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Abstract 20 

 Multistage tumorigenesis is a dynamic process characterized by the accumulation 21 

of mutations. Thus, a tumor mass is composed of genetically divergent cell subclones. 22 

With the advancement of next-generation sequencing (NGS), mathematical models 23 

have been recently developed to decompose tumor subclonal architecture from a 24 

collective genome sequencing data. Most of the methods focused on single-nucleotide 25 

variants (SNVs). However, somatic copy number aberrations (CNAs) also play critical 26 

roles in carcinogenesis. Therefore, further modeling subclonal CNAs composition 27 

would hold the promise to improve the analysis of tumor heterogeneity and cancer 28 

evolution. To address this issue, we developed a two-way mixture Poisson model, 29 

named CloneDeMix for the deconvolution of read-depth information. It can infer the 30 

subclonal copy number, mutational cellular prevalence (MCP), subclone composition, 31 

and the order in which mutations occurred in the evolutionary hierarchy. The 32 

performance of CloneDeMix was systematically assessed in simulations. As a result, 33 

the accuracy of CNA inference was nearly 93% and the MCP was also accurately 34 

restored. Furthermore, we also demonstrated its applicability using head and neck 35 

cancer samples from TCGA. Our results inform about the extent of subclonal CNA 36 

diversity, and a group of candidate genes that probably initiate lymph node metastasis 37 

during tumor evolution was also discovered. Most importantly, these driver genes are 38 

located at 11q13.3 which is highly susceptible to copy number change in head and neck 39 

cancer genomes. This study successfully estimates subclonal CNAs and exhibit the 40 

evolutionary relationships of mutation events. By doing so, we can track tumor 41 

heterogeneity and identify crucial mutations during evolution process. Hence, it 42 
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facilitates not only understanding the cancer development but finding potential 43 

therapeutic targets. Briefly, this framework has implications for improved modeling of 44 

tumor evolution and the importance of inclusion of subclonal CNAs. 45 

 46 

Introduction 47 

Cancer, a dynamic disease, is characterized by unusual cells with somatic 48 

mutations. These mutations are caused by environmental factors accumulated during 49 

an individual’s lifetime; this accumulation of mutational events results in a large degree 50 

of genetic heterogeneity among cancer cells. The intratumor heterogeneity causes 51 

difficulties in devising personalized treatment strategies.  52 

To decipher intratumor heterogeneity, understanding how cancer evolves is a key 53 

step. The hypothesis for the somatic evolution of cancer was proposed in the 1970s [1]. 54 

It states that all tumor cells descend from a single founder cell, and cells with some 55 

advantageous mutations become more competitive than normal cells for growth and 56 

clonal expansion. This hypothesis could also be formed through random drift. Gradually, 57 

subsequent clonal expansion occurs, and the tumor evolves into an organization of 58 

multiple cell subpopulations. Understanding clonal evolution in cancer is one of the 59 

goals of cancer medicine [2]. Presently, sequencing technology enables performing a 60 

large-scale molecular profiling of tumors to comprehend cancer development and 61 

determine disease progression. However, the process of evolution is not directly 62 

observed because tissues for measuring somatic mutations are typically obtained from 63 

patients at a single time point. Thus, the ancestral relationship among tumor subclones 64 
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have to be inferred, and this is closely related to a well-studied problem, phylogenetic 65 

tree reconstruction. To construct a phylogenetic tree, the mutations in each cancer cell 66 

should be measured to infer evolutionary relationships among various cells. For 67 

addressing this concern, the current technology of single-cell sequencing seems 68 

appropriate [3, 4]. However, this technology is not widely used because of some 69 

technical limitations and financial considerations [5]. Most studies on tumor evolution 70 

rely on DNA sequencing technology with a bulk tumor containing genetically different 71 

cells. Therefore, the cellular prevalence of each subclone have to be measured through 72 

the relative read count information of the variants. 73 

Single-nucleotide variants (SNVs) and copy number aberrations (CNAs) are 74 

widely used data types to study tumor evolution. Recently, studies inferring the 75 

population structure and clonal architecture have either focused on SNVs according to 76 

variant allele frequencies (VAFs) or on CNAs with read counts obtained through DNA 77 

sequencing [6, 7]. Methods for either type of data can adopt the other type of data to 78 

improve their reconstruction, and most methods have developed corresponding 79 

computational tools. 80 

 The first category of method reconstructs models with only SNV data. AncesTree 81 

and clonality inference in tumors using phylogeny (CITUP) are the representatives of 82 

this category, and they build models based on heterozygous SNV to study cancer 83 

progression, assuming that the copy number is two [8, 9]. To relax the assumption of 84 

the normal copy number status, many studies have included CNAs to correct the 85 

baseline [10-13]. For instance, Pyclone is one of the clonal inference approaches, and 86 

it applies a hierarchical Bayes binomial distribution to model allelic counts [13]. This 87 
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approach applies a Dirichlet process prior on group mutations and infers the posterior 88 

distribution to estimate the cellular prevalence, which is the fraction of cancer cells 89 

harboring a mutation.  90 

 Unfortunately, the aforementioned algorithms only considered abnormal copy 91 

number states but do not infer the clonal structure of copy number changes. If we do 92 

not account for clonal evolutionary architecture, the estimation of CNAs would be 93 

inaccurate and just reported as an average of the CNAs of all tumor subclones. Hence, 94 

in contrast to the SNV-based models, some studies focus on subclonal CNA 95 

heterogeneity [7, 14-18]. They recognize that subclonal CNAs could technically 96 

improve the analysis accuracy. THetA is one of the most popular tools for subclonal 97 

copy number decomposition [7]; it searches all possible combinations of copy numbers 98 

across all segments and applies the maximum likelihood approach to infer the most 99 

likely subclonal structures. However, THetA has an identifiability concern, such that 100 

several solutions of subclone structures and copy number status levels can explain the 101 

read-depth information equally well [15, 16].  102 

 Integrating other data, such as single-nucleotide polymorphisms, to jointly analyze 103 

tumor progression is a solution to the identification problem. The methods developed 104 

on the basis of these integrated data types constitute another category of cancer 105 

subclone reconstruction approaches [14-18]. In 2014, Oesper et al. modified THetA to 106 

THetA2, which designs a probabilistic model of B-allele frequencies (BAFs) to solve 107 

the identification problem and simultaneously improves the efficiency of the algorithm 108 

[14]. Furthermore, PyLOH resolves the identifiability problem by integrating CNAs 109 

and loss of heterozygosity (LOH) within a unified probabilistic model [15]. PyLOH 110 
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aims at determining the contamination from normal cells and evaluating tumor purity, 111 

which is the fraction of tumor cells within a tumor tissue. Instead of tumor purity, 112 

MixClone improves PyLOH with a more delicate measurement of tumor progression, 113 

the subclonal cellular prevalence (SCP) [16]. The major concept of PyLOH and 114 

MixClone is to use the Poisson and binomial models simultaneously to analyze the read 115 

depth and BAFs.  116 

Most of the above mentioned methods that reconstruct the process of copy number 117 

evolution assume heterozygous SNV sites within chromosome segments. This 118 

assumption facilitates the decomposition of clonal CNAs, but it ignores segments 119 

without any somatic SNVs. Therefore, to more effectively address this concern, we 120 

developed a new algorithm, called CloneDeMix, which considers subclonal copy 121 

number changes when inferring the clonal evolutionary structures. It requires only the 122 

read-depth information of loci of any sizes no matter SNVs are included or not. The 123 

input can be a predefined segment of the chromosome or simply a single nucleotide 124 

locus. CloneDeMix is a two-way clustering model that clusters each locus into an 125 

appropriate copy number state and a most likely clonal group. The procedure can 126 

simultaneously evaluate all loci and regions. The algorithm uses information from all 127 

samples and loci simultaneously to infer clone progression and can efficiently reduce 128 

the identification bias. The flowchart of CloneDeMix is demonstrated in Fig 1. 129 

