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ABSTRACT:  
Short Linear Motifs (SLiMs) contribute to almost every cellular function by connecting appropriate 
protein partners. Accurate prediction of SLiMs is difficult due to their shortness and sequence 
degeneracy. Leucine-aspartic acid (LD) motifs are SLiMs that link paxillin family proteins to factors 
controlling (cancer) cell adhesion, motility and survival. The existence and importance of LD motifs 
beyond the paxillin family is poorly understood. To enable a proteome-wide assessment of these 
motifs, we developed an active-learning based framework that iteratively integrates computational 
predictions with experimental validation. Our analysis of the human proteome identified a dozen 
proteins that contain LD motifs, all being involved in cell adhesion and migration, and revealed a new 
type of inverse LD motif consensus. Our evolutionary analysis suggested that LD motif signalling 
originated in the common unicellular ancestor of opisthokonts and amoebozoa by co-opting nuclear 
export sequences. Inter-species comparison revealed a conserved LD signalling core, and reveals the 
emergence of species-specific adaptive connections, while maintaining a strong functional focus of the 
LD motif interactome. Collectively, our data elucidate the mechanisms underlying the origin and 
adaptation of an ancestral SLiM. 
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INTRODUCTION 
To a large extent, cellular signal transduction networks rely on the recognition of short linear motifs 
(SLiMs) by their cognate ligand binding domains 1. These motifs are contained on a single contiguous 
amino acid stretch of typically less than 15 residues, and do not require to be embedded in a three-
dimensional protein framework to be functional. The binding energy of many SLiMs is dominated by 
only a few residues, resulting in moderate to low binding affinities (with dissociation constants Kd’s of 1 
– 150 µM) that are ideal for mediating transient signalling interactions 2. On the one hand, this 
characteristic facilitates emergence and diversification of SLiMs, and hence the restructuration and 
evolutionary adaptation of an organism’s interactome 3. On the other hand, the resulting sequence motif 
degeneration and binding promiscuity hamper our capacity to computationally identify SLiMs and their 
biologically relevant binding partners 4,5.  

LD motifs were first described in 1996 by Brown et al. as novel SLiMs that associate paxillin with 
the cell adhesion proteins vinculin and the focal adhesion kinase (FAK) 6,7. Paxillin and its family 
members Hic-5 (also called TGFB1I1 or ARA55) and leupaxin 8-10 contain in their N-terminal region four 
or five of these motifs, named after the first two amino acids of their sequence consensus LDXLLXXL 7 
(Fig. 1A,B). The N-terminal LD motifs, together with other protein-protein interaction sites located in 
this region, orchestrate the dynamic assembly of different signalling complexes 9. The C-terminal region 
of paxillin family proteins, which contains four double zinc-finger lin-11, isl-1, mec-3 (LIM) domains, 
mediates recruitment to integrin clusters at sites of cellular adhesion. The LIM domains also mediate 
nuclear localisation and nuclear receptor interactions (reviewed in 10). Using these diverse protein 
interaction motifs, paxillin family proteins establish a communication between cell adhesions and the 
nucleus, functionally linking gene expression with cell attachment 11-13. Thus, paxillin family members 
play important roles in embryonic development, epithelial morphogenesis and the immune response 14. 
As mediators of cellular motility and survival, paxillin family proteins are also key factors governing 
associated pathological conditions, such as inflammation, cardiovascular disease, and the 
development, spread and metastasis of tumours 9,10,12,14-16. Moreover, paxillin LD motifs are targets of a 
subset of human papilloma viruses, which cause cervical cancers 17,18. 

More than a dozen proteins were shown to interact with paxillin family LD motifs, using LD motif 
binding domains (LDBDs) of at least six different domain architectures (reviewed in 10). Most of these 
proteins are important players in membrane-proximal intracellular structures that connect cell-surface 
receptors with signalling and/or the cytoskeleton, mostly in focal adhesions or similar structures (FAK, 
PYK2, vinculin, talin, GIT, parvin, Bcl-2) 6,16,19-24. Other proteins are involved in nuclear export of 
proteins (XPO1, also called CRM1) or the transport of mRNA (PABP1) for mRNA delivery to sites of 
cellular adhesion 11,25,26. In all cases where experimental 3D structures are available, LD motifs form 
amphipathic helices that use the hydrophobic side chains (LDXLLXXL) of the motif to dock onto an 
elongated hydrophobic patch on LDBDs, while the negative charge (LDXLLXXL) forms ionic 
interactions with basic charges next to the hydrophobic patch (Fig. 1C) 10,19,22,24. 

The biological importance of LD motifs, and the discovery of more than a dozen LD motif–
interacting proteins (many of which have evolved different LDBD folds) 10, motivated efforts to discover 
LD motifs outside the paxillin family. However, to date, motifs of the LDXLLXXL consensus were only 
experimentally confirmed in two cellular proteins: the deleted in liver cancer 1 (DLC1) tumour 
suppressor gene 24,27, and the rotavirus ‘X’-associated non-structural protein (RoXaN) 25. In addition to 
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these, gelsolin (an actin binding, severing, and capping protein mediating osteoclastic actin cytoskeletal 
organisation) was found to bind the LDBD of PYK2 through a similar motif (LDXALXXL) 28. Some 
authors further include motifs from the E6 associated protein (E6AP) and the E6 binding proteins 
(E6BP), two proteins that interact with E6 proteins of a subset of papillomaviruses. However, these 
motifs deviate from the LD motif consensus sequence (E6AP: LQELLGEE; E6BP: LEEFLGDYR) and/or 
structure (E6BP; discussed below) 17,18,29-31. 

The fastest and most comprehensive way to search for LD motifs on a proteome-wide level 
would be through bioinformatic approaches. However, current algorithms produce too many false 
positives to be useful. We, therefore, developed an algorithm specific for LD motifs, which faced two 
challenges. Firstly, identification of LD motifs requires the (normally unknown) 3D structural context of 
candidate sequences. Secondly, the number of bona fide LD motifs is too low for classical machine-
learning approaches. We overcame these challenges through the development of a support vector 
machine (SVM)-based model to estimate the structural content of a candidate sequence and the use of 
experimental feedback. We show that the resulting LD motif finder (LDMF) tool enables a proteome-
scale prediction of LD motifs without a high rate of false positives, while still being able to distinguish LD 
motifs from highly similar short helical interaction motifs. Combined with experimental validation we 
used LDMF to assess the prevalence and function of LD motifs in the human proteome, to investigate 
the motif’s origin in unicellular eukaryotes, and probe its use in bacterial and viral pathogens. Our 
integrative method can serve as a guide for the identification of other low-abundance SLiMs. 

 
 
 

RESULTS 
Features that characterise bona fide LD motifs in silico. 

To determine features that characterise LD motifs in silico, we analysed known LD motif–containing 
proteins using algorithms to predict protein disorder (MetaPrDos32), as well as secondary (PSIPRED33) 
and tertiary protein structures (SwissModel 34 and RaptorX 35). Paxillin family LD motifs were located in 
regions predicted as disordered (Supplementary Fig. 1). Of the five paxillin LD motifs, only LD2 was 
predicted as ‘not disordered’, in agreement with previous NMR analyses showing that LD2 forms a 
stable α-helix in solution, whereas LD4 does not 36. The LD motifs of RoXaN and DLC1 were also 
predicted to be ‘ordered’ regions within a largely disordered protein segment. Secondary structure 
prediction assigned a significant α-helix likelihood to all paxillin LD motifs, in agreement with structural 
studies, showing that DLC1 and paxillin LD motifs 1, 2 and 4 adopt helical conformations upon ligand 
binding (Fig. 1C) 10,19,22,24. Gelsolin’s C-terminal LD-like motif is predicted to be α-helical, preceded by a 
coiled region, in agreement with the crystal structure of the assembled form of gelsolin 37 
(Supplementary Fig. 1). Of the atypical LD-motifs, E6AP is predicted to form an α-helix within an 
unstructured region (no 3D model can be established), whereas the E6BP LD motif is part of a calcium-
binding EF-hand (Supplementary Fig. 2), in agreement with experimental data 38. The E6BP LD motif 
only binds to the viral E6, not to other cellular LDBDs, and the structural basis of this interaction 
remains to be determined. Bona fide LD motifs are therefore computationally identifiable as short α-
helical segments within disordered protein regions. 
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Assessment of the representative LD motif set 

