
1

Enhancing coevolution-based contact prediction by imposing
structural self-consistency of the contacts

Maher M. Kassem1, Lars B. Christoffersen1, Andrea Cavalli2,*, Kresten
Lindorff-Larsen1,*

1 Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of
Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark
2 Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Via
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Abstract

Based on the development of new algorithms and growth of sequence databases, it has
recently become possible to build robust and informative higher-order statistical
sequence models based on large sets of aligned protein sequences. By disentangling
direct and indirect effects, such models have proven useful to assess phenotypic
landscapes, determine protein-protein interaction sites, and in de novo structure
prediction. In the context of structure prediction, the sequence models are used to find
pairs of residues that co-vary during evolution, and hence are likely to be in spatial
proximity in the functional native protein. The accuracy of these algorithms, however,
drop dramatically when the number of sequences in the alignment is small, and thus the
highest ranking pairs may include a substantial number of false positive predictions. We
have developed a method that we termed CE-YAPP (CoEvolution-YAPP), that is
based on YAPP (Yet Another Peak Processor), which has been shown to solve a similar
problem in NMR spectroscopy. By simultaneously performing structure prediction and
contact assignment, CE-YAPP uses structural self-consistency as a filter to remove false
positive contacts. At the same time CE-YAPP solves another problem, namely how
many contacts to choose from the ordered list of covarying amino acid pairs. Our results
show that CE-YAPP consistently and substantially improves contact prediction from
multiple sequence alignments, in particular for proteins that are difficult targets. We
further show that CE-YAPP can be integrated with many different contact prediction
methods, and thus will benefit also from improvements in algorithms for sequence
analyses. Finally, we show that the structures determined from CE-YAPP are also in
better agreement with those determined using traditional methods in structural biology.

Author summary

Homologous proteins generally have similar functions and three-dimensional structures.
This in turn means that it is possible to extract structural information from a detailed
analysis of a multiple sequence alignment of a protein sequence. In particular, it has
been shown that global statistical analyses of such sequence alignments allows one to
find pairs of residues that have covaried during evolution, and that such pairs are likely
to be in close contact in the folded protein structure. Although these insights have led
to important developments in our ability to predict protein structures, these methods
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generally result in many false positive contacts predicted when the number of
homologous sequences is not large. To deal with this issue, we have developed
CE-YAPP, a method that can take a noisy set of predicted contacts as input and
robustly detect many incorrectly predicted contacts within these. More specifically, our
method performs simultaneous structure prediction and contact assignment so as to use
structural self-consistency as a filter for erroneous predictions. In this way, CE-YAPP
improves contact and structure predictions, and thus advances our ability to extract
structural information from analyses of the evolutionary record of a protein.

Introduction

A large and recent increase in known protein sequences has sparked an interest in using
the multiple sequence alignments (MSAs) of protein families to predict native contacts
in globular proteins [1], membrane proteins [2, 3], as well as predicting contacts in
protein-protein interfaces [4, 5]. Conceptually speaking, homologous proteins from
diverse organisms are likely to have similar 3D structures due to the conservation of
function [6]. As a result, the sequence space explored across a protein family is highly
constrained. Of special interest, are pairwise coevolving amino acid positions in the
MSA. These coevolution patterns have been shown to correlate strongly with spatial
proximity in the native 3D structure [7].

Methods initially used to quantify the degree of pairwise positional coevolution were
based on local statistical models (e.g. mutual information) that do not disentangle
transitive effects often seen in proteins. Current state-of-the-art methods rely on global
statistical models (e.g. maximum entropy), well-known from statistical physics, to help
disentangle transitive effects and, thereby, provide more robust and precise contact
predictions. The maximum entropy principle is increasingly used in computational
biology because of its ability to produce accurate global models given observed data (e.g.
an MSA) with minimal risk of overfitting [8]. The apparently first to use the maximum
entropy principle in the coevolution analysis of protein sequences was Lapedes et al. [9].
Similar but more recent methods are the mean field Direct Coupling Analysis
approach [1, 4, 10] followed e.g. by pseudo-likelihood maximization [11,12], sparse
inverse covariance estimation approach [13], and various machine learning
methods [14–16]. Many of the methods have recently been reviewed extensively [17].

