Supplementary Figure 1: Flowchart of Hypergate’s operating principle

Supplementary Figure 2:  t-SNE representation of  the ‘Samusik_01’ dataset  color-coded by manual  gating

labels.

13/16

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2018. ; https://doi.org/10.1101/278796doi: bioRxiv preprint 

https://doi.org/10.1101/278796
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 3:  Biplots of CD44, CD64 and F4/80 expression in the ‘Samusik_01’ dataset.  Red

events highlight C16, the t-SNE-defined macrophages.

Supplementary Figure 4:  Biplots of CD64 versus F4/80 color-coded by intensity of either CD11b, SiglecF,

B220,  CD3  or  Ly6C.  These  markers  have  been  used  by  the  authors  to  gate-out  respectively  monocytes,

eosinophils, B cells and T cells.

Supplementary Figure 5: t-SNE representation of ALL samples at diagnosis (two first columns) or follow-up

timepoints (three last columns) across five cases (rows). Blue denotes a malignant event manually identified and

reviewed by an expert haematologist. Red denotes an event classified as malignant by Hypergate. The strategy

learnt for column two is applied as is on columns three, four and five.

Supplementary  Video  1:  Animation  of  the  optimization  procedures  applied  to  Non-Classical-Monocytes

defined by manual clustering on the t-SNE biplot (showed as a dashed polygon). On the t-SNE biplot, events are

plotted in either black if the gating procedure classifies them correctly, and in red otherwise. The right panels

show the parameters selected in the final gating strategy, the red frame shows the cut-offs that are currently

selected for these parameters, and a blue segment shows the next-chosen cut-off value. On the biplots, events are

color-coded as  black for  True Positives,  blue for  False Negative,  red for  False Positive.  True Negative  are

omitted. The bottom part shows the current value of the yield, purity and F1 score. F1 score steadily increases

with each step, while purity increases during contractions, yield during expansions.
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