In 1998, Brown and colleagues used the degenerate sequence pattern (L,V)(D,E)X(L,M)(L,M)XXL to 
search sequence databases for LD motifs. They found this sequence pattern in a diverse array of 
proteins, suggesting that LD motifs are relatively abundant 7, and presented a representative set of 18 
LD motif–containing proteins. Based on data and algorithms published since then, we critically 
assessed these predictions using disorder and structure prediction algorithms (Supplementary Fig. 2). 
16 out of the 18 suggested LD motifs were predicted to be an integral part of a folded protein domain. 
In 15 out of these 16 cases, the hydrophobic patch of the suggested LD motif is inaccessible to solvent 
and hence ligands. In the one remaining case (LTK), the suggested LD motif is part of the catalytically 
important αC helix of a protein kinase domain. Thus, unless unlikely large unfolding events occur, these 
16 putative motifs cannot function as LD motifs despite containing the correct sequence pattern. For the 
remaining two of the 18 proteins, the suggested LD motif sequence is located in a flexible region. 
However, in one case (Eph-2) the putative LD motif is part of a signalling peptide that is cleaved in vivo, 
and hence an unlikely candidate. The remaining LD sequence from chicken tensin was a plausible 
candidate, being located in an unstructured region and implicated in focal adhesions 39. But the 
synthetic tensin LD motif peptide failed to show binding to two broad-specificity LDBDs (the FAK FAT 
domain and the second CH domain of α-parvin) using isothermal titration calorimetry (ITC), microscale 
thermophoresis (MST) and fluorescence anisotropy (FA). We additionally tested the suggested LD 
motif sequences of the E3 ubiquitin-protein ligase hyd for which our predictions were least compelling, 
but did not observe binding to FAT (Supplementary Fig. 3). Given the high number of false positives of 
the pattern search (which currently retrieves >6000 sequences in the human proteome), we tested 
ANCHOR 40 in combination with the LD motif pattern from the Eukaryotic Linear Motif (ELM) database 
41. ANCHOR predicts interaction motifs that reside in disordered regions and are likely to gain order 
upon binding, which is a characteristic of LD motifs. ANCHOR suggested 417 LD motifs in the human 
proteome but also classified the 18 Brown et al. LD motifs as true LD motifs, although our combined 
computational and experimental analysis provided strong evidence that this is not the case.  

Development of a computational LD motif identification method 

Given that LD motif prediction was an unsolved problem, we decided to build a specific tool (see 
Methods). For this, we extended the 8-residue LD motif (LDXLLXXL) by one amino acid on each side 
into a 10-residue core motif (X-1L0DXLLXXLX+9; the first leucine is numbered as 0), because structural 
analysis shows that positions -1 and +9 can contact the LDBD surface, and hence may contain LD 
motif-specific information 31. As a computable proxy for the (generally unknown) 3D structural context of 
candidate sequences, we used secondary structure predictions of the core sequence and of the 20 
upstream and 20 downstream residues. Machine-learning further included the amino acid sequence for 
the 10-residue core and 20-residue flanking sequences and the Amino Acid Index (AAindex) to extract 
volume, hydrophobicity and electric charge for the 10-residue core. 

An additional difficulty for machine-learning was the imbalance and definition of the positive and 
negative datasets. The initial positive set contained only the 18 experimentally confirmed LD motifs 
from six proteins: four or five from each paxillin family protein (human paxillin, leupaxin and Hic-5 and 
dictyostelium paxillin-B); one from DLC1 and one from RoXaN (Fig. 1A). The negative dataset (i.e. all 
UNIPROT 10-mer sequences that are not LD motifs) is million-times larger than the positive set, yet 
undefined because the occurrence of LD motifs is unknown. We first extracted the known LD motifs 
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from the sequences of the six LD motif proteins as the positive set and used the remaining sequence 
fragments as the negative set (Fig. 2). Sequence, secondary structure and AAindex features of these 
sets were used to build an initial model (M1). We then applied M1 to identify putative LD motifs in close 
homologues of our six positive-set proteins, resulting in additional 40 LD motif sequences that we 
manually checked and added to the positive set. The negative dataset was enhanced by using 2754 
sequences from high-resolution structures deposited at the PDB (none of which contained LD motifs) to 
capture instances where the LD motif sequence is part of a folded domain (and hence not a functional 
LD motif). These training sets were used to build another model (M2), with which we scanned the 
human proteome (20159 sequences). All predicted novel LD motifs were synthesized as peptides and 
used in in vitro binding experiments (described below). The sequences that showed clear binding were 
added to the positive set, and input into the second phase of the model building. The resulting final 
LDMF tool identifies LD motifs with high sensitivity (88.88%) and accuracy (99.97%; Supplementary 
Table 1). In our evaluation, LDMF rejected all 18 motifs previously suggested by Brown et al. 7, in 
agreement with our computational and experimental assessment. 

Experimental testing of all predicted LD motif candidates 

Experimental testing of our computational LD motif predictions was not trivial, because the binding 
affinities of peptide-mimics of LD motifs towards their biologically relevant ligands are very low, ranging 
from Kd’s of a few micromols to more than hundred micromols (summarised in 10). Such affinities are 
below the detection limit of many assays, and the high concentrations required may lead to sample 
aggregation or non-specific interactions (between fluorescent moieties, protein/peptides, and storage or 
measurement containers). The (in)direct multimerisation or clustering of LD motif proteins and/or LDBD 
proteins and the bivalency of some LDBDs (i.e. the FAT domains from FAK and PYK2) might potentiate 
interactions of full-length proteins in cells 10,16. Yet, LD motif interactions are tightly controlled in the cell, 
and biologically relevant LD motif interactions may not be detected using pull-down assays with 
endogenous proteins 24. Establishing the required cellular conditions for each potential ligand, however, 
was incompatible with proteome-wide approaches.  

Therefore, we used several orthogonal in vitro binding methods to robustly assess the 
interaction between synthesised peptides and recombinant LDBDs. For initial high-throughput 
screening, we used three plate assays: 1) differential scanning fluorimetry (DSF) was chosen as a 
semi-quantitative label-free binding indicator; 2) a direct anisotropy (DA) assay with labelled candidate 
peptides was chosen to estimate the interaction affinity; and 3) an anisotropy competition assay (ACA) 
where unlabelled candidate peptides compete against fluorescently labelled known LD motifs, was 
chosen to assess whether the (unlabelled) candidate motifs bind to the same sites as the known LD 
motifs. For all candidates, we used microscale thermophoresis (MST) with labelled peptides as an 
orthogonal quantitative method. Isothermal titration calorimetry (ITC) was used as an additional label-
free method in selected cases to provide an additional binding Kd, or binding stoichiometry. Nuclear 
magnetic resonance (NMR) was used in special cases to map binding sites. Peptide sequences 
included four to eight flanking residues outside the 10-residue core sequence. These additional 
residues were chosen based on homology modelling, secondary structure and disorder predictions to 
include helix-capping residues and residues that might additionally contact the LDBDs. Peptides were 
synthesized with and without a FITC-Ahx N-terminal fluorescent label.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 10, 2018. ; https://doi.org/10.1101/278903doi: bioRxiv preprint 

https://doi.org/10.1101/278903
http://creativecommons.org/licenses/by/4.0/


6 
 

Different LDBDs bind known LD motifs with different levels of specificity 10. Since LDMF has 
been trained on all known LD motifs, without any specific target LDBD selectivity, we tested the affinity 
of the candidate LD motifs towards two recombinant human LDBDs with broad binding characteristics: 
firstly, the four-helix FAT domain from FAK (residues 892-1052) that can bind two LD motifs 
simultaneously (on opposite sides of the helix bundle) 19,42. With these two binding sites, FAT binds 
paxillin LD motifs 1, 2 and 4, but also DLC1 24,27, and the non-LD motif CD4 endocytosis motif 43. 
Secondly, we used the second CH domain of α-parvin (α-parvin-CHC, residues 242-372), which is a 
helical domain structurally distinct from FAT domains. This CH domain has one LD motif binding site 
that interacts with paxillin LD1, 2 and 4 with Kd values of 50 – 140 µM 22,23.  