An obvious and popular use of predicted contacts is to implement them as distance
restraints in protein folding simulations. The restraints can dramatically reduce the
conformational search space, thereby enabling structure calculations of even large
(> 250 amino acid residue) proteins [1]. One major challenge is, however, that the
number of effective sequences (definition in Methods) needs to be sufficiently large (
>⇠ 5 times the number of amino acids [18]) to ensure that enough contacts can be
predicted accurately. Protein families with a sufficiently large number of sequences are,
however, also more likely to have at least one experimentally solved structure, which,
makes template-based modeling a more viable option [18]. A key challenge is, therefore,
to decrease the required number of effective sequences to a level that enables the precise
contact predictions of more protein families without experimental structures. Recently,
the number of protein families, with a sufficient number of effective sequences and
without homologous structures, was estimated to be ⇠ 400 [18]. To increase this number
and thereby decrease the required number of effective sequences, developers attempt to
improve (or combine [19]) the statistical models. While there might be room for
improvement, it is possible that these methods will not reach the level of precision
needed to consistently compute accurate protein structures without a significant number
of homologous sequences. There are, however, examples of experimentally difficult
protein targets without solved structures that had enough sequences to solve the
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structures using coevolution [2, 3, 20–22].
There are two initial obstacles to overcome when using predicted contacts in

structure prediction. First, one needs to decide how many contacts to include. The
methods described above simply rank contacts by decreasing strength of the
coevolutionary signal, but does not directly provide a natural cutoff for how strong the
signal should be in order to consider a pair of residues likely to be in contact. Secondly,
even with many sequences and conservative choices for how many contacts to use, one
generally ends up with a number of false positive (FP) predictions, i.e. pairs of residues
that show some level of coevolution, but are not in close proximity in the
three-dimensional structure. In practical applications, these two problems are tightly
related: One would like to include as many contacts as possible to restrain the three
dimensional structure, but at the same time risk including many FPs. For example, one
would on average expect ⇠ 5 of the top 20 (i.e. 25%) coevolving pairs of residues to be
FPs for a 100-residue long protein with an MSA with 500 sequences, increasing to ⇠ 20
of the top 50 (40%) coevolving pairs to be FPs [18].

To circumvent the problem of noisy predictions, MacCallum and co-workers have
suggested an elegant approach termed MELD [23]. The basic idea in MELD is to
explicitly take into account that a fraction of the predicted contacts are wrong, and
hence should not be included. In practice this is done by iteratively dividing contacts
into either an ‘active’ or ‘ignored’ set, with those contacts that agree the worst with the
current structural model partitioned into the ignored fraction. Thus, using the example
from above, if we know that ⇠ 20 of the top 50 contacts are FPs, but not which of them,
we only consider as active those 30 contacts that agree best with the structure. In this
way structural self-consistency is used to guide contact assignment and structure
prediction at the same time. One key limitation of this approach is that it is not always
clear how large a fraction of the contacts can be ignored. Even if we know the fraction
of FPs that will be present on average, it is difficult to predict this number specifically
for a given protein. A different approach is to include experimental data, such as from
NMR, and use self-consistency as a filter to remove false positives [24].

Here, we describe a method, called CE-YAPP, which we have developed to
simultaneously determine the number of long range predicted co-evolution contacts
(PCCs) and to partition these contacts into true positives (TPs) and FPs (Fig. 1). The
method builds upon the automated nuclear magnetic resonance (NMR) NOESY
structure determination method called YAPP (Yet Another Peak Processor) [25].
YAPP automatically assigns NOESY peaks to infer distance restraints that are
subsequently used in a structure calculation. In NMR, these restraints are often the
only source of information used to determine protein structures. In contrast, we
designed CE-YAPP to use long-range PCCs as distance restraints and combine them
with local structural information in the form of secondary structure predictions. Both
YAPP and CE-YAPP share a unique protocol in which distance restraints that are in
systematic violation of the protein geometry during structure calculations are
automatically detected and turned off. The false-positive-detection is carried out by
sampling, for each individual distance restraint, a parameter that allows us to turn off
this contact with some energetic cost. These contacts/restraints are then identified as
likely FPs and are discarded from the initial list of predicted contacts, thus, enhancing
the contact precision by keeping the TPs.