In this study, we demonstrated the performance of the algorithm with simulation 130 

data and applied it to a head and neck cancer dataset from The Cancer Genome Atlas 131 

(TCGA) and primary esophageal squamous cell carcinoma (ESCC) [19]. The 132 

simulation demonstrated the accuracy of clone identification and subclonal copy 133 
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number change detection, particularly in early mutational events, which could be the 134 

candidate of driver mutations. The specificity of the copy number detection exceeded 135 

98%, and the sensitivity was nearly 93.5%. These simulations support that our approach 136 

can successfully identify the copy number mutation and deconvolute its amplification 137 

or deletion state from the clonal architecture. 138 

Our results obtained for 75 paired normal–tumor samples recapitulated most of the 139 

findings reported in head and neck cancer [20-23]. The novel subclonal CNAs have 140 

also been identified, and their subclonal structure has been shown to facilitate the 141 

discovery of driver mutations for advanced tumor progression. Furthermore, we 142 

provide evidence for the association between tumor heterogeneity and metastasis. A 143 

large heterogeneity tends to promote tumor metastasis. To sum up, CloneDeMix 144 

demonstrated ability to accurately identify subclonal CNAs and clarify intratumor 145 

heterogeneity. It is useful complement to other methods for cancer evolution studies. 146 

 147 

 148 

Fig 1.  Flowchart of CloneDeMix 

Our approach includes three main steps, data preparation, running CloneDeMix, and inference of 

tumor heterogeneity. 

 149 

 150 

Methods 151 
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Two-way Poisson mixture model  152 

We delineated the structure of cellular evolution based on two concepts: SCP and 153 

mutational cellular prevalence (MCP), as shown in Fig 2. The SCP is defined as the 154 

fraction of cells that are relatively homogeneous and carry the same set of mutations. 155 

The MCP is defined as the fraction of cells that carry a certain mutation. The SCPs can 156 

be added to match the MCPs according to the evolutionary structure of subclones (Fig 157 

3A). The evolution matrix, an upper triangular matrix, in Fig 3A provides information 158 

on the ancestral relationship among the subclones. There are five subclones in this toy 159 

example and their relationship is shown in the evolution tree in Fig 3A. The percentages 160 

indicate the corresponding SCPs. In this evolutionary structure, six mutations create 161 

five subclones. For example, locus A exists in every tumor subclone because of its 162 

presence at the top of the tree. Hence, the MCP of this locus can be calculated as the 163 

sum of all SCPs. By contrast, locus G is a later mutation and only exists in the leaf 164 

subclone C4. The corresponding MCP is equal to the SCP of C4. 165 

 166 

Fig 2.  Illustration of SCP and MCP 

A tissue has two decompositions. Panel (A) provides an overhead view that divides the cells into 

several disjoint groups according to their mutations. The cells in the same group are relatively 

homogeneous and carry the same set of mutations. The size of a group or the fraction of cells is called 

the SCP. In contrast to the SCP, panel (B) demonstrates the MCP, which is defined as the fraction of 

cells carrying a certain mutation. 

 167 

Fig 3.  Two-way mixture model for inferring tumor progression by using copy 

numbers 
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(A) A toy example for tumor progression of five distinct subclones. Six of the ten loci (A, B, E, F, G, 

and J) have gained or lost copy numbers, and the remaining loci (C, D, H, and I) show no copy number 

change. The mutation in each locus forms a new subclone. MCPs can be determined by multiplying 

the SCP and evolution matrix. (B) The copy number status of each locus is listed in the table, and the 

MCP of each locus is listed under the table. (C) Each locus belongs to one of the 21 clusters in 

CloneDeMix. The columns represent five MCP levels, and the rows represent five copy number states 

considered in the example.  

 168 

The read depth of each locus is proportional to the copy number and MCP. To 169 

delineate the read depth of each somatic copy number variant into its copy number state 170 

and MCP, this study proposes a two-way mixture model (CloneDeMix). Any locus in a 171 

sample has only two states, namely normal and mutated states; the proportion of both 172 

types differs across different loci. For example, locus E shows copy number changes in 173 

subclone C2 but not in the other subclones (Fig 3B). Hence, all other subclones 174 

comprise the normal allele for locus E. Furthermore, locus F has copy number changes 175 

in C3, C4, and C5; hence, it is classified as normal in subclones C1 and C2. 176 

CloneDeMix clusters all loci according to their copy number state and MCP. As shown 177 

in Fig 3C, all loci in this case are classified into five copy number states and 178 

simultaneously into five MCP levels. This results in 21 groups because we could not 179 

distinguish the MCP levels for the loci of two copies. The MCPs for the five MCP 180 

groups are unknown and have to be estimated. Thus, CloneDeMix provides the copy 181 

number and MCP for each locus. 182 

The input in CloneDeMix is the read depth of each analyzed locus. When the locus 183 

represents a segment, such as an exon or a predefined amplicon, the average read depth 184 

is adopted. Let Xi be the read depth of locus i or the average read depth rounded to the 185 
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closest integer in region i, and assume that it follows a two-way mixture Poisson 186 

distribution. 187 

𝑃(𝑋𝑖|{𝑟ℎ}, {𝜋𝑘ℎ}, 𝑎𝑏𝑎𝑠𝑒,𝑖) = ∑ ∑ 𝜋𝑘ℎ𝑓𝑘ℎ(𝑋𝑖|𝑟ℎ, 𝑎𝑏𝑎𝑠𝑒,𝑖)
𝑚2
ℎ=1

𝑚1
𝑘=1  ∀ 𝑖  188 

Each component fkh(Xi) in the model represents the distribution of read depths 189 

sampled from the k-th and h-th groups of the copy number state and MCPs, respectively. 190 

The read count for each combined group is specified as a Poisson distribution; the mean 191 

of this distribution is proportional to a function of the mutated copy number and the 192 

MCP. It is specified as  193 

𝜇ℎ𝑘 = 𝑎𝑏𝑎𝑠𝑒,𝑖 × ( 2(1 − 𝑟ℎ) + 𝑐𝑘𝑟ℎ ), 194 

where rh is the MCP for the h-th group, ck is the copy number of the k-th copy number 195 

group, and abase,i is a normalization number for locus i. The corresponding mixture 196 

weight is denoted as kh. Without further evidence, the copy number of the normal cells 197 

can be considered to be two in CloneDeMix. The number of groups for copy numbers 198 

and cellular proportions are pre-specified as m1 and m2, respectively; we select m1 and 199 

m2 according to the Akaike information criterion (AIC). 200 

 201 

Estimating MCPs and copy number by using expectation–202 

maximization algorithm 203 

The parameters of CloneDeMix include the normalization constants abase,i, MCPs 204 

r = {rh}, and weights  = {kh }. The plug-in estimator of abase,i is estimated from the 205 

paired normal sample of each tumor sample. Because all samples are assumed to be 206 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 12, 2018. ; https://doi.org/10.1101/278887doi: bioRxiv preprint 

https://doi.org/10.1101/278887
http://creativecommons.org/licenses/by-nd/4.0/


 