Peptide mimics of paxillin LD4, which were used as positive controls, displayed micromolar Kd 
values for FAT and α-parvin as expected, and competed efficiently against labelled LD4 in ACA (Table 
1, Supplementary Fig. 4). Although the presence of LD4 resulted in a significant change in melting 
temperature Tm in DSF with FAT, the Tm change with α-parvin was not significant compared to a 
negative control (a peptide with the scrambled LD4 sequence). This result led us to include an LD2 
peptide as a positive control in DSF. 

In our binding assays (Table 1, Supplementary Fig. 4), candidate LD motifs display medium-
to-low affinities as observed for established LD motifs 10,24. The relatively large discrepancies between 
Kds derived from different assays in some cases, and the frequent incapacity of individual binding 
assays to detect and quantitate binding (‘N’ in Table 1) highlight the difficulties in measuring LD 
motif:ligand interactions and justify our use of up to five different experimental methods. These 
experimental features made it unreasonable to define a clear cut-off to separate binding from non-
binding sequences. Therefore, we ranked the peptides into (1) highly likely (Kd values from 1-99 µM in 
quantitative methods, and significant signal in at least one of the qualitative methods); (2) less likely (Kd 
values >100 µM and significant signal in at least one of the qualitative methods); (3) least likely (all 
others). Sequences labelled as ‘least likely’ in our assays may however still bind to the LDBDs of other 
proteins. 

Scan of the human proteome using LDMF 

In the first scan of the human proteome, the initial LDMF tool predicted 13 new LD motifs 
(Supplementary Table 2). Those with the strongest experimental affinity for FAT and α-parvin 
(EPB41L5, RALGAPA1, C16orf71, LPP) were included in the training set for the second round of model 
building. The final LDMF tool predicted eight LD motifs in addition to the training set, five that were 
already predicted in the first round (C8orf37, RALGAPA2, NCOA2, NCOA3, CAST), and three new 
ones (PPP2R3A, CCDC158and CREB3). The final LDMF effectively discarded the four first-round 
candidates with the lowest experimental binding signals (FIP1L1, WHAMM, IGFBP2, PCP2). Thus, 
LDMF suggested 12 new LD-motif containing proteins in the human proteome. In silico, these 12 LD-
motif candidates showed the required features of bona fide LD motifs (α-helices located in unstructured 
regions, not in a folded core) (Fig. 3A). Experimental testing supported six candidates as ‘highly likely’ 
(EPB41L5, PPP2R3A, RALGAPA1, C16orf71, LPP, CCDC158), four as ‘less likely’ (NCOA2, NCOA3, 
CAST, CREB3), and two as ‘least likely’ (C8orf37, RALGAPA2) (Table 1, Supplementary Fig. 4). We 
additionally assessed the LDMF predictions using four computational methods, namely PrePPI (a 
Bayesian framework that combines structural, functional, evolutionary and expression information 44), 
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GeneFriends (an RNAseq-based gene co-expression network 45), CoCiter (which evaluates the 
significance of literature co-citations 46), and a GO term analysis. (Supplementary Table 3). 

Proteins with highly likely LD motif sequences: 

Band 4.1-like protein 5 (EPB41L5): The EPB41L5 peptide showed interactions in all methods used, and 
displayed highest affinities of all LD motifs tested (Table 1) towards both FAT and α-parvin. PrePPI 
probability scores for the interaction between EPB41L5 and FAK, PYK2 or Talin are >0.9 
(Supplementary Table 3). EPB41L5 (also called YMO1 and LIMULUS, or yurt in Drosophila) contains 
an N-terminal FERM domain and a C-terminal flexible region, which harbours the predicted LD motif 
(residues 634-643) (Fig. 3B). EPB41L5/yurt is a critical regulator of the lateral membrane-associated 
cytoskeleton. It promotes FA formation by stimulating the interaction between paxillin and integrin. 
Although one report failed to observe an association between EPB41L5 and FAK or vinculin in TGFβ-
treated NMuMG cells 47, the high affinity and fitting cellular context of our study strongly support this LD 
motif.  

Lipoma-preferred partner (LPP). The LPP peptide showed qualitative and quantitative binding to 
both FAT and α-parvin. NMR chemical shift mapping supported a specific interaction with both binding 
sites on FAT (Supplementary Fig. 5). Interactions between LPP and vinculin, α-parvin, PYK2 or GIT1 
are suggested by GeneFriends and CoCiter scores (Supplementary Table 3). LPP is a scaffolding 
protein that plays a structural role in the (dis)assembly of cell adhesions and may be involved in signal 
transductions from adhesion sites to the nucleus, thus affect activation of gene transcription 48,49. LPP 
shows many similarities to paxillin family proteins: (i) Its N-terminal half is predicted to be an 
unstructured region harbouring proline-rich and phospho-tyrosine/threonine sequences in addition to 
the putative LD motif (residues 123-132); (ii) its C-terminal half contains three LIM domains. (iii) LPP 
shuffles between the nucleus and cytoplasm and is found at cell adhesions, including focal adhesions; 
(iv) the putative LPP LD motif sequence overlaps with a functional nuclear export signal (NES) 48-51, 
supported by a PrePPI score of 0.98 for the LPP:XPO1 interaction. Moreover, LPP and FAK appear 
genetically linked 50. LPP and vinculin co-localise at focal adhesions and overexpression of the LPP 
LIM domains displaces LPP and vinculin from these structures 48,51.  

Ral GTPase-activating protein subunit alpha-1 (RALGAPA1). The RALGAPA1 peptide showed 
qualitative and quantitative binding to both FAT and α-parvin. PrePPI scores suggested RGPA1 
interactions with FAK (0.76) and PYK2 (1.0). RALGAPA1 obtained a good co-expression score with the 
ARF GTPase–activating protein GIT2, and, in additional DA and MST experiments, bound with a Kd of 
~80 µM to the GIT1 FAH domain (GIT1 and GIT2 are close homologues and have an identical LD motif 
binding site). RALGAPA1 (also called GARNL1 or TULIP1) is the catalytic α1 subunit of the 
heterodimeric RalGAP1 complex. RALGAPA1 functions as an activator of Ras-like small GTPases, 
including RalA and RalB 52. Activated RalA is involved in cell proliferation, migration, and metastasis. 
The suggested LD motif resides 100 amino acids upstream of the RapGAP domain, in a region 
predicted to be flexible (residues 1680-1689). 

Serine/threonine-protein phosphatase 2A regulatory subunit B'' subunit alpha (PPP2R3A). The 
PPP2R3A peptide showed qualitative and quantitative binding to both FAT and α-parvin. The predicted 
LD motif is located in a flexible region upstream of double EF hand domains (residues 508-517). 
PPP2R3A modulates substrate selectivity, catalytic activity and subcellular localisation of protein 
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phosphatase 2A (PP2A) 53. Indirect evidence suggests that PP2A promotes FAK phosphorylation 54,55, 
interferes with the DLC1:FAK interaction 56, and is directly linked to focal adhesion proteins 57. 

Coiled-coil domain-containing protein 158 (CCDC158). The predicted LD motif in CCDC158 
showed quantitative and qualitative binding to FAT and interacted specifically with the 1/4 site of FAT in 
NMR. We only measured significant qualitative binding to α-parvin. CCDC158 is an 1113-residue 
protein that contains 3 extended coiled-coil domains. The predicted LD motif region (residues 903-912) 
is located in a flexible region between the second and third coiled-coil. No literature is available for 
CCDC158.  

C16orf71 (C16orf71). C16orf71 is an uncharacterised protein of 520 residues. It is predicted to 
be mostly disordered, and the predicted LD motif region is located in the centre of the protein (residues 
267-276) and showed qualitative and quantitative binding to both FAT and α-parvin. 