We tested CE-YAPP using a recently-described data set, called Noumenon, which
consists of 150 MSAs and their associated crystal structures [26]. This data set has been
curated to remove the selection bias seen when using protein families that have at least
one experimentally solved structure. Our results show that CE-YAPP provides an
effective solution to the problem of both finding a useful number of contacts and
filtering FPs in a noisy prediction. In particular, we find that CE-YAPP increases
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Fig 1. Workflow diagram of the CE-YAPP method. Predicted coevolution
contacts and predicted secondary structure are used in combination to filter out false
positive contacts. The red ’x’ represents a false positive contact.

prediction accuracy also when there are fewer number of sequences available. We also
show that CE-YAPP can be combined with different methods for contact prediction,
suggesting that the approach can be used generally to improve predictions even as
methods for contact prediction continue to improve.

Results and Discussion

A framework for detecting structural self-consistency

The main goal of this work was to develop a method that enhances the precision of
PCCs. We developed CE-YAPP which achieves this goal by taking an automatically
chosen set of long-range (sequence-wise) PCCs and identifying the FP contacts within
these. CE-YAPP performs simulations that incorporate predicted secondary structure
and makes geometrical considerations of each PCC to remove those that are
systematically inconsistent with the geometry (Fig. 1). More specifically, CE-YAPP
begins by building an extended protein structure with fixed ideal secondary structure
segments (ideal ↵-helix or �-strand), based on the predicted secondary structure. The
segments are structurally defined using ideal � and  dihedral angles for the residues
predicted to be ↵-helical or �-stranded. Subsequently, CE-YAPP performs rapid
simulations, using the chosen subset of PCCs as distance restraints and allows only
changes to the dihedral angles that are not fixed. A computationally-efficient energy
function, that includes a van der Waals term and a restraints term, controls the
structure calculation while automatically identifying systematically violated distance
restraints, by sampling the weights, �i (see Methods).
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A general issue when using PCCs for structure calculation, is the need to decide the
number of PCCs to use. The issue becomes especially problematic when there are only
a few effective sequences (e.g. < 5 sequences per NAA; the number of amino acids)
available, due to the higher risk of observing FP contacts [18]. In CE-YAPP we solve
this issue by including a relatively large number of contacts, but then effectively filter
away the FPs through requiring structural self-consistency. Specifically, we include
1.2⇥NAA contacts between pairs of residues that are not both within a single predicted
secondary structure segment (i.e. are long-range). The algorithm is robust to the exact
choice of the number of contacts included (see Supporting Information for additional
details).

To illustrate the idea and performance of CE-YAPP, we show the results for the 95
amino acid residues long E. coli ribosome hibernation promoting factor (PDB ID:
2RQL), using ⇠ 600 effectives sequences for the contact prediction (Fig. 2). In this
specific case, the number of input contacts was 114 (Ninput = NAA ⇥ 1.2 = 114). Thus,
we first sort contacts by the strength of the evolutionary couplings and find the top 114
contacts that are not within a single predicted secondary structure element.
Comparison with the known NMR structure reveals that 82 of these are TPs
corresponding to a precision of 72 %. To increase the precision, CE-YAPP repeats the
simulation protocol (Fig. 1) 64 times and discards contacts that are turned off in more
than 70 % of the runs (Fig. 2A). In doing so, CE-YAPP retains 102 of the 114 contacts
(CE-YAPP contacts) reducing the number of FP contacts from 32 to 21, thereby,
increasing the precision from 72 % to 79 %. These results can be visualised in the
context of the experimental contact map (Fig. 2A) which shows how most of the
contacts excluded by CE-YAPP correspond to FPs, demonstrating the power of the
approach in identifying a self-consistent set of contacts. The map also reveals several
apparently FP contacts that are not removed by CE-YAPP. It is clear, however, that
many of these are close (in sequence) to true contacts, and many of them are just
outside the distance range that we use to define contacts. Thus, we conclude from this
example (i) that CE-YAPP has the potential to identify a number of self-consistent
contacts from a list of noisy contacts, (ii) that the algorithm can remove many FPs with
only minimal loss of TPs and (iii) it appears that at least some of the FPs that are not
removed by CE-YAPP are only ‘borderline errors’.