11 

 

globally normalized, and the sample-specific variation is removed before the analysis, 207 

the read depth of locus i in the normal sample represents an unbiased estimator of the 208 

mean read depth in the tumor sample when the copy number is two. Hence, we use half 209 

of the read depth of locus i in the paired normal sample as the estimator of abase,i. In 210 

case of no paired normal sample, we suggest taking half of the sample mean across all 211 

existing normal samples to estimate abase,i. All other parameters are estimated using the 212 

expectation–maximization (EM) algorithm to approximate the maximum likelihood 213 

estimation (MLE).  214 

We introduce a sequence of latent binary variables for locus i. Variables 𝑌𝑖 =215 

{𝑌𝑖𝑘ℎ}𝑘=1,…,𝑚1;ℎ=1,…,𝑚2
 take the value of 0 or 1, indicating the memberships of the copy 216 

number and MCP groups for locus i. If 𝑌𝑖𝑘ℎ = 1, then 𝑋𝑖|𝑌𝑖𝑘ℎ = 1, 𝑐𝑘, 𝑟ℎ, �̂�𝑏𝑎𝑠𝑒,𝑖 has 217 

the following distribution 218 

 𝑓𝑘ℎ(𝑋𝑖) = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑋𝑖|𝜇ℎ𝑘 = �̂�𝑏𝑎𝑠𝑒,𝑖 × ( 2(1 − 𝑟ℎ) + 𝑐𝑘𝑟ℎ )).  (2) 

A complete form of the conditional distribution is 219 

 𝑃(𝑋𝑖|𝑍𝑖, 𝑌𝑖 , �̃�, �̂�𝑏𝑎𝑠𝑒,𝑖) = ∏ ∏ 𝑓𝑘ℎ(𝑋𝑖| �̂�𝑏𝑎𝑠𝑒,𝑖)
𝑌𝑖𝑘ℎ

𝑘ℎ .  (3) 

According to the mixture model construction, the probability of 𝑌𝑖𝑘ℎ = 1 is 𝜋𝑘ℎ. 220 

Specifically,  221 

 𝑃(𝑌𝑖𝑘ℎ = 1) = 𝜋𝑘ℎ for each locus 𝑖. (4) 

Hence, the density functions of 𝑌𝑖 = {𝑌𝑖𝑘ℎ}𝑘=1,…,𝑚1;ℎ=1,…,𝑚2
 follow multinomial 222 

distributions with probability functions 223 

 𝑃(𝑌𝑖|Π) = ∏ ∏ 𝜋𝑘ℎ
𝑌𝑖𝑘ℎ

𝑘ℎ .  (5) 

According to the definition of conditional probability, the joint density function of 224 
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𝑋𝑖 and 𝑌𝑖 can be written as follows: 225 

 𝑃(𝑋𝑖, 𝑌𝑖|Π, �̃�, �̂�𝑏𝑎𝑠𝑒,𝑖) = 𝑃(𝑋𝑖|𝑌𝑖, �̃�, �̂�𝑏𝑎𝑠𝑒,𝑖)𝑃(𝑌𝑖|Π)  

  = ∏ ∏ 𝑓𝑘ℎ(𝑋𝑖| �̂�𝑏𝑎𝑠𝑒,𝑖)
𝑌𝑖𝑘ℎ

𝑘ℎ ∏ ∏ 𝜋𝑘ℎ
𝑌𝑖𝑘ℎ

𝑘ℎ    

  = ∏ ∏ [𝜋𝑘ℎ𝑓𝑘ℎ(𝑋𝑖| �̂�𝑏𝑎𝑠𝑒,𝑖)]𝑌𝑖𝑘ℎ
𝑘ℎ .  (6) 

The log likelihood of Π and �̃� is 226 

 𝑙(Π, �̃�|𝑋, 𝑌 )  = 𝑙𝑜𝑔 ∏ 𝑃(𝑋𝑖, 𝑌𝑖|Π, �̃�, �̂�𝑏𝑎𝑠𝑒,𝑖)𝑖    

  = ∑ ∑ ∑ 𝑌𝑖𝑘ℎlog(𝑓𝑘ℎ(𝑋𝑖| �̂�𝑏𝑎𝑠𝑒,𝑖)𝜋𝑘ℎ)𝑘ℎ𝑖   (7) 

Because there is no closed form for the maximum likelihood estimator of Π and 227 

�̃�, we adopted the EM algorithm to determine the MLE. The EM algorithm iteratively 228 

maximizes the expected log likelihood in two steps: E and M steps. 229 

The E step of the EM algorithm determines the expected value of the log likelihood 230 

over the value of the latent variable Y, given the observed data X and current parameter 231 

value Π = Π0 and �̃� = �̃�0. Thus, we derive the following equation: 232 

 𝐸𝑌|Π0,𝑐,�̃�0,𝑋 [𝑙(Π, �̃�|𝑋, 𝑍, 𝑌 )]  

 = 𝐸𝑌|Π0,𝑐,�̃�0,𝑋[∑ ∑ ∑ 𝑌𝑖𝑘ℎlog(𝑓𝑘ℎ(𝑋𝑖| �̂�𝑏𝑎𝑠𝑒,𝑖)𝜋𝑘ℎ)𝑘ℎ𝑖 ]   

 = ∑ ∑ ∑ 𝐸𝑌|Π0,𝑐,�̃�0,𝑋[𝑌𝑖𝑘ℎ log(𝑓𝑘ℎ(𝑋𝑖| �̂�𝑏𝑎𝑠𝑒,𝑖)𝜋𝑘ℎ)]𝑘ℎ𝑖    

 = ∑ ∑ ∑ 𝐸𝑌|Π0,𝑐,�̃�0,𝑋[𝑌𝑖𝑘ℎ]𝑘ℎ × log(𝑓𝑘ℎ(𝑋𝑖| �̂�𝑏𝑎𝑠𝑒,𝑖)𝜋𝑘ℎ)𝑖   (8) 

According to the definition of 𝑌𝑖𝑘ℎ, 233 

 𝐸𝑌|Π0,𝑋[𝑌𝑖𝑘ℎ] =  1 × 𝑃(𝑌𝑖𝑘ℎ = 1|Π0, 𝑋) + 0 × 𝑃(𝑍𝑖𝑘ℎ = 0|Π0, 𝑋)   

  =  
𝑃(𝑋𝑖|Π

0, 𝑐, �̃�0, 𝑌𝑖𝑘ℎ = 1) × 𝑃(𝑌𝑖𝑘ℎ = 1|Π0)

𝑃(𝑋𝑖|Π
0)

  

  =  
𝑃(𝑋𝑖|Π

0, 𝑐, �̃�0, 𝑌𝑖𝑘ℎ = 1) × 𝑃(𝑌𝑖𝑘ℎ = 1|Π0)

 ∑ ∑ [𝑃(𝑋𝑖|𝑐, �̃�0, Π0, 𝑌𝑖𝑘ℎ)𝑃(𝑌𝑖𝑘ℎ|Π0)]ℎ𝑘
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  =  
 𝑓𝑘ℎ(𝑋𝑖| �̂�𝑏𝑎𝑠𝑒,𝑖) ×  𝜋𝑘ℎ

0

∑ ∑ [𝑓𝑘ℎ(𝑋𝑖| �̂�𝑏𝑎𝑠𝑒,𝑖) ×  𝜋𝑘ℎ
0 ]ℎ𝑘

 (9) 