Proteins with less likely LD motif sequences:  

Nuclear receptor coactivator 2 (NCOA2). NCOA2 is structurally mostly disordered and contains four 
nuclear receptor box (NR box) LXXLL motifs that mediate hormone-dependent co-activation of several 
nuclear receptors. A LLXXLXXXL motif in NCOA2 is involved in binding and transcriptional coactivation 
of CREBBP/CBP. The putative LD motif identified by LDMF (residues 805-814) is not part of these 
motifs, despite the similar consensus. Paxillin family proteins also bind to nuclear receptors, such as 
the androgen receptor and glucocorticoid receptor 10. The region encompassing the putative NCOA2 
LD motif is also predicted to function as an NES, akin to several paxillin LD motifs. NOCA2 obtained a 
strong CoCiter p-value (0.007) for association with PYK2, and has a large co-expression correlation 
with GIT2, but failed to show binding to GIT1 FAH in our additional experiments. 

Nuclear receptor coactivator 3 (NCOA3). Akin to NCOA2, NCOA3 is a scaffolding protein with 
many known interactors. NCOA3 has three NR box LXXLL motifs to bind to and co-activate several 
nuclear receptors, and a LLXXLXXXL motif to bind CREBBP/CBP. The predicted LD motif region 
(residues 799-808) is not part of already characterised motifs.   

Calpastatin (CAST). CAST is a specific inhibitor of the calcium-dependent cysteine protease 
calpain. The proposed CAST LD motif (residues 156-165) is a helical protein-protein interaction motif 
located in an otherwise disordered region; it uses its hydrophobic patch to bind to a helical subdomain 
of calpain, thus stabilising calpain in its inhibited form 58. Calpain regulates functions such as cell 
migration and anoikis (cell death following detachment), and among its substrates are Cas, talin, FAK 
and PYK2 59,60. Calpain also associates with FAT 60. Hence a possible competitive interaction of the 
calpastatin LD motif with FAK and/or PYK2 interaction with CAST could potentially promote cleavage 
by calpain.  

Cyclic AMP-responsive element-binding protein 3 (CREB3). CREB3 is a single-pass 
transmembrane endoplasmic reticulum (ER)-bound transcription factor involved in the unfolded protein 
response, in cell proliferation and migration, tumor suppression and inflammatory gene expression. The 
predicted LD motif region (residues 49-58) is located in a flexible acidic transcription activation region 
downstream of a basic leucine-zipper (bZIP) domain (residues 174-237) and the transmembrane region 
(residues 255-271). 
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Proteins with least likely LD motif sequences:  

Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). RALGAPA2 is the catalytic α2 subunit of 
the heterodimeric RalGAP2 complex. The putative LD motif (residues 1519-1528) lies in a poorly 
ordered region for which no 3D template is available. The RALGAPA2:PYK2 interaction has a PrePPI 
score of 0.93, shows medium-level co-expression with GIT2, but failed to show binding to GIT1 FAH. 

C8orf37 (C8orf37). C8orf37 is a poorly characterised protein of 207 residues, predicted to have 
a disordered N-terminal half and a C-terminal half with an α/β fold. The putative LD motif (residues 4-
13) is at the N-terminus. C8orf37 is widely expressed, with highest levels in brain and heart. C8orf37 is 
also expressed in the retina and mutations in this gene have been linked to an inherited retinal 
dystrophy.  

LDMF-identified LD motif proteins are functionally similar to bona fide LD motif proteins 

Using gene ontology (GO) analysis we found that the distribution of GO semantic similarity between 
predicted and known LD motif proteins is significantly different from the distribution between predicted 
and all human proteins (p-value = 6.32e-10, Mann-Whitney test; Supplementary Fig. 6). Especially, GO 
terms with a dispensability value (i.e. the semantic similarity threshold at which the term was removed 
from the list and assigned to a cluster) of zero were the same for the predicted and known LD motif 
proteins for both categories, biological processes (BP: regulation of cell morphogenesis, biological 
adhesion and cell-substrate adhesion) and cellular components (CC: focal adhesion, basolateral 
plasma membrane and cell junction). These zero-dispensability terms were similar to those of the 
proteins containing LDBDs (BP: signal complex assembly, biological adhesion, and cell-substrate 
adhesion. CC: focal adhesion, basolateral membrane, cell junction and organelle). Our predicted LD 
motif proteins are therefore functionally highly similar to the known LD motif proteins and to LDBD-
containing proteins. 

Identification of an inverse LD motif consensus 

Surprisingly, the predicted and experimentally confirmed LD motif sequences for LPP and CCDC158 
did not contain the consensus L0D motif. Rather, both sequences contained an LD/E motif in reverse 
orientation (D/E+6L). Titration with LPP or CCDC158 caused similar NMR chemical shift changes on 
15N-labelled FAT titrated as LD2 or LD4, with LPP showing the preference for the site 2/3 (akin to 
LD4), whereas CCDC158 preferentially bound site 1/4 (akin to LD2) (Supplementary Fig. 5). These 
similarities strongly suggested that LPP and CCDC158 occupy the canonical binding sites, despite their 
reversed LD motif.  

The pseudo-palindromic nature of the helical LXXLLXXL pattern would allow a reverse LD motif 
to engage similar electrostatic interactions to common LD motifs if the reverse motif bound in the 
opposite (-) orientation. Indeed, paxillin LD1 (DL0DXLLXDLE) binds CCM3-FAH and α/β-parvin-CHC in 
the opposite (-) orientation as LD2 and LD4 (+ orientation) 19,22,23,61,62, placing the D+6L+7E+8 motif in the 
position of the EL0D motif of LD2 and 4. We failed to produce co-crystals with sufficient diffraction 
power of these motifs bound to LDBDs. However, in support of the bioinformatics analysis, NMR data-
guided in silico docking (HADDOCK) produced plausible low-energy reverse-orientation LPP:FAT and 
CCDC158:FAT models (Fig. 4). 
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Conservation of the non-paxillin LD motifs in animals 

Paxillin homologues with functional LD motifs are found even in the amoeba D. discoideum 63. We 
therefore used LDMF to evaluate the evolutionary conservation of the two known (RoXaN and DLC1) 
and twelve newly identified non-paxillin human LD motifs in chimpanzee, mouse, birds, fish, 
roundworm, insects, and yeast. None of these proteins had homologues in unicellular yeast, only two 
were found in flies (RALGAPA1, RALGAPA2) and most first appeared in fish (10) (Table 2, 
Supplementary Fig. 7). Where found, the LDMF-identified LD motif sequence generally was more 
conserved than the flanking residues, as expected for a SLiM within a disordered linker region. Seven 
out of the 14 proteins had functional LD motifs (according to LDMF) already in the first (most distal) 
species in which they were found. EPB41L5 showed a weak below-LDMF threshold LD motif signature 
in the shark, none in chicken, and a strong LD motif in mice. For the other genes, LD motifs appeared 
only in birds (2) or mammals (5). Given that some known LD motifs also function as NES, we 
additionally tested the degenerate LD motifs for NES function using the NetNES1.1 server 64. We found 
that in most species where the LD motif was not predicted to be functional (EPB4L5, CCDC15, NCOA3, 
CREB3, DLC1), this sequence was identified as functional NES. Exceptions were RoXaN and CAST, 
where the NES signal appeared above noise, but below threshold. In conclusion, the arsenal of non-
paxillin LD motifs currently found in humans appears to have originated in multicellular animals, and 
mostly in vertebrates. In several instances, we observe evidence for the appearance of a functional LD 
motif de novo within a protein from a sequence that is expected to function as NES. 

Scan for LD motifs in stem eukaryotes using LDMF 

Although paxillin and other LD-motif proteins regulate cell-matrix adhesion in metazoans, proteins of 
the integrin signalling pathway were discovered in the unicellular eukaryotic lineages ichtyosporea and 
filastera, supporting that LD motif signalling played already a role prior to the evolution of metazoans 65. 
We used LDMF to investigate the importance and evolution of LD motif signalling in the ten sequenced 
stem eukaryotes proteomes that were available, covering amoebozoa, apusozoa and unicellular 
ophistokonts.   

Paxillin-like LD motif-containing proteins were identified in all but two species, Monosiga 
brevicollis and Mortierella verticillata (Fig. 5). These two species are of different ophistokont clades, 
each of which contains also species with paxillin homologues, suggesting that paxillin was selectively 
lost in M. brevicolis and M. verticillata. LDMF also identified between 1 and 20 non-paxillin LD motif 
proteins in each proteome. While some of the non-paxillin LD motif containing proteins were conserved 
between species, especially those proteins containing kinase domains, the majority was species-
specific (39 out of 53 sequences; Supplementary Fig. 8).  