Benchmarking CE-YAPP

Encouraged by these initial observations, we continued to benchmark the performance
of CE-YAPP using several indicators such as precision, recall, and number of contacts.
In these analyses we used the recently described Noumenon data set [26], which
contains 150 proteins with known structures and a representative distribution of
sequence depths (i.e. effective sequences); in practice we performed our analysis of 147
of these proteins (see Methods). The results, summarised in Fig. 3, demonstrate that
CE-YAPP consistently improve the accuracy of contact predictions. The proteins have
been sorted according to the depths of their MSAs, quantified as the number of effective
sequences divided by the number of amino acids (NEff/NAA; Fig. 3A). The number of
input contacts (fixed at 1.2⇥NAA) and the number of contacts after running
CE-YAPP are shown in Fig. 3B. As expected, when there are many effective sequences,
CE-YAPP discards only few contacts whereas many are filtered away when there is only
little information in the MSA. This behaviour can be rationalised given that
coevolution-based contact predictors (e.g. Gremlin [11]) generally produce contacts with
lower precision when NEff/NAA is low, prompting CE-YAPP to discard more contacts.
We also calculated the recall, i.e. the fraction of TPs in the contact list that are
retained after CE-YAPP filtering (Fig. 3C). At high NEff/NAA (> 5), the recall is
close to one, meaning that CE-YAPP rarely discards TP contacts in this region. In the
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Fig 2. CE-YAPP Protocol and results for the ribosome hibernation
promoting factor HPF.(A) CE-YAPP uses as input 114 coevolution based
long-range contacts predicted using Gremlin [11]. These contacts are then used as input
to the protocol depicted in Fig. 1, and repeated 64 times producing 64 similar contact
lists. The final list of predicted consensus contacts are those that are turned on in more
than 30 % of the simulations. (B) The precision of the consensus contacts produced by
CE-YAPP is compared to the precision of the input set of contacts.

intermediate region (1 < NEff/NAA < 5) the recall is ⇠ 0.8� 0.9.
These results are encouraging as they suggest that CE-YAPP, even with only modest

amounts of sequences, can find a consistent set of contacts that contain most of the TPs
in the input set. An equally if not more important measure of performance is precision,
which quantifies the fraction of contacts that are TPs. Comparison of the precision in
the input contacts and the output from CE-YAPP shows a consistent improvement in
precision, i.e. that CE-YAPP is able to filter away FP contacts. Again, as expected,
precision is greatest at high values of NEff/NAA and drops as the information content
in the MSA decreases (Fig. 3D). It is clear, however, that there is a general increase in
precision after CE-YAPP filtering (Fig. 3E, which shows the increase in precision after
CE-YAPP). This improvement is especially pronounced with values of NEff/NAA in
the range 1–5 — a region that generally includes protein families that contact-based
structure prediction find to be too difficult [18]. The average improvement in precision
is 0.07 for NEff/NAA > 5 and 0.14 for 1 < NEff/NAA < 5.

As discussed above in the example with the ribosome hibernation promoting factor
HPF (Fig. 2) we observed that the FPs, that CE-YAPP did not remove, appeared to be
close to real contacts. Because precision does not quantify the severity by which FPs
violate the TP definition, we also calculated the weighted mean squared distance
violations (‘energy’; Eq. 4) of the contacts with respect to the PDB structures (Fig. 3F),
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Fig 3. CE-YAPP performance on the Noumenon dataset. A: The number of
effective sequences divided by the number of amino acids, NEff/NAA, is plotted for
each protein and sorted from low to high. The data in the remaining panels are sorted
accordingly. The grey vertical bars represent the proteins with NEff/NAA closest to 1
and 5, respectively. B: Number of contacts. C: Recall (TP/(TP + FN)) of the
CE-YAPP contacts. D: Precision (TP/(TP + FP )). E: Precision of CE-YAPP contacts
minus precision of the input contacts (�Precision). The black dashed lines in panels E
and F denote zero. F: Restraint violation energy (Eq. 4) G: Drop in restraint violation
after CE-YAPP (�Energy).

and the change of these violations after CE-YAPP (Fig. 3G). Similar to our
observations using precision, we find that CE-YAPP improves contact prediction also
when judged by restraint violations, and that the improvement is large also in the
region with intermediate values of NEff/NAA (Fig. 3G).

