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Abstract

Current research suggests that hundreds to thousands of single nucleotide polymorphisms
(SNPs) with modest effect sizes contribute to the genetic basis of many disorders, a phe-
nomenon labeled as polygenicity. Additionally, many such disorders demonstrate polygenic
overlap, in which risk alleles are shared at associated genetic loci. However, there are cur-
rently no well-developed statistical methods that can be utilized to detect specific subsets
of SNPs involved in the shared polygenicity of phenotypes. In this paper, we illustrate how
elastic nets, with appropriate adaptation in selecting the penalty parameter, can be utilized
for narrowing the range of SNPs involved in shared polygenicity. We first develop the method
when individual-level data from genomewide association studies (GWASs) are available; we
also extend the approach so that it can be used when only summary level data from GWASs
are available. We illustrate and assess the performance of the proposed methods using exten-
sive simulations, and by applying the methods to summary level data from a pair of related
GWASs with fasting glucose level and BMI as the phenotypes.
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1. Introduction

Recent genomewide association studies (GWASs) provide compelling evidence for two key
facts about the genetic architecture of many common human diseases and complex human
traits: (a) they are highly polygenic, with hundreds to thousands of common risk alleles
of modest effect sizes, and (b) there is some degree of overlap of these risk alleles across
disorders and/or traits [1], [2]. Purcell et al [3] introduced the polygenic scoring method
and applied it to argue that schizophrenia has a polygenic risk. Purcell et al ’s paper was
followed by reports providing evidence of a polygenic basis for most traits, including diseases
ranging from multiple sclerosis [4] to common “sporadic” cancer [5], and quantitative traits
such as height [6] and body mass index [7], to name a few.

One way to describe the degree of overlap of risk alleles between a pair of phenotypes is
using genetic correlation (rg), which measures the extent to which genome-wide SNPs have
same direction and magnitude of effect on both phenotypes. Genetic correlation can identify
underlying molecular genetic overlap between two categorical diagnoses; for example, a highly
significant genetic correlation (rg = 0.68) was discovered between schizophrenia and bipolar
disorder [8]. Similarly, genetic correlation can be applied to quantitative traits, such as the
inverse relationship discovered between GWAS for cognitive ability and body mass index
[9]. The genetic correlation between a quantitative trait and a categorical diagnosis can also
be examined; for example, Lencz et al [10] presented evidence of genetic overlap between
reduced cognitive ability and schizophrenia. More recently, Bulik-Sullivan et al [11] reported
numerous significant genome-wide genetic correlations amongst all pairwise combinations of
24 traits with publicly available GWAS summary statistics.

Several methods to assess polygenicity and determine polygenic scores have been utilized
in the above-mentioned papers. Purcell et al ’s original method [3] works by selecting the
SNPs with p-values below a given threshold and obtaining a weighted sum (called polygenic
score) of the SNP values in this selected subset, where effect sizes are used as weights.
Another method, suggested by Yang et al ’s [12], works by assigning a “genetic value” to
each individual and obtaining the variance of these genetic values, and then taking this
variance as an estimate of narrow-sense heritability. Recently, Mak et al [13] proposed a
novel method to calculate polygenic scores based on penalized regression methods. The
main advantage of Mak et al ’s method is that the polygenic scores can be calculated using
only summary statistics. Bulik-Sullivan et al. [11] devised LD score regression to determine
genetic correlations using only summary statistics.

Although these methods are all valuable in assessing the extent of polygenic overlap for a
pair of phenotypes under consideration, none of them were designed to determine the subset
of key SNPs that contribute to shared polygenicity. Recently Shi et al [14] introduced a
method to estimate the local genetic correlation between a pair of traits at each region
as a means to identifying the regions significantly contributing to the genome-wide genetic
correlation between the traits. Advantages of Shi et al ’s approach include that it is based
solely on summary statistics, makes no distributional assumptions on the causal effect sizes
and does not have to deal with information aggregated across all variants in the genome.
The main limitation of their method is that it requires the phenotype correlation between
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the traits, which is rarely available along with other summary statistics.