We next used sequence homology searches and structural homology modelling to investigate 
the presence of functional LDBDs in these unicellular genomes. Of the six LDBD proteins investigated, 
only XPO1 and vinculin were present in all clades. XPO1 was found in all proteomes, as expected from 
its nuclear export function (Fig. 5; Supplementary Fig. 8). Vinculin was only absent in M. verticillata. 
The only two LDMF-identified non-paxillin LD motifs for this species were predicted to function also as 
NES (using the NetNES1.1 server), suggesting that M. verticillata had lost LD motif signalling and that 
the identified LD motifs were retained because of their NES function. Conversely, despite having lost 
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paxillin, M. brevicollis encoded for two LDBD proteins (vinculin and CCM3) and at least five predicted 
LD motif proteins, suggesting that LD motif signalling remains used even in absence of paxillin.  

Collectively these observations confirm the existence of LD motif-based signalling in unicellular 
unikonta. Our data suggest that this signalling pathway originated before the split between amoebozoa 
and ophistokonts, and emerged from a core module formed by paxillin and vinculin. Supported by our 
findings on the evolution of human non-paxillin LD motifs, we speculate that this pathway arose by co-
opting NES, which can have an overlapping sequence motif. The relatively poor conservation of non-
paxillin LD motifs in unicellular eukaryotes might thus be explained by interconversion of NES from non-
related proteins during specification, and/or selective losses of LD motifs, resulting in the emergence of 
species-specific protein connectivities. 

LD motifs in pathogens 

We further tested our model on several pathogens. We used proteins from bacteria (Mycobacterium 
tuberculosis, Salmonella typhimurium) and viruses (HIV, SIV, HCV). LDMF did not predict any LD 
motifs in proteins from these strains. 

 
 

DISCUSSION & CONCLUSION 
Proteome-wide insights in LD motif prevalence and function  

SLiMs are core constituents of cellular signalling networks. Their proteome-wide detection and 
analysis across species can yield insights into the evolutionary mechanisms that allow creation and 
adaptation of a specie’s interactome. Being formed by a short and often degenerate consensus motif, 
proteome-wide detection of SLiMs is a challenging task. By combining computational and experimental 
approaches, we produced a bioinformatic tool, named LDMF, that allowed proteome-wide detection of 
LD motifs with high accuracy. With this tool, we identified twelve new LD motif-containing proteins in the 
human proteome. In comparison, only three new LD proteins were discovered using classical 
experimentation over the last 20 years. Our LDMF tool was capable of distinguishing between LD 
motifs and other similar motifs, such as the nuclear receptor box LXXLL motif.  

Unexpectedly, our data suggested that an LD motif can also be formed in the inverse 
orientation, by L+7D/E+6 instead of L0D/E+1. Inverse LD motifs were found in LPP and CCDC158 that 
have L0T+1 and L0K+1 instead of L0D/E+1, and are likely to bind LDBDs in the opposite (-) orientation to 
common LD motifs. (+) and (-) binding poses also occur in interactions of proline-rich peptides 66,67 and 
NES 68. In analogy, we propose to name LDXLLXXL motif ‘class I’, and LXXLLXDL the ‘class II’ 
consensus. Given that paxillin LD1 (DL0DXLLXDLE) binds LDBDs in the (-) orientation, whereas 
leupaxin LD1 (ELDXLLXELE) binds in the same (+) orientation as paxillin LD2 and LD4 69, the EL0D (or 
DL+7E) position appears to be the main determinant of the binding orientation in cases where acidic 
charges are flanking both L0 and L+7. Given the distribution of charges and lengths of side chains, 
paxillin LD3 (SLESLLDELE), and NCOA2 (NLEEILDDLQ) might also be class II motifs. LDMF has 
identified the class II consensus without specific training (however, LPP was included in the second-
round training set), supporting that our tool generally is able to identify class II motifs. 
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Although we cannot exclude that several motifs remained undetected, the high sensitivity and 
experimentally verified accuracy of LDMF strongly support that the number of false negatives was low. 
Hence, less than 20 out of ~20,000 human proteins appear to have an LD motif. Humans have 
therefore less LD motif-containing proteins than previously thought, explaining the difficulties and slow 
pace in their detection. The number of LD motif proteins is similar to the number of currently known 
LDBD-containing proteins. Our GO analysis showed that LDBD proteins as well as previously known 
and LDMF-predicted LD motif proteins form a homogenous group in terms of biological processes 
(regulation of cell morphogenesis and adhesion) and subcellular cellular localization (basolateral 
plasma membrane, focal adhesions, and cell junctions).  

Despite their function in regulating adhesions within multicellular organisms, previous analyses 
detected paxillin and other integrin-signalling components in the unicellular eukaryotic lineages 
ichtyosporea and filastera 65. Scanning the available proteomes of unicellular eukaryotes for LD motifs, 
we could confirm that LD motif signalling had already evolved before the split between opisthokonts, 
apusozoa and amoebozoa, more than 800 Myr ago. The conservation of homologues for paxillin, 
vinculin and XPO1 (exportin-1) across unicellular unikonta, and the observation that LD motifs can also 
function as NES would be in agreement with a hypothesis that LD motifs originated from NES motifs, 
and that paxillin and vinculin form the ancient core of the initial LD motif signalling pathway. A LD motif 
origin from NES is supported by the several cases where NES sequences within lower vertebrate 
homologues transformed into functional LD motifs in higher vertebrates. In many cases, the 
transformation into an LD motif (with or without losing the NES function) was achieved by only a few 
amino acid substitutions. Thus, conversion from NES into LD motifs (and possibly vice versa) appears 
to be an easy means for species-specific adaptation and rewiring of LD motif signalling in NES-
containing but otherwise unrelated proteins. The possibility for achieving SLiMs with dual recognition by 
the nuclear export machinery and adhesion proteins may have provided opportunities for functionally 
linking cell attachment and motility with nuclear events, such as gene expression. 

Our data illustrate how a conserved SLiM signalling core can become enriched with additional 
species-specific connections, while preserving a strong functional coherence. An analysis of the 
sequence conservation of well-known SLiMs that interact with SH2, SH3, PDZ and serine/threonine 
kinases had previously suggested that each of these SLiMs is particularly well conserved in proteins 
that are of the same functional group as the proteins containing the cognate interacting domains 3. By 
demonstrating that a few point mutations may suffice to repurpose an existing protein sequence, our 
data support that evolution is much more likely to create or alter SLiMs, than to create or alter a three-
dimensionally folded SLiM-interacting domain (which would require more mutations or domain 
duplication and specification). Thus, our data provide an illustration and rationale for how the functional 
focus of a particular SLiM is controlled by the functional range of its binding domain. In the case of LD 
motif signalling, the founding event might be the evolution of the vinculin tail domain’s capacity to 
interact with a subset of paxillin’s NES. Yet, many SLiMs are frequently recognized by more than one 
domain, for example SLiMs for SH2 or SH3 domains can also interact with PTB and WW domains, 
respectively 67,70. In LD motif signalling this phenomenon is particularly pronounced, where as many as 
six unrelated types of domain folds were found to bind to LD motifs (reviewed in 10). Nonetheless, we 
found that LD motif proteins and LDBD-containing proteins span a functionally fairly coherent group. 
The evolutionary mechanisms that restrict the functional range of a SLiM in the case of multiple 
unrelated cognate domains appear incompletely understood.   
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Collectively, our integrated computational and experimental analysis shed light onto the origin, 
evolution and prevalence of a poorly understood SLiM that controls embryogenesis and immunity, and 
plays central roles in cancer cell spreading and cardiovascular diseases. By providing a means to 
investigate the LD motif interactome, our results might open new avenues for understanding and 
correcting pathological cell migration. Our LDMF tool is a convenient way to further interrogate the 
prevalence and evolution of LD motifs in newly sequenced species. More generally, the methodology 
used to produce our LDMF tool can be applied to other SLiMs for which only a few representatives are 
known. Given that LDMF is currently the only specific bioinformatic tool for predicting LD motifs, we 
made LDMF available as a web-based application at http://www.cbrc.kaust.edu.sa/ldmf/index.php.  
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MATERIALS AND METHODS 
Overview on method development 