As expected, we note that when there are many sequences (NEff/NAA > 5), the
energy of the input contacts is significantly lower than when there are an intermediate
or low number of sequences (Fig. 3F). Interestingly, this can be the case even when the
apparent precision is low. Examples of this behaviour is observed for protein number
112 and 115, where the precision of the input contacts is low (⇠ 20%) but with energies
close to zero. This suggests that the predicted contacts are close to the boundary
between TPs and FPs, albeit more often on the ‘FP side’, highlighting an issue
regarding precision as a performance measure.

Improved structural accuracy

Together, the results described above demonstrate how CE-YAPP can be used to find a
self-consistent set of contacts, and how this algorithm is able to increase precision in
contact prediction. One application of contact prediction is in protein structure
prediction, where contact-assisted protein folding has enabled new progress in our
ability to predict protein structure from amino acid sequence(s). Thus, we set out to
examine whether the improved contact prediction also translates into improved quality
of three dimensional structures. In these calculations we continued to work with the
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Fig 4. Structural Performance on the Noumenon dataset. Panel 1: The
number of effective sequences divided by the number of amino acids, NEff/NAA, is
plotted for each protein and sorted from low to high. The data in the remaining panels
are sorted accordingly. The grey vertical bars represent the proteins with NEff/NAA

closest to 1 and 5, respectively. Panel 2: GDT with a single cutoff of 5 Å. Panel 3:
Difference in GDT(5) (�GDT (5)). The black dashed line denotes zero.

long-range contacts that are the focus on CE-YAPP, but in contrast to the work
described above we decided to use the actual backbone dihedral angles in the secondary
structures of the experimentally-derived structures. We thus determined the � and  
dihedral angles of ordered secondary structure regions from the respective PDB
structures and fixed these dihedral angles to those values. This ensures that the
secondary structure of our structure calculations matches exactly the secondary
structure of the experimental structures such that we can pin down the effect of the
contacts on the tertiary structure. For the same reasons, we refrained from using a
complex force field to give a better picture of the contribution of the contacts to the
structures, and thus used only a restraint potential and a van der Waals excluded
volume term. As a control for the maximum performance possible, we also performed
calculations using only the TP contacts from within the top-ranking contacts.

We performed 16 structure calculations for each protein and for each of the three
contact sets (only TPs, before and after CE-YAPP filtering), and report the average
across those repetitions, again sorting the proteins according to NEff/NAA (Fig. 4). As
a measure of structural quality, we chose the global distance test (GDT) with a single
cutoff of 5 Å, with high values indicating good agreement between calculated and
experimental structures (Fig. 4B). Not surprisingly, we observe that the true contact
sets generally outperforms both the input contacts and the CE-YAPP contacts, and
with average GDT(5) values of 0.22, 0.60 and 0.73 in the three ranges of NEff/NAA

(< 1, 1–5 and > 5, respectively). The high values obtained when NEff/NAA > 1
suggests that there are sufficiently many real contacts among the top 1.2⇥NAA

contacts to determine a reasonably accurate structure of the proteins.
In the same three ranges of NEff/NAA (< 1, 1–5 and > 5) the average values of

GDT(5) are 0.09, 0.17 and 0.48 when using contacts before CE-YAPP filtering and 0.09,
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0.29 and 0.57 after filtering. From these results we make two observations. First, it is
clear that although there are in principle a sufficient number of TP contacts in the
middle regime to determine reasonably accurate structures, it is difficult to find these
among the relatively large number of FP contacts. Second, CE-YAPP clearly increases
the structural quality also in this regime. Thus, when examining the change in GDT(5)
scores (�GDT (5); Fig. 4C) CE-YAPP causes an average increase of 0.12 and 0.09 in
the top two ranges of NEff/NAA. This demonstrates that CE-YAPP is able to improve
not only the contact quality but also the structural quality even when there are only an
intermediate number of sequences available. Thus, for example, for the 41 proteins in
the middle range we find that GDT(5) scores for 32 of the proteins are improved by
CE-YAPP.

Testing other contact prediction methods

The results described above were all obtained using the Gremlin contact predictor [11]
to provide the initial set of contacts to CE-YAPP. Contact prediction is, however, a
field in rapid development driven both by increases in the number of sequences but also
in the ability of improved algorithms [27]. These improvements are having a substantial
impact on protein structure prediction, as evident from results from CASP12 [28].
Because CE-YAPP is compatible with any contact predictor we analysed whether the
improvements observed are specific to the use of Gremlin, or whether the requirement of
structural self-consistency can generically improve a wider range of prediction methods.
We thus repeated the contact predictions using four different algorithms, and used these
as input to CE-YAPP. Encouragingly we observe a consistent improvement in contact
predictions across all methods (Fig. S1).