Let 𝐸𝑌|Π0,𝑋[𝑌𝑖𝑘ℎ] = 𝑌𝑖𝑘ℎ
0  and substitute it into equation (8); with some 234 

arrangement, we obtain 235 

 𝐸𝑌|Π0,𝑐,�̃�0,𝑋 [𝑙(Π, �̃�|𝑋, 𝑍, 𝑌 )]  

 = ∑ ∑ ∑ 𝐸𝑌|Π0,𝑐,�̃�0,𝑋[𝑌𝑖𝑘ℎ]𝑘ℎ × log(𝑓𝑘ℎ(𝑋𝑖| �̂�𝑏𝑎𝑠𝑒,𝑖)𝜋𝑘ℎ)𝑖    

 = ∑ ∑ ∑ 𝑌𝑖𝑘ℎ
0

𝑘ℎ × log(𝑓𝑘ℎ(𝑋𝑖| �̂�𝑏𝑎𝑠𝑒,𝑖)𝜋𝑘ℎ)𝑖    

 = ∑ ∑ ∑ 𝑌𝑖𝑘ℎ
0

𝑘ℎ × [log (𝑓𝑘ℎ(𝑋𝑖| �̂�𝑏𝑎𝑠𝑒,𝑖))𝑖 + log (𝜋𝑘ℎ)]  (10) 

The M step of the EM algorithm maximizes equation (10) over Π, �̃� to determine 236 

the next estimates (e.g., Π1  and �̃�1). The maximization over Π involves only the 237 

second term in equation (10):  238 

 𝜋𝑘ℎ
1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑘ℎ

(∑ ∑ 𝑌𝑖𝑘ℎ
0 × log (𝜋𝑘ℎ)ℎ  𝑖 ) under ∑ 𝜋𝑘ℎ = 1 (11) 

The solution is 𝜋𝑘ℎ
1 = ∑ 𝑌𝑖𝑘ℎ

0𝑛
𝑖=1 /𝑛 . The maximization of �̃� concerns the first 239 

term of equation (10), and the solution has no closed form. Numeric algorithms, such 240 

as the Newton–Raphson method, are required to solve the equation. We used the 241 

Newton–Raphson method with the R function optim(), and the iterative algorithm for 242 

�̃� is  243 

 �̃�1 =  𝑎𝑟𝑔𝑚𝑎𝑥�̃� (∑ ∑ 𝑌𝑖𝑘ℎ
0 × 𝑙𝑜𝑔 (𝑓𝑘ℎ(𝑋𝑖| �̂�𝑏𝑎𝑠𝑒,𝑖))

ℎ
 

𝑖
) 

 

 
=  

𝑎𝑟𝑔𝑚𝑎𝑥�̃� (∑ ∑ 𝑌𝑖𝑘ℎ
0 × [−�̂�𝑏𝑎𝑠𝑒,𝑖 × ( 2(1 − 𝑟ℎ) + 𝑐𝑘𝑟ℎ )

ℎ𝑖

+ 𝑋𝑖log (�̂�𝑏𝑎𝑠𝑒,𝑖 × ( 2(1 − 𝑟ℎ) + 𝑐𝑘𝑟ℎ ))]  ) 

(12) 

The solutions (Π1, �̃�1) are substituted into equation (10) to replace (Π0, �̃�0). The 244 

expectation is then rewritten as 𝐸𝑌|Π1,𝑐,�̃�1,𝑋 [𝑙(Π, �̃�|𝑋, 𝑌 )]. The algorithm continues 245 
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iteratively to maximize the expectation of the log likelihood. 246 

 247 

Determining the order of copy number variants 248 

Based on the subclone size inferred using two-way cluster modeling, we can 249 

determine the order of any pairs of recurrent mutations existing in multiple samples. 250 

Herein, we use the notation MCP �̂�𝑖𝑗 to indicate the estimated MCP of mutation i from 251 

the model of sample j. If a pair of mutations is recurrent in tumors with a fixed order, 252 

the relative size of their estimated MCPs should be consistent. For any two loci a and 253 

b with somatic mutations, the MCP profiles across p samples are (�̂�𝑎1, … �̂�𝑎𝑝) and 254 

(�̂�𝑏1, … �̂�𝑏𝑝). To determine whether the two mutations are highly related, the Wilcoxon 255 

signed-rank test can be applied to the profiles of the two mutations. In the event of 256 

significant inequality, when one mutation is more common in cells than the other 257 

mutation, it indicates a recurrent evolutionary order between the two mutations.  258 

 259 

Results 260 

In this study, we first evaluated the prediction accuracy of CloneDeMix by 261 

simulated data. Simulation study is useful to verify how well an algorithm behaves with 262 

data generated from the theory, but it cannot inform us how well the theory fits reality. 263 

To that end, we collected normal RNA sequences from TCGA and applied down-264 

sampling to these normal data to create artificial copy number changes. We used the 265 

data to compare CloneDeMix with THetA by evaluating weighted root mean square 266 

error of MCP estimation and positive rate of copy number prediction. We also applied 267 
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CloneDeMix on head and neck cancer data from TCGA and serial biopsies of 268 

esophageal cancer [19] to infer genomic evolution based on copy number change. 269 

Simulation 270 

The simulation considered four variant states of copy numbers, namely 0, 1, 3, and 271 

4 copies. Four MCPs were included: 0.1, 0.3, 0.5, 0.7, and 0.9. Each combination was 272 

repeated three times, thus resulting in 60 regions with copy number changes. 273 

Furthermore, each region was assigned 20 bases generated with a Poisson distribution 274 

whose mean value was determined by its assigned copy number state and MCP. In 275 

addition to the mutated regions, 100 normal regions were scattered among the mutated 276 

regions; their copy number state was two. The simulation generated depths for a long 277 

sequence with 3,200 bases for each of the 60 samples. CloneDeMix was subsequently 278 

applied to the simulation data to reconstruct respective copy number states and MCP 279 

groups. The entire simulation process was repeated 10,000 times to obtain a conclusion. 280 

The simulation was performed to evaluate the model estimation accuracy. Table 1 281 

shows the mean and standard deviation (SD) of simulation results for MCP estimation, 282 

and Fig 4 demonstrates the accuracy of assignments for copy number states. As 283 

presented in Table 1, the MCP estimates were very close to the underlying truth, 284 

indicating high performance for MCP estimation. Notably, the bias decreased as the 285 

ground value of the MCP increased. Detecting mutations of low cellular prevalence was 286 

relatively difficult because the signal was not adequately strong.  287 

As illustrated in Fig 4, the accuracy of the copy number assignment under each 288 

condition was calculated from 10,000 simulations. The specificity of CloneDeMix was 289 
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found to be 99.58%, and the sensitivity for amplification and deletion were 93.65% and 290 

93.89%, respectively. Thus, CloneDeMix represents a high specificity and efficiently 291 

controls false positive results. As mentioned in the discussion on MCP estimation, 292 

estimating mutations of low cellular prevalence was biased. These biased MCPs 293 

directly caused the misclassification of the copy number state and reduced the model 294 

sensitivity. In conclusion, these simulations support that CloneDeMix can successfully 295 

identify the potential copy number mutations and deconvolute its amplification or 296 

deletion state from the clonal architecture. 297 

 298 

Table 1. Mean and SD of MCP estimation 299 

 Summary statistics 

True value Mean SD 
0.1 0.100 0.0067 

0.3 0.300 0.0036 

0.5 0.499 0.0022 

0.7 0.699 0.0014 

0.9 0.900 0.0008 

 300 

Fig 4.  Result of copy number estimation 

The size of the circle is proportional to the number of loci assigned to each estimated status from 

10,000 simulations. The CNA status is divided into three conditions: deletion, amplification, and 

normal conditions.  