To provide a high-accuracy algorithm for proteome-scale detection of LD motifs, we used a machine-
learning approach that combines secondary structure prediction and physiochemical properties (from 
the AAindex database) of amino acids (AA) of the LD motif region. We formalise this problem as a 
binary-class classification problem of 10-mers, i.e., a subsequence of 10 amino acids, where LD motifs 
are considered as the positive set and 10-mers that are not LD-motifs are considered as the negative 
set. As the number of known LD motifs is small, it becomes an imbalanced dataset problem with a 
small positive and a huge negative dataset, which usually causes issues for classification methods. 
Therefore, we used a two-phase approach for building the prediction model. In the first phase, we 
considered the known LD motifs as the positive set and the remaining 10-mers extracted from these 
proteins as the negative set. As expected, these extracted 10-mers can be easily differentiated from the 
true LD motifs because they do not satisfy sequence patterns, secondary structure patterns or 
physicochemical patterns of the LD motifs. Therefore, a model trained based on such a trivial negative 
set may not be practically useful. Yet it provides us a rough predictor by assigning different weights to 
sequence-, secondary structure- and physiochemical- patterns. In a second phase, we used this 
predictor to obtain more difficult negative sets. This was done by selecting the 10-mers from the 
proteins in the Protein Data Bank (PDB) which satisfy some of these patterns according to the first 
predictor, but not all of them. We then used these new negative sets as well to train the final predictor. 
This results in an active learning framework to train an LD-motif predictor.   

Initial training data set 

Our model uses information from protein sequence content of data-windows of length 10AA. Such 
windows are denoted as core windows. A core window is shifting one residue ahead. So, if a protein 
has a length L >= 10 AA residues, then there are L-10+1 possible candidate core windows to be 
considered by scanning the protein sequence as containing a putative LD motif.   

By surveying the literature, the known LD motifs were found in Paxillin, Leupaxin, PaxB, Hic-5 8, RoXaN 
71, and DLC1 72 and we selected these LD motifs. This resulted in a set of 18 genuine LD motif windows 
generated from six proteins. We denote this set as the set of known LD motifs (positive set PS1). All the 
possible windows of length 10AA from the remaining regions of the above-mentioned six proteins were 
selected as the core windows of the initial negative set (NS1). This produced a set of 4020 windows 
from six proteins that formed NS1. To consider the importance of surrounding regions of LD motifs, 
20AA residues flanking regions on each side of the scanning window were analysed. 

Feature extraction from protein sequences 

From the set of aligned 18 windows with their flanking sequences, position frequency matrix (PFM) was 
constructed. If the flanking region of scanning window is shorter than 20AA (at N-terminal and C-
terminal region) then the positions are filled up by a gap ('-'). PFM was then normalised to produce 
Position Weight Matrix (PWM) using normalisation technique analogous to 73. We only consider twenty 
IUPAC unambiguous AA codes (http://www.bioinformatics.org/sms/iupac.html) and gap ('-') for building 
PWM. We built PWM from the scanning core window (PWMCoreSeq) which consists of 10 residues, the 
two flanking regions each with 20 residues produces two other PWMs (PWMUpSeq, PWMDownSeq) and the 
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whole segment (upstream flanking region + core window + downstream flanking region) of 50 (20 + 10 
+ 20) AA residues produces the additional PWM. Then, during the scanning of protein sequences, we 
matched the four PWMs with corresponding window segments to get the respective four matching 
scores 73. We also considered the average values of the mapping score from the PWM of core window 
(PWMCoreSeq) and PWM of flanking regions (PWMUpSeq, PWMDownSeq). Thus, we generated five features 
for each window. While generating the scores from the core PWM (PWMCoreSeq) we used our previous 
knowledge of the properties of bona fide LD motifs 19,31. If there are no acidic residues (Asp or Glu) 
either at position 0 or 6, we assign the score zero to PWMCoreSeq. Proline has a tendency to break the 
helix. Consequently, if there were two consecutive prolines in core motif we also assigned 0 to 
PWMCoreSeq.  

Feature extraction from secondary structure (SS) 

We predicted the secondary structure (SS) of the whole protein using PSIPRED 33 against the NR 
database. Each residue in the 50AA window (core + flanking regions) was tagged as belonging to helix 
('H') or coil ('C') or strand ('E').  Gap ('-') was also considered for the windows near N/C-terminal of 
proteins. From the set of 18 windows that correspond to known LD motifs (with flanking regions), we 
constructed PFM matrices (analogously as mentioned in the previous section) based on SS annotation 
of residues. PFM was then normalized to PWM. We built PWM from the scanning core window 
(PWMCoreSS), the two flanking regions each with 20 residues produces two other PWMs (PWMUpSS, 
PWMDownSS) and the whole segment (upstream flanking region + core window + downstream flanking 
region) of 50 (20 + 10 + 20) AA residues produces the additional PWM. Using PWMs, we were able to 
generate five features from SS information in the analogous manner as explained in the previous 
section. In these cases, if the core motif part does not have any helical prediction, we assign zero to the 
core motif score from PWMCoreSS. 

Feature extraction using AAindex 

From Amino Acid Index (AAindex) database 74 three physiochemical properties were extracted: 
hydrophobicity 75, volume, and electric charge 76. For each of the 10 residues in a core window, we 
calculate the AAindex values of the above-mentioned three properties that produced 30 (3*10) features.  

Model Development 

We generated an initial model based on the initial training data. Since this model is based on data 
derived from only six proteins and contains a very small number (18) of known LD motifs, we extended 
the training set by hypothetical LD motifs and additional negative data. For this, we used a procedure 
(explained below that, among other things, utilizes the initial model) that is likely to generate motifs 
highly similar to known LD motifs. Once the training set is expanded this way, we retrained the model 
as we used initially.  

The Initial Model 

We extracted five features using primary sequence information, five features using SS information, and 
30 features using AAindex for data-windows as discussed previously. Then we used a support vector 
machine (SVM) model 77 with linear kernel 78 to build a predictive model (M1). We used ‘svmtrain’ 
function of MATLAB 2012b with default parameter setting to build the model (there was no need to 
optimize parameters of the SVM model as the default setting provided an excellent performance). 
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LD Motifs from Homologous Proteins 

As we have very limited number of known LD motifs, we tried to increase that number using standard 
protein-protein BLAST (blastp) hits which are similar to motifs 79. We used the six proteins that contain 
the known LD motifs for the blastp program and selected the complete sequence of the proteins with 
the high score of BLAST hits (E-value:1e-7, bit score > 40). Then, we applied our M1 to identify the LD 
motifs from these proteins homologous to the six proteins that contained known LD motifs. In this way, 
we predicted 40 more LD motifs from these proteins. These additional 40 candidate LD motifs were 
also considered as correct and used for building our final model.  

Active Learning Dataset from PDB 

We downloaded a culling set 28 of proteins from the Protein Data Bank (PDB) to enhance our negative 
dataset-. We predicted SS of the full chain using PSIPRED. We built three independent models from 
the initial dataset based on five sequence features (M1seq), five SS features (M1ss) and 30 AAindex 
features (M1aaindex). For each of these models, we used an SVM model with linear kernel and default 
parameter setting.  

We applied M1seq to the culling set to predict windows with LD motifs. These windows formed 
the set Sseq. Analogously, we generated sets Sss and Saaindex using M1ss and M1aaindex, respectively. Our 
hypothesis was that a window that does not belong to the intersection of these three sets is less likely 
to contain LD motifs. So, we included such windows in the negative set. This has resulted in 2,279 
additional negative data-windows used for building the final model.  