Conclusions

We have developed CE-YAPP, a method that automatically chooses a number of
(long-range) predicted coevolution contacts as input and increases the precision by
removing FP contacts. In its current implementation, CE-YAPP uses secondary
structure prediction to define ↵-helical and �-stranded segments used to reduce the
search space when performing efficient simulated annealing simulations. During the
simulations, the weights, �i (Eq. 3), are sampled to allow systematically-violated
restraints to be removed and, thus, identifying them as likely FP contacts. We show, on
a selection-bias-free data set consisting of 147 proteins that CE-YAPP increases the
precision of PCCs. On average we observe a higher structural quality of the proteins
using CE-YAPP contacts.

In the future, we expect the precision of our method should increase synergistically
with the development of better contact predictors as well as the addition of system
dependent experimental data such as NOEs and/or assigned chemical shift data [22, 24].
We propose CE-YAPP to be used as a fast post-contact-prediction-filter before turning
to more advanced structure calculations. Further, it should be possible to combine
CE-YAPP with better sampling algorithms and accurate energy functions to obtain
improved contact predictions and more accurate three-dimensional structures.

Methods

Simulation details

CE-YAPP uses the primary sequence, PCCs implemented as distance restraints, and
predicted secondary structure of a target protein as input. Utilizing these sources of
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information, CE-YAPP performs structure calculations whilst simultaneously
identifying and turning off distance restraints that are systematically violated by the 3D
geometry. CE-YAPP then performs a final structure calculation with the refined set,
keeping the distance restraints fixed. Based on this final structure, the contact list is
further refined (Fig. 1). To reduce the noise levels in the refined contact list, the
protocol is repeated 64 times and the consensus contacts (> 30 % on) are then selected
as the final set of contacts.

All simulations were performed using a modified version of the YAPP method [25]
implemented in the ALMOST simulation software package [29], and is available at
https://sourceforge.net/projects/almost/. Simulated annealing was performed
using an implementation of torsion angular dynamics [30, 31] sampling only the
dihedrals that are not fixed to ideal secondary structure angles based on a secondary
structure prediction. An efficient energy function is used during the simulated annealing
that includes a soft-core van der Waals term and a restraints term:

EY APP = Evdw + Erest (1)

where,

Erest =
NX

i=1

(
�i(di � d0)2 +D2(1� �2i ), di > d0

0, di  d0.
(2)

Here, the sum runs over all N PCCs, di is the C�-C� (C↵ for GLY) distance in the
calculated structure, d0 = 7Å is the distance above which we consider a restraint being
violated. D is a parameter used to control the acceptable degree of violation, and is
decreased during the simulated annealing protocol (see below). The values of d0, D and
other key parameters were chosen as described in more detail in the Supporting
Information.

During the simulations, the values of �i (one for each predicted contact) are updated
at each time step using a Brownian motion-like equation:

�i(t+�t) = �i(t) + �Fi(t)�t+ �
p
T�t�normi (3)

Here t is the MD simulation time, �t is the time step, T is the temperature, Fi(t) is the
force exerted by the restraint i at a given time t and �normi is random noise generated
from a standard normal distribution. The parameters � and � were set to 0.00025 and
0.6666, respectively. All values of � were enforced to stay in the range of 0 – 1.

By sampling �i during the simulations, CE-YAPP can switch specific distance
restraints off (�i = 0) at an energetic cost determined by D. During the simulated
annealing protocol, D is annealed from 150 Å until it reaches 3 Å to steadily remove
contacts that are systematically violated. A final structure calculation is performed
using the refined list of contacts as fixed restraints (�i = 1) in a simulated annealing
simulation. The restraints that violate the upper limit d0 by more than D, in the final
structure, are turned off.

To reduce noise further, we repeat the protocol (Fig. 1) 64 times producing 64
similar contact lists. The repetitions are trivially independent and can, therefore, run
simultaneously on a multi-core computer. The contacts that are turned on in more than
30 % of the 64 refined contact lists produced by the 64 repeated protocol runs are then
selected for and represent the final contacts produced by CE-YAPP.