 301 

 302 

Comparison with THetA2 303 
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In this section, we evaluated CloneDeMix on a more realistic simulation scenario 304 

and compared it with THetA2. The core concept of this simulation scenario is the use 305 

of down-sampling technique to resample reads of real normal sequencing data with 306 

artificial copy number changes.  307 

To that end, we first collected 75 normal samples from TCGA and then performed 308 

standard quintile normalization to reduce noise. For simplicity, we only used 309 

chromosome 1 for validation, and chromosome 1 was first cut into 200 different regions. 310 

According to the raw data, we have the raw read counts of each region per sample. The 311 

75 samples were equally divided into case and control. In the control group, the 312 

resampled read count of each region was generated from a binomial distribution. For 313 

the parameter setting of a binomial distribution, the number of trials is set as two times 314 

raw read count and the success probability is 0.5. This procedure is called down-315 

sampling and it guarantees the mean of resampled count is the same as the mean of raw 316 

count. In the case group, we need to randomly assign 20 regions to have copy number 317 

change. The resampled read count of CNA region also followed the binomial 318 

distribution with the number of trials equal to two times of the raw read count, but the 319 

success probability is set as 0.5×(2×(1-MCP)+C×MCP)/2 which is determined by a 320 

predefined copy number C and MCP. The predefined copy number of a variant was set 321 

to be 0, 1, 3, and 4. The MCP was set to be 15 different values ranging from 0.1 to 0.9 322 

as shown in Fig 5. 323 

Most studies integrate CNAs and single nucleotide change to improve the accuracy 324 

of copy number identification and to reduce the bias of cellular prevalence estimation. 325 

However, those approaches only study the regions that contain single nucleotide change, 326 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 12, 2018. ; https://doi.org/10.1101/278887doi: bioRxiv preprint 

https://doi.org/10.1101/278887
http://creativecommons.org/licenses/by-nd/4.0/


 

18 

 

and this constraint apparently limits our understanding of the chromosome structure 327 

change. It has been reported that CNAs affect a larger fraction of the genome in cancers 328 

than any other type of somatic genetic mutation does [23]. For example, a large-scale 329 

study of somatic CNAs across different cancers shows that in a typical cancer sample, 330 

17% of the genome was amplified and 16% genome was deleted on average [24]. Hence, 331 

for a fair comparison, we only compared CloneDeMix with THetA2 because THetA2 332 

is also a subclonal copy number decomposition method and supports direct tumor 333 

heterogeneity inference without considering SNVs. 334 

Both of CloneDeMix and THetA2 are developed for multiple clone identification, 335 

but THetA2 tends to identify single clone in our experience. Therefore, we designed 336 

the resampled data as a mixture of normal cells and one subclone of tumor cells. In this 337 

simple case, the MCP is equal to the tumor purity and we explored the model 338 

performance in different purity. In Fig 5A, we measured the performance of purity 339 

estimation by weighted root mean square error (WRMSE) which is a type of adjusted 340 

RMSE. WRMSE adopts the inverse of true purity as the weight for adjustment because 341 

the variance of purity estimation is a function of the true purity. The variation of purity 342 

estimate increases when the purity increases. Across the 15 different purity settings, 343 

CloneDeMix outperforms THetA2 on measuring purity as demonstrated in Fig 5A. It 344 

is notable that the WRMSEs of THetA2 are missing zero in Fig 5 at low purity settings 345 

(0.1, and 0.16) because THetA2 cannot identify tumor population at low tumor purity. 346 

We calculated the true positive rate (TPR) and false positive rate (FPR) of copy number 347 

assignment at different purity levels in Fig 5B and Fig 5C. We found that both of them 348 

performed well when tumor purity was larger than 0.5.  CloneDeMix outperformed 349 
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THetA2 in the low purity. It indicates CloneDeMix and THetA2 are equally well at 350 

exploring large subclones while CloneDeMix has better detection power for small 351 

subclones. 352 

 353 

Fig 5.  Comparison of CloneDeMix and THetA2 with resampled data 

(A) The Y-axis is the weighted root mean square error (WRMSE) for measuring the performance of 

MCP (or purity) estimate, and X-axis represents the true purity setting. (B) The true positive rate 

(TPR) of copy number detection. (C) The false positive rate of copy number detection. 

 354 

 355 

Preprocessing of TCGA data 356 

We analyzed the whole-exon sequencing data of 75 head and neck tumor samples 357 

with their paired normal samples from TCGA (http://cancergenome.nih.gov/). This 358 

dataset includes a total of 20,846 genes with 180,243 exons. We assumed the copy 359 

number state of a single exon to be homogeneous. Each exon was represented by the 360 

mean read depth. The read-depth profile of a tumor sample was normalized with loess 361 

transformation against its paired normal sample. The baseline parameter 𝑎𝑏𝑎𝑠𝑒,𝑖 for 362 

exon i was estimated from the paired normal sample by using half of the read depth of 363 

the normal sample at the same locus. Because the normal sample could also have an 364 

abnormal copy number status, we checked it against all other normal samples. The 365 

target normal sample was first normalized against all other normal samples by using 366 

the cyclic loess method and was subsequently processed through CloneDeMix to 367 

identify the copy number status at each locus. In this step, the average profile of all 368 
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other normal samples was treated as the baseline. If, for example, an abnormal copy 369 

number is found to be k, the raw read depth of this locus would be divided by k to 370 

provide the estimate of 𝑎𝑏𝑎𝑠𝑒,𝑖 for tumor modeling.  371 

Copy number distribution and clone structure 372 

We applied CloneDeMix to each normalized sample and estimated the copy 373 

number state of each locus as well as the corresponding MCPs. Fig 6A shows the 374 

chromosomes that were mutated most frequently, and the results of all other 375 

chromosomes are shown in S1 Fig. This figure presents the copy number events across 376 

180,243 exons for each of the 75 tumor–control sample pair. The proportion of exons 377 

with a normal copy number was high in all samples, and it was close to 100% in the 378 

control samples. The proportion was significantly decreased in the tumor samples, 379 

indicating considerable structural variations during cancer development. 380 

 381 

Fig 6.  Copy number estimation of chromosomes with high mutation rates 

(A) The estimated copy number states for exons across the genome are presented by different colors. 

Light blue and red represent the deletion and amplification events, respectively. Black indicates no 

copy number changes. (B) The black dots indicate the estimated MCPs with respect to the left axis. 

The red bars represent the number of MCPs with respect to the right axis. 