The Second Model (M2) 

We extracted the features from all (18+40) positive and all (4020+2279) negative data-windows in the 
same fashion as discussed previously and we used an SVM with the linear kernel to build a predictive 
model (M2). We used ‘svmtrain’ function of MATLAB 2012b with default parameters setting to build the 
final model. This model predicts 13 new LD motif from human proteome. We applied a version of the 
18-fold cross-validation (CV) to assess the model accuracy. We divided the negative set randomly into 
18 disjoint subsets. At each step of CV, we excluded a different subset from the negative data and the 
window that corresponds to one of the 18 known LD motifs. Moreover, from the additional 40 positive 
data (windows) we excluded all windows from proteins homologous to the excluded one to which the 
known LD motif belongs. This last step is done in order to avoid dependent data in the training set. 
Then, the model is derived from the remaining data as described in the section above, and it was tested 
on the excluded data.  

The Final Model 

We experimentally (in vitro) verified the 13 new LD motifs and found that four of them show a strong 
binding affinity (“Highly likely” category) towards their binding partners. So, we integrate these four 
motifs in the roster of true LD motif and build the final model following the same method described 
above. This final model predicts eight LD motifs. Three were new LD motifs and five were common to 
previously predicted 13 LD motifs by M2. Using CV approach, mentioned in the above section, the final 
model achieved over 88.88% sensitivity and accuracy of 99.97% (Supplementary Table 1). 

Validation of LDMF using Random Sets 
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To evaluate the robustness of our final model we tested it on random sequences generated by 
Sequence Manipulation Suite 80. We generated 1,000 random sequences and applied the model to 
them. LDMF did not predict any LD motif in these sequences. 

Availability 

LDMF is available at http://cbrc.kaust.edu.sa/ldmf/ . For the result mentioned in this manuscript, we 
used the NR database for PSIPRED predictions. But for our online LDMF server, due to the prohibitive 
time required to obtain the results from the NR database, we used UNIPROT database for PSIPRED 
predictions.  

Proteins and Peptides 

Human α-parvin-CHC (residues 242-372), the FAT domain of human FAK (892-1052), and the rat GIT1 
(647-770) were expressed as GST-fusion proteins in E. coli BL21 at using the expression vectors pGex 
6P1, pGexP2, pGex-4T1, respectively. Bacteria were grown in LB medium. α-parvin-CHC and FAT were 
expressed at 20°C overnight, whereas GIT1 was expressed for 6h at 30°C, α-parvin-CHC,FAT and GIT 
were purified as described previously 21,22,81. 

Peptides were purchased from GenScript with and without FITC-Ahx N-terminal modification, with the 
following sequences : LD4 (SASSATRELDELMASLSD), LD2 (NLSELDRLLLELNAVQ), IBP2 
(TPTQQELDQVLERISTMR), RGPA2 (GDDVLDKLLENIGHT), CH037 (AEDLDELLDEVESKFATPD), 
ICAL (DAALDDLIDTLGGP), FIP1 (SAGEVERLVSELSGGT), WHAMM (PGSMDEVLASLRHG), LPP 
(AEIDSLTSILADLESS), RGPA1 (EDVLDELLQYLGVT), CP071 (EAWDLDDILQSLQGQ), NCOA2 
(SELDNLEEILDDLQNSQ), E41L5 (ATDELDALLASLTENLID), PCP2 (PTPEMDSLMDMLASTQ), 
NCOA3 (GDLDNLDAILGDLTSSD), RHGO7 (DIFPELDDILYHVKGMQ), P2R3A 
(SQEEIDKLLMDLESFSQ), CREB3 (SDWEVDDLLCSLLSPPA), CCDC158 
(DPTRDLKQLLQELRSVIN), Scramble (LSDAMETSSLRDALE). 

Differential Scanning Fluorimetry 

Experiments were performed in 20 mM HEPES pH 7.5, 150 mM NaCl, 2 mM EDTA, 1 mM TCEP. FAT, 
α-parvin-CHC and GIT1 were used at a concentration of 10 μM. Protein stability was assessed for each 
peptide at 100 and 250 μM. SYPRO Orange was used as fluorescent dye at 1x the protein 
concentration. The samples were heated from 20°C to 95°C at a rate of 0.03°C/s on a LightCycler 480 
II RT-PCR from Roche. When plotted as a function of the temperature, the fluorescence intensity 
resembles the classical sigmoidal function that is described by the Boltzmann equation. To estimate the 
melting temperature (Tm), a generalized sigmoid was fitted by least squares and the inflection point 
was computed. 

Direct anisotropy assay 

Protein was serially diluted in buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 2 mM EDTA, 2 mM DTT, 
0.005% Tween-20) and labelled peptides were added at a final concentration of 0.1 μM. Fluorescence 
anisotropy was measured on a PHERAstar FS device (BMG Labtech) using a fluorescence polarization 
module 485/520/520, at room temperature. Fluorescence anisotropy was determined as: 1000*(I// – 
I+)/(I//+2*I+), where I// and I+ are parallel and perpendicular components of fluorescence intensity excited 
by parallel polarized light. Data were analysed with Origin software using a logistic fit. 
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Anisotropy competition assay 

First, FAT and α-parvin were titrated, and FITC-Ahx-labelled LD4 was added as described for the direct 
anisotropy assay. Competition for the LD4 binding site of FAT and α-parvin was then assessed as 
follows: the proteins were kept at a concentration corresponding to the KD of their interaction with 
labelled LD4 (10 μM for FAT and 25 μM for α-parvin), in the presence of 0.1 μM labelled LD4. To that, 
each non-labelled peptide was added at 100 and 250 μM. When competing for the binding site, the 
unlabelled peptide displaces labelled LD4 resulting in a lower anisotropy. All measurements were 
performed as for direct anisotropy assay. Values are represented as a ratio to the point estimated to be 
the Kd of the protein with LD4 labelled. 

Isothermal Titration Calorimetry 

Proteins were dialysed in ITC buffer (20mM HEPES pH 7.5, 150mM NaCl, 1mM EDTA, 1mM TCEP). 
1.5 ml of protein solution was placed in the cell at a concentration varying depending on the interaction 
from 50 to 150 μM for FAT and 125 μM for GIT1. Peptides were dissolved into the dialysis buffer to a 
concentration of 1 mM (for FAT interactions) or 1 to 1.25 mM (for GIT1) and placed in the injection 
syringe. Titrations were performed at 25 °C with an initial injection of 2 μl, followed by 23 injections of 
10 μl. As a control, the peptide was titrated into the buffer and the resulting heats subtracted from the 
protein-binding curve. ITC was performed on a Nano ITC from TA Instruments, and data were fitted 
using NanoAnalyze Software. (For GIT1 to LD2 interaction, MicroCal iTC 200 from GE was used and 
data were fitted using Origin Software. 

Microscale Thermophoresis 

Serial dilutions of proteins were prepared starting from 630 μM  (GIT1), 560 μM  (FAT) and 530 μM (α-
parvin) concentrations, in reaction buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 2 mM EDTA, 2 mM 
DTT, 0.05% Tween-20). Labelled peptides were added to a final concentration of 0.1 μM. The 
experiment was performed at 20 % LED power and 20, 40 and 60 % MST power in standard capillaries 
(GIT1) and MST Premium Capillaries (FAT and α-parvin) on a Monolith NT.115 device at 25 °C 
(NanoTemper Technologies). Thermophoresis and temperature jump were fitted using the KD formula 
derived from the law of mass action on the provided NT analysis software.  

Nuclear Magnetic Resonance 

Cells were grown with 15N-labelled ammonium chloride dissolved in M9 minimal media solution, 
induced at OD=0.8 with 300uM IPTG and harvested after incubation overnight at 22�C. Protein 
samples were purified and NMR samples were prepared by dissolving the 15N-labelled protein in a 10% 
D2O/90% H2O solution with a monomer concentration of 100 μL in a total volume of 500 μL and pH of 
7.5. LD motif-containing proteins were dissolved with FAT gel filtration buffer (20mM HEPES pH=7.5, 
150mM NaCl, 2mM EDTA and 2mM DTT). 2 μL of 25 mM 2,2-dimethyl-2-silapentane-5-sulfonate 
(DSS) sodium salt was added as an internal chemical shift reference for 1H at 0 ppm. The samples 
were stable over the course of the NMR experiments. The 1H-15N HSQC titration experiments were 
performed at a temperature of 25 oC using a Bruker Avance III 950 MHz NMR spectrometer equipped 
with a triple resonance inverse TCI CryoProbe. Spectra were acquired with 2048 (1H) × 200-256 (15N) 
complex points, a spectral width of 16 ppm for 1H and 40 ppm for 15N, and averaged for 36-88 scans 
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depending on sample concentration. Changes in chemical shifts for 1H and 15N were measured in ppm 
(d𝐻 and dN) where we multiplied the 15N shift changes by a scaling factor a=0.14, and then calculated 
the summed Euclidean distance moved following this equation: d=|d𝐻|+𝛼|dN| 82. 