We address the problem of determining polygenic loci shared amongst a pair of traits, which
we call “SNPs of Shared Effects” (SSEs), by applying shrinkage based elastic net methods
on polygenic scores. Elastic nets are useful for subset selection in the presence of collinearity.
Optimal subsets are typically identified using cross-validation methods, which may not be
suited for identifying polygenicity. In this paper, we present optimal subset selection via
elastic nets specifically suited for the phenomenon of polygenicity. We first develop our
method for a pair of GWASs with individual genotype data available for each SNP, and
then extend our method to the case where only summary level data are available. We
conducted both simulations and real data analysis in order to assess the performance of our
new approaches.

2. Methods

We present two methods in this paper, one that can be applied when individual level SNP
data is available for the GWASs under consideration, and another one when only summary
level data from the GWASs are available. We present the former method (i.e. the one related
to individual data) first because the latter method works by generating simulated individual
data, and then applying the former. A schematic diagram connecting the two methods and
the steps within each of them is given below. Hopefully the overall picture presented in this
diagram will help the reader with understanding the connections between various parts as
we wind through all the details presented in the following subsections.

Summary 
Level Data?

or

Individual
Level Data?

Simulate 
Individual
Level Data

INPUT:
2 GWASs 

Run 
GLMs

Calculate PGS Run
Elastic Net

Plot
Correlations

Pick λ
threshold

Obtain 
SNP subset

Intersect
SNP subsets

GWAS-1

GWAS-2

OUTPUT:
Shared 
Effect SNPs

INPUT:
Summary 
Statistics

Calculate/
Obtain OR

Using summary statistics for each SNP within each GWAS

Calculate 
marginals as in 
Table 7

Fill in 3 x 2 table 
as in Table 8 

Figure 1: Schematic diagram of the methods. Method for individual data is color coded in pale red in the
top section of the diagram and method for summary level data is represented in green in the bottom section.
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2.1. Method for finding shared SNPs, with modest effect sizes, when individual genotype data
is known.

In this section, we present our analytic strategies based on elastic nets for finding small-to-
moderate-effect-sized SNPs which are causal SNPs to both phenotypes under consideration,
when individual genotype data is known. We use simulated data to present and illustrate
the method, and also to assess its performance.

2.1.1. Brief overview of Lasso and elastic nets, and our adaptation for finding polygenic
SNPs of shared effect (SSEs)

Here we give a brief overview of Lasso, ridge regression and elastic nets, and our adaptation of
these methods for identifying polygenicity shared amongst a pair of phenotypes. The original
expository articles [15], [16], [17], [18] are the best sources to learn about these methods,
but the essential ideas necessary for our paper can be summarized as follows. Consider the
multivariate regression

y = Xβ + ε.

For example, we may consider y, an N × 1 vector of polygenic scores, X an N ×M SNP
matrix, β an M × 1 vector of SNP effects and ε and N × 1 vector of error terms. Here
we consider N as the number of subjects and M as the number of SNPs. If our goal is to
estimate the β-vector, we may use the ordinary least squares (OLS) method which estimates
the β based on the minimization of error sum squares:

β̂ = argmin
β
||y −Xβ||22.

We denote by || · ||p the Lp norm, p ≥ 1. Lasso and ridge regression are shrinkage based
methods which adds a penalty term to the minimization criteria:

β̂ = argmin
β

[
||y −Xβ||22 + λ||β||pp

]
. (1)

With p = 1, we get Lasso, and with p = 2, we get ridge regression. Shrinkage regression
methods shrinks the elements of the β-vector towards zero. Such methods are justified based
on the bias-variance tradeoff - the slight bias in the β estimates are offset by the gain in
the variance reduction (that is, improvement in prediction error and overall mean-squared
error). λ in the eq.1 above is the penalty parameter. The larger the value of λ, the larger
the penalty term and hence larger the shrinkage of estimates. Typically, a grid of λ values
are considered and the optimal λ is determined using cross-validation. Lasso zeros out a
lot of the elements of β̂, but ridge regression does not do that; hence, Lasso is especially
useful for variable selection (-just select the variables with non-zero elements of β̂), while
ridge regression cannot be used in this manner. Note that variable selection in our case is
SNP selection.