 382 

 383 

On average, 4.7% and 8.7% of exons were estimated to have deletion and 384 

amplification, respectively. We also found that the exons located at 3p, 21p, and 18q 385 

were deleted most frequently, and the average proportions of deletion within these 386 
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chromosomal arms were 19%, 17%, and 13%, respectively. Conversely, the estimated 387 

amplification frequently occurred at 3q, 8q, and 5p, with average frequency levels of 388 

29%, 24%, and 23%, respectively. Previous studies have reported a loss of 3p and 8p 389 

as well as gains of 3q, 5p, and 8q not only in head and neck cancer but also in most 390 

tumors [20-23]; these results are concordant with our findings. Other novel subclonal 391 

CNA regions that were not reported in pan-cancer data analysis [20-23] were identified 392 

as multiple tumor subpopulations were considered (e.g. Deletion in 21p, S1 Fig). These 393 

subclonal CNA signals may be diluted in the previous studies that assumed only one 394 

homogeneous tumor clone and inferred CNAs from the average of whole tumor 395 

information. Our results confirm the identification strength of large-scale structural 396 

variations based on clonal evolution.  397 

Fig 6B presents a summary of MCP estimation. The number of MCPs was 398 

determined using the model selection criterion AIC. We associated the number of 399 

subclones in the tumors with clinical outcomes because this number is closely related 400 

to tumor heterogeneity. The target phenotype included tumor invasion and metastasis, 401 

which are particularly ominous signs of poor prognosis in head and neck cancer. The 402 

association analysis was applied to only 68 samples because the clinical records of the 403 

other samples were incomplete in TCGA. Fig 7A illustrates the box plot of the number 404 

of MCP groups under each clinical group. In this figure, a sample is denoted as “NO” 405 

if no record of either invasion or metastasis exists; otherwise, it is denoted as “YES.” 406 

There appeared to be a tendency of increased tumor heterogeneity for tumors with 407 

invasion or metastasis. The variation of numbers of MCPs was larger for this group. To 408 

more comprehensively clarify this factor, we dichotomized the number of MCPs into 409 
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two groups. The number of MCPs exceeding 4 indicated strong tumor heterogeneity, 410 

whereas a lower number indicated less heterogeneity. The contingency table (Fig 7B) 411 

shows the dichotomization of tumor heterogeneity associated with the clinical 412 

outcomes. The corresponding odds ratio was 3.64, and the p value evaluated with 413 

logistic regression was 0.029. For the samples with higher tumor heterogeneity, the 414 

odds of invasion and metastasis were 3.64 times higher than those for the samples with 415 

lower tumor heterogeneity. In recent studies of head and neck cancer, this association 416 

between tumor heterogeneity and metastasis was explored by whole exome sequencing 417 

and single cell RNA sequencing [25-27]. These studies also found the difference in 418 

tumor heterogeneity between primary and matched lymph node metastases samples. 419 

We further investigated the association of overall patient survival and tumor 420 

heterogeneity by survival analysis, and used two different ways to demonstrate this 421 

association. First, we directly considered the subclone number as a covariate of survival 422 

analysis, and then applied Cox model to analyze the effect of subclones. We got a p-423 

value, 0.036, by Wald’s test, and apparently tumor heterogeneity is a risk factor for 424 

survival. Next, we considered three different tumor heterogeneity levels of samples and 425 

performed Kaplan-Meier (KM) curve for different levels. To this end, all of the samples 426 

are divided into three classes by its subclones number, low-heterogeneity (less than 5 427 

subclones), median-heterogeneity (5 ≤ subclone number ≤ 8), and high-heterogeneity 428 

(large than 8 subclones). The sample sizes of the three classes are 20, 36, and 19, 429 

respectively. Fig 8 showed the survival curves of the three classes with different colors, 430 

and the survival curve of high-heterogeneity samples is worse than the others. Hence, 431 

high-heterogeneity is associated with poor overall survival. It indicates the tumor 432 
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behavior varies with its heterogeneity. The heterogeneity and mortality in head and neck 433 

cancer was also investigated by a different approach [26], and it also concluded that 434 

high-heterogeneity in tumors had doubled the hazard of death. 435 

 436 

Fig 7.  Comparison for the number of MCPs in different clinical groups 

(A) The box plot for the number of MCPs with and without invasion or metastasis. The number of 

MCPs in each sample is represented by a black point jittered around the box. (B) Contingency table 

for dichotomization of tumor heterogeneity and clinical outcomes. 

 437 

Fig 8.  Survival curves between different classes of heterogeneity levels 

There are three Kaplan-Meier (KM) curves. The blue, yellow, and green represent the group of low, 

median, and high heterogeneity, respectively. 

 438 

 439 

Inference of evolutionary order of mutations 440 

As stated in the Methods section, we inferred the evolutionary order of recurrent 441 

variants with multiple samples. For easy comprehension, we demonstrated the result at 442 

the gene level through a series of summary steps. We first selected the genes with 443 

consistent amplification or deletion states in more than 25% of the exons within at least 444 

one sample. A total of 3,244 genes were included in this demonstration, and this set is 445 

called the background gene set. For each sample, the MCP of a gene was represented 446 

by the mean MCP of its exons. We then performed the Wilcoxon signed-rank test using 447 

the gene-level MCP of any two genes across the samples to derive all pairwise 448 

evolutionary relationships. For example, if the MCP of gene i was larger than that of 449 
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gene j (p = 0.05), the mutation on gene i was more likely to be an earlier event than that 450 

on gene j. This relationship was marked as 1; otherwise, it was marked as 0. The 0–1 451 

matrices of pairwise evolutionary relationships were separately calculated for samples 452 

with and without nodal metastasis, and they could be denoted as a matrix 𝑀𝑛𝑒𝑔 and 453 

𝑀𝑝𝑜𝑠 . The element of the matrix could be denoted as 𝑀𝐸,𝑖𝑗 , representing the 454 

evolutionary order of mutations on gene i against mutations on gene j inferred with 455 

samples under the E condition, which could be neg or pos.  456 

The evolutionary order matrix can be used to construct an evolutionary tree of all 457 

mutations. However, a tree of 3,244 genes is highly complicated, rendering the 458 

comparison of different clinical traits difficult. Therefore, for simplification, we 459 

proposed a progression score to summarize the relative position of a mutation on the 460 

evolutionary tree of tumor formation. The scores of a gene in advanced tumors can be 461 

compared with those of genes in newly developed tumors to select the ones that 462 

recurrently occur in the early stage of tumor development. The P score of gene i under 463 

condition E is thus defined as a summary statistic from the evolution matrix and is 464 

formulated as follows: 465 

 P score (gene i |E) =  ∑ 𝑀𝐸,𝑖𝑗j≠i (∑ M𝐸,𝑖𝑗j≠i + ∑ M𝐸,𝑘𝑖k≠i )⁄ . (13) 

Among all relations of gene i with other genes, the P score provides the number of times 466 

the mutation in gene i is more likely to occur before that in other genes. If a gene is 467 

close to the root of an evolutionary tree, its corresponding P score must be higher than 468 

that of its descending gene.  469 

We first investigated the P-score behavior of prevalent genes which have been 470 

discussed in head and neck cancer [22], and the results are listed in Table 2. The P-score 471 
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of PIK3CA is consistently larger than 0.9 across different clinical traits. That is, the 472 

mutation of PIK3CA occurs early in the tumor progression. In contrast, patients with 473 

perineural invasion acquire early mutation of CDKN2A gene more often. Some of the 474 

well-known cancer genes are not powerful in our P-score analysis. For example, we 475 

identified structure variation of TP53 only in a few patients, and these few MCPs are 476 

not enough to construct a powerful P-score.  477 

 We compared the P score between the samples with and without nodal metastasis 478 

by plotting a scatter plot (Fig 9). Most background genes tend to mutate in a random 479 

order not related to tumor progression. According to our P score definition, we 480 

postulated that the driving genes of lymph node metastasis would be scattered above 481 

the diagonal line. The genes above the diagonal line of the plot are more likely to 482 

acquire mutations at an earlier stage of tumor formation and occupy a significant 483 

proportion of the tumor at its advanced stage. This would yield higher P scores when 484 

only the samples with lymph node metastasis are considered. By contrast, the 485 

prevalence of mutations in those genes might be low in the samples without lymph node 486 

metastasis and hence yield lower P scores. 487 

 488 

Table 2. The P-score of CDKN2A, E2F1, and PIK3CA in different clinical outcomes 489 
 All 

patients 

Margin status Vital status ECS Invasion 

 Positive Negative Dead Alive Positive Negative Yes No 

CDKN2A 0.665 0.676 0.703 0.747 0.511 0.593 0.625 0.875 0.292 

E2F1 0.726 0.092 0.840 0.697 0.889 0.618 0.899 0.078 0.997 

FAT1 0.776 0.937 0.714 0.714 0.931 0.683 0.657 0.687 0.866 

HAS2 0.081 0.041 0.078 0.016 0.371 0.757 0.064 0.351 0.006 

TGFBR2 0.591 0.443 0.629 0.697 0.412 0.646 0.643 0.684 0.394 

PIK3CA 0.964 0.998 0.955 0.978 0.947 0.990 0.906 0.991 0.924 

 490 
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 491 

Fig 9.  Scatter plot of P scores between nodal positive and nodal negative samples 