In the evaluation of the distance violations of the final set of contacts we also
calculated the restraint violation energy:

E =
1

N

NX

i

(
(di � 9)2 , di > 0

0 , di  9
(4)
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where N is the number of contacts and di are the contact distances (CB-CB) observed
in the PDB structures (CA for Glycine).

Fixing the secondary structure

We reduced the conformational space by fixing the secondary structure of simulated
proteins to that predicted by PSIPRED [32]. The dihedral angles (� and  ) of the
segments predicted to be either ↵-helical or �-stranded were fixed to the angles
(�↵ = �60,�� = �135 and  ↵ = �45, � = 135) for the respective
secondary-structure-type leaving only the remaining regions to change conformation.
When using PSIPRED, we refrained from using the default sequence database and used
only the MSAs provided with Noumenon to minimize bias that might occur from using
the larger default database when predicting secondary structures.

Effective sequences

The number of effective sequences were calculated by clustering sequences with more
than 80 % sequence identity and assigning each sequence within the clusters with a
fractional weight of 1/n, where n is the cluster size. By summing the weights of each
sequence one obtains the effective number of sequences which represents the number of
diverse sequences in the alignment.

Contact prediction

We predicted contacts using the stand-alone Gremlin [11] software package using the
default settings. Using the predicted secondary structure information, we only select
PCCs that do not coincide within a single predicted secondary structure segment, to
probe the extraction of long-range contacts. More specifically, we optimised the number
of input contacts to be 1.2 times the number of amino acids (Ninput = 1.2⇥NAA). We
thus chose this number of contacts among those not found within a fixed secondary
structure segment, and used these contacts were then used as distance restraints.

In the analysis of the contacts we define a TP as being a predicted contact with a
C�-C� (C↵ for GLY) distance observed to be at or below 9 Å in the experimental
structure.

Final structure calculations

We performed simulations to determine the structural quality obtained from the
different sets of contacts (Fig. 4) using the experimentally-observed dihedral angles
extracted from the PDB structures. More specifically, we used STRIDE [33], to
determine the secondary structure of the proteins based on the PDB structures, and we
extracted the � and  dihedral angles those residues that were determined (by STRIDE)
to be ↵-helical, 310 helical or �-stranded. During the simulation, these dihedral angles
were kept fixed. In these simulations we also fixed �i = 1 in Eq. 3 thereby keeping the
restraints fixed. We used GDT as a quality measure with a single cut-off of 5 Å.
Specifically, we calculated the fraction of C↵ atoms in the structural model that are
within 5 Å (GDT(5)) of the corresponding position in the PDB structure. To reduce the
noise levels, we take the average GDT(5) of 16 simulations for each set of contacts.

Computational time

Once the predicted secondary structure (by PSIPRED) and coevolution contacts (from
Gremlin) were obtained, the time spent on a single protocol run (Fig. 1) using a single
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CPU-core (2.3 GHz) takes in the order of 15 CPU-minutes on any of the tested proteins.
Thus, with a 64 core machine, the entire protocol can be performed in about 15 mins.

Protein data

Our benchmark of CE-YAPP was performed using the Noumenon data set [26], which
consists of 150 MSAs and their associated protein crystal structures. Three out of the
150 data points were left out of the analysis, simply because their predicted contacts all
coincided in unresolved regions of the PDB structures. In particular, when there are
only very few effective sequence, Gremlin may score all pairs of columns in the MSA
equally, with top ranked contacts then arbitrarily assigned to the N-terminal region. For
the three excluded proteins, the N-terminal tails are not resolved in the crystal
structures, resulting in data points that we cannot verify against experiments.

Supporting information

S1 Fig. Testing on other contact predictors.

S2 Fig. Parameter optimization.

S3 Fig. Optimising number of input contacts.
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Other coevolution contact predictors

To ensure that CE-YAPP generalizes across di↵erent contact predictors, we

applied CE-YAPP on multiple contact predictors. We included plmDCA

[1, 2], which, exactly like Gremlin, uses a pseudo-likelihood maximization

approach and should be very similar to Gremlin in its predictions. The other

methods are, GaussDCA (gDCA [3]), CMAT [4] and PconsC3 [3, 5]. It should

be noted, that PconsC3 uses a machine learning approach that combines

plmDCA, gDCA and RaptorX [6], for which the latter provides a webserver

that we cannot provide the input multiple sequence alignment to. Since, this

is a requirement for us, to prevent the selection bias, observed when using too

rich multiple sequence alignments, we chose to omit RaptorX and use CMAT

as a replacement. We acknowledge that PconsC3 likely underperforms due

to this replacement.