Lasso and ridge regression are special cases of a larger class of shrinkage methods called
elastic nets introduced later in the literature [18]. The penalty term for elastic nets is a
convex combination of the penalty terms for Lasso and ridge regression

λ
[
(1− α)||β||22/2 + α||β||1

]
.
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α is the elastic net parameter. Elastic net with α = 1 is Lasso and with α = 0 is ridge
regression. For α values lying in (0, 1], the elastic net zeros out many elements of β̂, and
hence can be used for variable selection just like Lasso. If we choose α very close to zero
(e.g. α = 0.001), then the elastic net will have properties very similar to ridge regression,
but still can be utilized for variable selection (unlike ridge regression); for convenience, we
refer to this as quasi-ridge regression (QRR), in this paper. Thus the two elastic nets that
we employ in this paper are the ones with α = 1 (Lasso) and with α = 0.001 (QRR); we
evaluate the performance and suitability of these two methods for identifying polygenicity
shared amongst a pair of phenotypes.

With a given elastic net and pair of phenotypes, for each phenotype we apply the elastic net
with the vector of polygenic scores regressed against the SNP matrix to identify subsets of
SNPs associated with polygenic scores corresponding to each phenotype, and then find the
intersection of the two subsets to identify the SSEs. The optimal λ chosen for elastic nets
based on cross-validation typically yields very parsimonious subsets of SNPs, which usually
does not sync well with the phenomenon of polygenicity, where we assume that large number
of small-to-moderate effect-sized SNPs are associated with a given phenotype. One of the
main goals our paper is to come up with a choice of the optimal λ parameter in the context
of polygenicity. We explain our choice of optimal λ in a subsection further below.

2.1.2. Data generation for Simulations

Before we illustrate our method in detail in the next section, here we describe the design and
the data generation process for the simulations. SNP data was generated using R package
scrime [19], which is a package that contains tools for the analysis of high-dimensional data,
especially with a focus on SNP data. In all the simulations, we had two GWASs with one
phenotype vector and M SNPs in each, and m SNPs of shared effect (SSEs) across both
GWASs. Each GWAS had N subjects. In order to get these two simulated GWASs, we first
generated a large SNP matrix with N rows and (2m + 4M) columns, and a corresponding
binary phenotype vector y, using the simulateSNPglm [19], [20] function in scrime. The
minor allele frequencies for the simulated SNPs ranged from 1.01% to 49.9%. The first 2m
columns in this matrix were set apart to select m SSEs. Out of the remaining 4M columns,
the first 2M columns were set apart to select M SNP columns for the first phenotype and
the last 2M columns for selecting M SNP columns for the second phenotype. The binary
y vector generated by simulateSNPglm was used to generate two quantitative phenotypes.
For the first quantitative phenotype, y = 1 values were replaced by values from a N(25, 1)
distribution, and y = 0 values were replaced by values from a N(5, 1) distribution. So, if
one were to imagine that the first simulated phenotype represents psychotic symptom scores
on a scale ranging from 0 to 30, then the ‘symptom scores’ for healthy controls will have
a mean of 5 and that for cases (e.g. patients with schizophrenia) will have a mean of 25.
For the second phenotype, y = 1 and y = 0 values were replaced by values from N(15, 1)
and N(10, 1) distributions, respectively. So, the second phenotype could be imagined as
scores from a depression scale with mean 15 for cases and mean 10 for controls. The two
quantitative phenotypes were generated from the same binary vector in the above fashion
in order to ensure that the two sets of polygenic scores obtained at a later step (-one set
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for each phenotype-) are correlated (genetic correlation). For the simulations, we varied the
mean-pair for the second phenotype from (15, 10) to (14, 11) or (13, 12) or (12.6, 12.4) to get
different values of genetic correlation, rg, between the two phenotypes (more on this later).