The red points indicate the background gene set. The red curve indicates the loess smoothing curve 

constructed using all points in the figure. Genes related to cell migration are marked in black. The 

genes from 11q13.3 are marked in blue. The literature supporting genes are labeled. 

 492 

To confirm our conjecture, we selected the genes by their biological functions using 493 

ConsensusPathDB web (http://cpdb.molgen.mpg.de/) and investigated whether genes 494 

related to metastasis in the literature are more likely to be distributed above the diagonal 495 

line. Because cell migration is a crucial step in the metastatic cascade, we selected cell-496 

migration-related genes, which are marked as black in Fig 9. Consequently, we found 497 

that 43 genes had the function of cell migration. Most of these genes were distributed 498 

above the diagonal line of the P score scatter plot, whereas some were distributed below 499 

the diagonal line. Recurrent mutations in these cell migration genes are expected to be 500 

the driving forces for the initiation of lymph node metastasis, consistent with our 501 

observations. For example, HAS2 is a member of the gene family encoding putative 502 

hyaluronan synthases, which control the biosynthesis of hyaluronan and critically 503 

modulate the tumor microenvironment. Several studies have shown that the inhibition 504 

of HAS2 reduced the invasion of oral squamous cell carcinoma [28-30]. Similar to 505 

HAS2, ANGPT1 is located in the upper left corner and has been recently investigated 506 

for the mechanism of lymph node metastasis [31-34]. ANGPT1 plays an important role 507 

in the regulation of vascular development and maintenance of vessel integrity. A study 508 

showed that the activity of ANGPT1 induced the enlargement of tumor blood vessels 509 

to facilitate tumor cell dissemination and increased the ability of metastasis in tumors 510 
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[34]. Fibroblast growth factor (FGF)-4 is another notable example. The P score of FGF4 511 

significantly differs in nodal positive and negative patients. FGF4 is a member of the 512 

FGF family and possesses broad mitogenic and cell survival activities. It has been 513 

proposed to be involved in tumor growth, cell proliferation, and lymph node metastasis 514 

[35-37]. In contrast to the black genes located in the upper left corner of the plot in Fig 515 

9, few studies have reported any relationship between the black genes located in the 516 

lower right corner and lymph node metastasis, although they have the same biological 517 

function. A complete literature review of the genes associated with cell migration and 518 

tumor metastasis is presented in S1 Table. The observations suggest that our inference 519 

of the clonal evolutionary order is relevant and can be applied for identifying causal 520 

drivers. 521 

Another notable observation is about the neighboring genes of FGF4. As 522 

mentioned, FGF4 is an important gene for driving lymph node metastasis. It is located 523 

in 11q13.3, which is frequently amplified in head and neck squamous cell carcinoma 524 

[35]. Sugahara also listed several other genes in 11q13.3 that are related to cancer 525 

development, namely TPCN2, MYEOV, CCND1, ORAOV1, TMEM16A, FADD, 526 

PPFIA1, CTTN, SHANK2, and DHCR7. We also assessed their status by using the P 527 

score analysis; the genes are indicated in blue in Fig 9. All these genes were above the 528 

diagonal line. Their corresponding P scores showed considerably significant differences 529 

between patients with and without nodal metastasis. Hence, we postulated that those 530 

genes in 11q13.3 are possibly related to lymph node metastasis in head and neck cancer. 531 

Several previous studies have confirmed this observation, as reported in S2 Table. 532 

 533 
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Application on serial biopsies of esophageal cancer 534 

We next applied CloneDeMix on multiregional whole-exome sequencing data from 535 

13 primary esophageal squamous cell carcinoma (ESCC) patients [19]. There are 51 536 

tumor regions and 13 matched morphologically normal esophageal tissues sequenced 537 

with the mean coverage of 150×. For fair comparison, we selected 11 of 13 patients 538 

based on its platform. We also removed patient ESCC07 because we only got two 539 

regions successfully aligned to the reference genome. In total, we included 10 patients 540 

in this application, and, for each patient, we have four different tumor regions with one 541 

matched esophageal tissue. As preprocess of TCGA data, the read-depth profiles of 542 

ESCC tumors are normalized with loess transformation against its paired normal 543 

sample. For each individual, the paired normal tissue is also used to calculate the 544 

estimates of baseline, and then applied CloneDeMix to tumors for gene-specific CNVs 545 

and MCPs. 546 

In this application, we aim to explore the variability of evolutionary structure 547 

among multiregional tumors by inferring the order of copy number change. For the 548 

purpose of studying variability between regions, we only focused on the frequently 549 

mutated genes which are informative about tumor evolution. Although the construction 550 

through these genes is not able to resolve completely the entire evolutionary structure, 551 

the inferred structure between regions can still facilitate the understanding of tumor 552 

progression. To that end, we collected the target gene list from the Ion AmpliSeq 553 

Comprehensive Cancer Panel which includes 7,044 exons of 409 tumor suppressor 554 

genes and oncogenes. The estimated CNVs and MCPs of the ESCC biopsies for this 555 
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gene set were summarized and interpreted as follows. 556 

We first investigated genomic heterogeneity of ECSS through MCP comparison. 557 

MCP is a gene-specific measurement of fraction of cells that carry a certain mutation, 558 

and we can study the overall structure of MCPs across whole genome to reveal the 559 

genomic heterogeneity of a given sample. We calculated the correlation matrix of MCP 560 

between samples, and this correlation matrix is presented in Fig 10. The diagonal blocks 561 

of this correlation matrix are tissues of the same sample and are slightly higher than the 562 

others. The average correlation of diagonal block is 0.5 and the average of off-diagonal 563 

cells 0.3. It shows that the MCP structure within each patient is more consistent than 564 

between patients.  565 

Next, we identified the evolution-related genes for each individual. In ESCC study, 566 

each tumor was dissected into four regions, and this kind of serial biopsies has a natural 567 

assumption that the size of MCPs is comparable within a given tumor. This 568 

characteristic can facilitate the individual-specific heterogeneity study. In order to 569 

explore individual-specific heterogeneity, we first identified genes on the trunk and on 570 

the branch of the evolutionary tree separately. The trunk of the tree refers to the CNAs 571 

consisted in all regions while the branch refers to those only in some regions. We can 572 

identify these genes according to the MCP across regions. A gene is located on the trunk 573 

of a tree if its average MCP across four regions is larger than 0.8, and a gene is located 574 

on the branch of a tree if the MCP of one region is larger than the average MCP of all 575 

the remaining regions by 0.7. Instead of tree comparison, we directly compare the MCP 576 

matrix of selected genes (Fig 11). In Fig 11, genes in red rectangles are selected to be 577 

the trunk genes, and the remaining genes are on the branch of a tree. 578 
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The two types of genes defined above reveals huge variability of evolution 579 

structure across tumors. The genes on the trunk of a given tree represent the genes 580 

changed in copy number at an earlier stage of tumor formation, and these genes have 581 

potential ability to drive tumor growth. For example, most of the genes on the trunk of 582 

sample ESCC12 (CCND1, EGFR, APC, TGFBR2, XPC, XPA, FLI1, and NUMA1) 583 

have been identified and initially reported on the esophageal cancer [38-42]. Although 584 

the genes on the trunks of trees vary among different individuals, there are still genes 585 

repeatedly identified in multiple individuals such as CCND1, JAK2, UGT1A1, FLI1, 586 