Data-driven Molecular Docking 

The data-driven HADDOCK 2.1 protocol 83 was used to generate the models of complexes for 
FAT:CCDC158 and FAT:LPP. Crystal structures of FAT (1ow8 and 1ow7) were used for the modelling. 
Initial models for CCDC158 and LPP were modelled in helical form based on the LD4 peptide. The 
NMR chemical shift perturbation (CSP) data was used to define the residues, which could be potentially 
involved in the binding known as active residues. The residues 932, 934, 937, 1025, 1028, 1031, 1035 
and 1040 were marked on FAT as active residues for FAT:CCDC158 and 956, 959, 962, 963, 964, 966, 
991, 995 and 996 were marked on FAT as active residues for FAT:LPP. The CSP data was only used 
to define the binding site and not the binding poses. A total of 500 models were generated in the rigid-
body docking step (it0), from which the top 100 according to the HADDOCK score were further refined 
with a simulated annealing interface (it1) and finally with a solvation step making a water-layer around 
the complex. Structures that were listed in the output clusters with best scores were further analysed 
using PyMol. 
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Figures and Legends 

 
Figure 1: Overview of LD motifs. 

(A)  Schematic representation of human paxillin family members (paxillin, leupaxin and Hic-5); PaxB is 
an orthologue from Dictyostelium discoideum.  RoXaN and DLC1 both contain one LD motif. In 
addition, RoXaN has TPR and zinc finger (ZnF) domains. DLC1 has a SAM (sterile α-motif) domain, a 
GAP domain for small Rho family GTPases, a lipid-binding STAR-related lipid transfer domain. 

(B) Sequence alignment of selected known LD motifs. Sequence positions are numbered with respect 
to the first leucine of the LD motif (numbered 0). Acidic (red), basic (blue) and hydrophobic (green) 
residues are highlighted. PXN: paxillin. LPXN: leupaxin. All sequences are from human proteins, except 
for DLC1 (mouse) and PaxB (D. discoideum).  

(cC) Structure of LD motifs bound to FAK FAT and α-parvin. Ribbon diagrams of FAT and α-parvin are 
color-ramped from blue (N-terminus) to red (C-terminus). LD motifs are shown in gray, with key 
residues shown as stick models in wither green (hydrophobic) or red (acidic). Position -1 (D), 0 (L) and 
+1 (E) are labelled. 
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Figure 2: Flowchart of the set of operations performed for building the LDMF tool.  

The LD motif regions of the initially known LD motif proteins were extracted and used as initial positive 
data set. The remaining regions of the known LD motif proteins were considered as negative set. For 
both data sets, we used the sequence, secondary structure and amino acid physiochemical properties 
to represent those areas as a feature vector in our computational model. Using these features, we build 
our initial model. This initial model was used to enhance the positive (+ive) and negative (-ve) dataset. 
After integrating the new dataset with the initial dataset, the final model for round 1 was built. All 
predictions were tested experimentally and sequences that displayed LDBD binding were used as 
known LD motifs in a second round. The final model of the second round was used to scan proteomes 
from human, stem eukaryotes and a selection of bacterial and viral pathogens.  
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Figure 3A: Sequence and secondary structure of predicted LD motifs in human proteins.  

The ten amino acids constituting the LD motif core are highlighted inside the red box. The twenty up- 
and down-stream residues of the flanking regions are shown. Top: amino acid sequences. Bottom: 
secondary structure. This figure was generated by Jalview. 
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Figure 3B: LD motif containing proteins identified in the human proteome.  

Protein length and positions of the LD motifs (residues -1 to + 8) are labelled. Additional domains are 
indicated by their PFAM name. Blue background: highly likely motifs; pale orange background: less 
likely motifs; yellow background: least likely motifs. 
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Figure 4: Suggested molecular basis for class II LD motif interactions with the FAK FAT domain.  

NMR-data guided docking of the LD motif peptides (stick models, with carbons colored in gray) derived 
from LPP (left) and CCDC158 (right) onto the FAK FAT domain (Secondary structures are shown in 
dark blue; molecular surface in light blue). Actively involved FAT residues are presented in magenta 
and passively involved residues are in cyan. Key residues on FAT for the interactions are labelled. The 
inverse consensus of these LD motifs is compatible with an opposite binding directionality compared to 
LD2 and LD4 motifs. 
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Figure 5: LDMF-predicted LD motifs and LDBDs in stem eukaryotes. 

Left: Evolutionary relation of the unicellular eukaryotes analysed. Figure adapted from the Broad 
Institute’s Origin of Multicellularity initiative. Right: The PAX column gives a summary of paxillin 
homologues, where the first row corresponds to the number of LD motifs found. In case there are 
several paxillin homologues in one species, the corresponding numbers are separated by ‘/’. An 
asterisk (*) indicates that this species contains a paxillin homologue but without LD motif. IN the second 
row, the numbers in brackets correspond to the positions of the LD motifs that are also predicted to be 
a functional NES. The LDMF column indicates in the first row the number of non-paxillin LD-motif 
containing proteins identified by LDMF, and in the second row in parenthesis the total number of LD 
motifs of a given species. The XPO1, VINC, CCM3, PARVA, FAK and GIT columns show the presence 
of genes homologous to exportin, vinculin, CCM3, a-parvin, FAK and GIT, respectively. The number of 
ticks corresponds to the number of homologues found. The presence of a functional LDBD in these 
domains was assessed by sequence alignments and homology modelling.  
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Table 1. Summary of experimental binding assays between putative LD motifs and selected 
LDBDs. 

The LD motifs are coloured according to: positive controls (green), negative controls (red), highly-likely 
(blue), less likely (orange), least likely (yellow) and the motifs discarded in round 1 (grey). Values 
indicate the Kd in µM for direct anisotropy (DA), microscale thermophoresis (MST) and isothermal 
calorimetry (ITC). ‘N’ indicates that no confident Kd could be derived from fitting the data. ‘-‘ signifies 
that this measure was not performed. For anisotropy competition assay (ACA), and differential 
scanning fluorimetry (DSF) where no Kd could be determined, results are given as relative difference, or 
indicate Tm shifts, respectively. For ACA and DSF values, a t.test of significance was performed (n=3), 
were the null hypothesis is rejected with 95% (*), 99% (**) and 99.9% (***) of confidence. For Kd values, 
errors are indicated as SEM.  
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Gene name Most distal 

protein 
homologue 
found in 

residues identical 
/homologous to the 
human 10-aa LD 
motif * 

LD motif is 
functional, 
according to 
LDMF (Y/N) * 

Most distal 
functional LD 
motif to human 
(LDMF)  

LDMF-identified     
EPB41L5 shark 8/9 N mouse 
LPP zebrafish 10/10 Y zebrafish 
RALGAPA1 fly 5/8 Y fly 
PPP2R3A shark 7/10 Y shark 
CCDC158 shark 3/5 N mouse 
C16orf71 mouse 8/9 Y mouse 
NCOA2 zebrafish 7/10 Y zebrafish 
NCOA3 zebrafish 5/9 N mouse 
CAST shark 6/6 N bird 
CREB3 bird 6/9 N mouse 
RALGAPA2 fly 5/6 Y fly 
C8orf37 shark 9/10 Y shark 
Previously known      
RoXaN shark 6/8 N bird 
DLC1 shark 7/8 N mouse 
 
Table 2 
Conservation of the non-paxillin LD motifs. Species investigated were chimpanzee, mouse, 
zebrafish, roundworm, fly, and yeast. ‘Distal’ refers to the evolutionary proximity to humans. *: with 
respect to the protein sequence in the most distal species. This table summarises results of 
Supplementary Figure 7.  
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