We predicted contacts for the Noumenon data set using the above-described

methods, and performed contact filtering using CE-YAPP. The precision of

the predicted contacts before and after applying CE-YAPP are shown in

Fig. S1. Apart from CMAT, the di↵erent contact prediction methods per-

form similarly in terms of precision with CE-YAPP increasing the precision

similarly, on the Noumenon data set.
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Figure S1: Precision of the Contact Predictors. Panel 1. The number of e↵ective sequences divided
by the number of amino acids, NE↵/NAA, is plotted for each protein, of the Noumenon data set, and
sorted from low to high. The data in the remaining panels are sorted accordingly. The grey vertical bars
represent the proteins with NE↵/NAA closest to 1 and 5, respectively. The remaining panels depict the
precision (TP/(TP+FP)) of the input contacts and after applying CE-YAPP.

CE-YAPP parameter selection

Several parameters, in the CE-YAPP method, were either manually tuned

or chosen based on previous work [7]. The parameters in question are (I) the

number of input contacts, Ninput, (II) the number of time steps during struc-

ture calculations, Nsteps, (III) the number of repeated simulations, Nrepeats,

and (IV) D and d0 (Eq. 3 in main text).

CE-YAPP was generally robust to changes in the following parameters:

Nrepeats, Nsteps, D and d0. The values assigned to these parameters were

tuned based on the structural accuracy (C↵-RMSD) obtained when running

2
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CE-YAPP on three proteins with PDB IDs: 2RQL (95 amino acids), 5P21

(166 amino acids) and 1SVN (269 amino acids). We varied Nrepeats and Nsteps

individually, while D and D0 were varied combinatorially.

Based on the results depicted in Fig. S2, we chose Nsteps = 10, 000,

Nrepeats = 64, D = 3 and d0 = 7. Indeed, for values numbers, the struc-

tural accuracy was maximal for the three proteins.

Number of input contacts

To select the number of input contacts, we varied X in

Ninput = X ⇥NAA (1)

where NAA is the number of amino acids. We maximized for the total mean

structural accuracy across 16 repeated simulations and each of the proteins

in the Noumenon data set. In this case, we used the global distance test

(GDT) with a single cuto↵ of 5 Å. In other words, we used a ”low resolution”

structural accuracy measure that reports on the ratio of C↵ atoms that are

within 5 Å of the experimental PDB structure. As seen in Fig. S3, there

is a peak at X = 1.2, which we chose as a final parameter. It should be

noted that CE-YAPP is fairly robust to changes in X, with a mean increase

of ⇠ 0.04 GDT(5) going from X = 0.5 to X = 1.2.

3
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NREPEATS	 NREPEATS	 NREPEATS	

NSTEPS	(103)	 NSTEPS	(103)	 NSTEPS	(103)	

d0=6		d0=7			d0=8			d0=9		d0=10		

D:	{1.0,	1.5,	2.0,	2.5,	3.0,	3.5}	
d0=6		d0=7			d0=8			d0=9		d0=10		

D:	{1.0,	1.5,	2.0,	2.5,	3.0,	3.5}	
d0=6		d0=7			d0=8			d0=9		d0=10		

D:	{1.0,	1.5,	2.0,	2.5,	3.0,	3.5}	

Figure S2: Parameter Sweep. Mean C↵-rmsd for 50 repeated simulations of three proteins (PDBID:
2RQL, 5P21, 1SVN) is plotted with respect to the parameters Nrepeats (top row), Nsteps (middle row), D
and d0 (bottom row). Each bar plotted in the bottom row represents the mean C↵-rmsd for 50 repeated
simulations with a specific d0 and D (Eq. 3 in main text). All error bars represent the standard deviation
for 50 repeated simulations.
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Figure S3: Number of Input Contacts. Total mean GDT(5) across 16 repeated simulations and each of
the proteins in the Noumenon data set is plotted as a function of X, described in Eq. 1 in the Supporting
Information.
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