NFE2L2, SOX2, CDKN2B, and MYC. Specifically, CCND1 was identified in six 587 

individuals as the trunk gene and is a well-known cancer oncogene located on 11q13. 588 

Its amplification has been reported in several human neoplasias [43]. 589 

 590 

 591 

Fig 10.  Correlation matrix of MCP between samples 

Each cell indicates the correlation of MCPs between the corresponding ESCC samples.  

 592 

Fig 11.  MCP matrices of selected genes among 10 samples 

There are six MCP matrices. The color of each cell represents the MCP quantity of a gene for a given 

sample. The labels of rows indicate the gene symbols, and the labels of columns are region index A 

gene within the red rectangle is identified as the gene located on the trunk of an evolutionary tree.  

 593 

 594 

Discussion 595 
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In this study, we developed CloneDeMix for the deconvolution of tumor 596 

progression through high-throughput DNA sequencing data. The features of 597 

CloneDeMix are as follows. First, it reconstructs an evolutionary structure of copy 598 

number changes during tumorigenesis. Most existing methods for cancer evolution 599 

discuss the history of single-nucleotide changes and derive the potential driver genes. 600 

However, the importance of CNAs is growing and its influence on disease and cancer 601 

development is clearly established [44]. Therefore, the reconstruction of copy number 602 

evolution in tumor progression is in demand. Second, CloneDeMix provides the MCP 603 

as a measure of the evolutionary structure. This measurement is used to estimate the 604 

fraction of cells containing a specific set of mutational events. According to the 605 

definition of the MCP, it provides a more direct evolutionary reconstruction than does 606 

the SCP, which is defined as the size of a subclone in a tumor. For instance, the MCPs 607 

of early mutations in cancer must exceed those of other mutations, but no such structural 608 

relationship exists for SCPs. Although MCPs of a tumor is related to its phylogenetic 609 

tree, we do not have DNA haplotypes to resolve the tree architecture from many 610 

possibilities for each individual tumor. Hence, in this study, we only borrow the strength 611 

of multiple samples to understand potential evolutionary orders using the P score. Third, 612 

our model exhibits high flexibility. CloneDeMix can identify the copy number state of 613 

any type of variant, from a single nucleotide to a moderate size of regions. Furthermore, 614 

the model facilitates the simultaneous analysis of multiple types of targets because it 615 

depends on only the summary information of each locus.  616 

The simulation study revealed that CloneDeMix can identify the current clonal 617 

structures of a tumor. The accuracy of copy number states was nearly 93%, and the 618 
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MCP was also accurately restored (Table 1). Furthermore, the application of 619 

CloneDeMix to head and neck cancer data from TCGA yielded promising putative 620 

CNAs. The deletions observed on chromosomes 3p, 18q, and 21p and the 621 

amplifications on chromosomes 3q, 5p, and 8q are consistent with most cancer studies 622 

on copy number identification [20-23]. This observation strongly supports our CNA 623 

inference procedure.  624 

When the estimation accuracy reaches a certain level, the most important concern 625 

is to understand the relationship between tumor heterogeneity and disease progression. 626 

Tumor clone dynamics have been associated with clinical outcomes for different types 627 

of cancer [45-47]. Our method provides a quantitative measurement of clonality, and it 628 

is associated with tumor invasion and metastasis development in TCGA database. 629 

Tumors with more subclones are a result of complex branched evolution, implying a 630 

series of adaptations to a new environment. These newly emerged subclones may 631 

contribute to metastatic initiation or acquire a new ability to invade the lymphatic or 632 

vascular system. Thus, the strong prognostic association of the number of MCPs with 633 

invasion or metastasis reinforces its clinical relevance; this index appears to be a novel 634 

feature for further exploration. 635 

We established a novel score, the P score, for evaluating the order of a recurrent 636 

mutation in the evolutionary hierarchy by analyzing multiple samples. By comparing 637 

the P scores of a somatic variant between different clinical groups, we could identify 638 

the copy number mutations that occur early in the tumor stage and expand the 639 

accompanied subclones with time. The utility of P scores was also demonstrated in the 640 

head and neck cancer data according to the sample status of metastasis. Furthermore, 641 
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we identified a group of genes that matched this condition. Specifically, the genes 642 

located at 11q13.3 are well known to be frequently amplified in head and neck 643 

squamous cell carcinomas. Their P scores in our analysis were particularly high for the 644 

samples with lymph node metastasis and relatively low for those without metastasis. 645 

Accordingly, those gene amplifications are potential causal mutations to drive 646 

metastatic cascade in head and neck cancer. Hence, screening for genes that differ 647 

considerably in their P scores is meaningful for driver gene detection. 648 

The success of our approach highly depends on the coverage of DNA sequencing. 649 

A higher read depth can more efficiently reflect the clonal structure and copy number 650 

changes of different loci. Currently, CloneDeMix makes an independent assumption 651 

without considering the dependency among closely located loci. Hence, the 652 

neighboring segments are not grouped into the same copy number events. This can be 653 

an advantage as well as a disadvantage because there is no clear understanding about 654 

the range covered by a copy number event. Technically, we can still integrate the 655 

correlation structure into CloneDeMix to improve the flexibility; this is an ongoing 656 

project for our next version of the R package. 657 

CloneDeMix can easily integrate different types of somatic mutations detected in 658 

sequencing data. For example, the well-studied SNVs carry extensive information 659 

about the clonal expansion in tumors. CloneDeMix can consider the copy number status 660 

of two alleles individually if the detection of each allele is optimized. Therefore, we 661 

expect CloneDeMix to be useful in understanding tumor heterogeneity and how it 662 

evolves to the current status. Moreover, CloneDeMix has high specificity for detecting 663 

early mutations in tumor progression; these early mutations would be good candidates 664 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 12, 2018. ; https://doi.org/10.1101/278887doi: bioRxiv preprint 

https://doi.org/10.1101/278887
http://creativecommons.org/licenses/by-nd/4.0/


 

34 

 

for disease driver genes and targeted therapies.  665 

 666 
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Supporting Information 820 

 821 

S1 Table. Reference list of cell-migration-related genes 822 

S2 Table. List of reference genes in 11q13.3 823 

S1 Fig. Copy number estimation results 824 

The estimated copy number states for the exons across the genome are presented in different colors. Light 825 

blue and red represent the deletion and amplification events, respectively. Black indicates no copy 826 

number changes. 827 

S1 Software. 828 

Software S1 is an R package called “CloneDeMix” that implements subclonal copy number 829 

decomposition and it is available at https://github.com/AshTai/CloneDeMix. 830 
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