Let us call the first and second quantitative phenotypes generated above as y1 and y2, respec-
tively. In order to select the M SNPs (for the simulated GWAS) for the first quantitative
phenotype, we ran 2M univariate GLMs with y1 regressed against each of 2M SNPs set
apart from the original N × (2m+ 4M) matrix. Typically polygenic models consist of only
small to moderate effect sizes. In order to ensure that our simulated GWASs also had only
small to moderate effect sizes, M SNPs from 2M SNPs were selected based on their t-values
in the following way:

SNP-selection-method : M t-values were randomly selected from among the t-values between
the 5th percentile and 95th percentile of all the 2M t-values obtained, and the corresponding
M SNPs were chosen to be included in the first GWAS. The 5th percentile and 95th percentile
were typically around −1.5 and 1.5, respectively, and the 5th percentile and 95th percentile
p-values typically around 0.035 and 0.96 respectively. Thus most of the M SNPs generated
in this scenario had small effect sizes, and some of them with moderate effect sizes, but none
with large effect sizes or p-values meeting the 5 × 10−8 threshold for GWAS significance.
Similar procedure was applied to select M small-and-moderate-effect-sized-SNPs for the sec-
ond phenotype, y2: the M SNPs with t-values between the 5th and 95th percentiles were
randomly selected from among all 2M t-values obtained from univariate GLMs of y2 against
each of the last 2M columns from the original N × (2m+ 4M) SNP matrix. As in the case
of the first phenotype, the t-values for the selected SNPs for the second GWAS also ranged
from −1.5 to 1.5 and p-values from 0.035 to 0.96, approximately.

For all analyses using simulations, m SSEs were generated in two different ways. In both
cases, a quantitative phenotype similar to y1 was generated: N(25, 1) distribution values
replacing y = 1 values and N(5, 1) values replacing y = 0 values. This simulated pheno-
type was regressed against 2m SNPs set apart from from the original N×(2m+4M) matrix.

shared-effect-SNP-selection-method-1 : In the first case, m t-values between the 5th percentile
and 95th percentile of all t-values from the 2m GLMs were randomly selected, and the corre-
sponding m SNPs were selected as the SSEs. t-values of the selected SSEs ranged between
−1.5 and 1.5. Thus in this case, the selected SSEs had mostly small effect sizes, but some
had moderate effect sizes.
shared-effect-SNP-selection-method-2 : For the second case 5 of the m SSEs were replaced by
SNPs with moderate effect sizes (p-values between 0.015 and 0.05 approximately, − log10(p-
values) between 1.25 and 1.75) selected from the first quartile of t-values from all the t-values
obtained from the 2m univariate GLMs.

m indices were randomly selected from indices 1 to M (and fixed for later comparison) and
the SNPs at these m locations, for both phenotypes, were replaced by SSEs.
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2.1.3. Explanation/Illustration of the method

Our method may be explained using an example with two simulated GWASs having 1000
SNPs and 3000 subjects each, with 100 SNPs of shared effects (SSEs). So, in the notation
introduced in the previous subsection, N = 3000 and M = 1000 and m = 100. For these
two GWASs, the N ×M SNP matrix and the corresponding quantitative phenotypes were
generated using SNP-selection-method described in the previous subsection. m SSEs were
generated using shared-effect-SNP-selection-method-1, and these SSEs replaced columns of
each SNP matrix at m randomly chosen (but then fixed) locations. For each GWAS, the
phenotype was regressed on each of the M columns of the SNP matrix to obtain M t-values.
Each t-value was then multiplied to the corresponding SNP column, and all the M t-value-
weighted columns were added row-wise to get the PGS vector for each GWAS. Thus, each
PGS vector is an N ×1 vector, with ith row-value representing the polygenic score for the ith

subject. The correlation between the PGS vectors from the two GWASs, which we consider
as an estimate of the genetic correlation (rg), for our simulated example was 0.22.

Two elastic nets (with α = 1 and α = 0.001) were applied to each GWAS, with the respective
polygenic-score-vector as the dependent variable and SNP columns as independent variables.
(Recall that the elastic net with α = 1 is the Lasso and the one with α = 0.001 we refer
to as the quasi-ridge regression (QRR)). Each elastic net regression is performed on a grid
of λ-values (with 53 grid points in this particular example), where λ is the penalization
parameter in eq.1. At each λ on this grid, we obtain a subset of SNPs selected by the elastic
net, and the SNP columns corresponding to this subset of SNPs could be multiplied by their
corresponding t-values and added up to get the PGS vector for the subset. The correlation
value of the PGS vector calculated from the entire SNP matrix with the PGS calculated
from subsets obtained at each λ-grid value is plotted in the left-most panels in figure 2, with
the top and bottom leftmost panels corresponding to subsets obtained from Lasso and QRR,
respectively. In the leftmost panels, the red curves correspond to the correlation plots for
the first GWAS and the blue curve that for the second GWAS. The x-axis of these panels
have the λ-grid, where the actual λ-values to the left-side of the grid are larger than those
to the right-side (in other words, the actual λ values decrease as we move from left to right
of the grid). Remember that large λ implies bigger penalization, which results in smaller
subsets, and hence the size of the subsets increase as we move from left to right.
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Figure 2: Results for the simulated example data used for illustration. Figures in top panels and bottom
panels, respectively, correspond to results from elastic nets with α = 1 (Lasso) and α = 0.001 (QRR). Various
choices of λPGS

optimal for each α (i.e. each row) are plotted as vertical lines within each panel. The long-dashed
vertical line corresponds to the point where the curves in the left-most panel plateaus, a solid vertical line
corresponds to the point where the curves in the second-from-left panel plateaus, and small-dashed vertical
line corresponds to the point where the curves in the left-most panel reach a correlation of 0.8. The curve
closer to the y-axis was used when picking the points for the vertical lines.

Our key observation is that for all the curves (red and blue) in the top and bottom leftmost
panels, the correlation increases monotonically as we move from left to right (that is, as
subset size increases), but plateaus to the right of a particular value on the grid; let us name
this threshold value as λPGSoptimal. Note that λPGSoptimal differs very slightly between the red and
the blue curve; so, for definiteness we consider only the curve closest to the y-axis (that is,
the red curve in this case). Choosing λPGSoptimal on the λ-grid will be optimal for our purposes
(that is, in the PGS context) in the following sense. We would like to have a subset of
SNPs as small as possible, but choosing a subset based on a grid value to the left of λPGSoptimal,
although very small, will give a PGS vector for the subset substantially different from the
PGS vector based on the whole SNP matrix. On the other hand, choosing a subset based on
a grid value to the right of λPGSoptimal, the gain in correlation of the subset PGS with the overall
PGS is only very minimal compared to the loss of sparseness. For example, for the red curve
in the top-leftmost panel, visually we may choose λPGSoptimal to be the grid-point 25 (marked
using a long-dashed vertical line in all panels of the top row in figure 2). The correlation
value at this λPGSoptimal is 0.985 while the correlation value at the rightmost grid point is 0.999,
a gain in only about 1.5%. The size of the subset corresponding to λPGSoptimal is 639, while the
size of the subset corresponding to the last grid point is 961, which is roughly 50% higher.
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Thus, for only about 1.5% gain in correlation we increase the subset size (that is, loose
sparseness) by about 50%. It is this observation that justifies our choice of λPGSoptimal at the
point where the correlation curve plateaus. The conventional method to choose the optimal
λ based on cross-validation methods, typically yields a grid point different from λPGSoptimal,
especially when there are SNPs that meet genome-wide significance. For example, if there
are 2 SNPs that meets genome-wide significance, the subset based on optimal λ obtained
using cross-validation methods (λCVoptimal) will have just those 2 SNPs. Since our goal is not
necessarily to choose the most parsimonious subset, but rather a subset, relatively sparse,
yet one that captures almost the same amount of correlation as the least stringent λ, we
prefer λPGSoptimal instead of λCVoptimal.

Another way to pick λPGSoptimal is to choose the x-point on the curve, in the left-most panel,
corresponding to the y-point (that is, correlation) of 0.8. Note that for λPGSoptimal chosen
via the first method (that is, at the point where the red curve plateaus in the left-most
panel), the corresponding correlation was way above 0.9 (0.985 to be exact). A correlation
of 0.8 is considered conservative enough by most conventional standards and this justifies
our selection of λPGSoptimal based on the x-point corresponding to 0.8 correlation.

In the leftmost panels, the subsets obtained at each λ-grid point may differ slightly between
the GWASs. At each grid point, we may take the intersection of the two subsets, multiply
the corresponding t-values to the SNP columns in this common subset, and add them to get
new subset-based-PGS for the two GWASs. Note that in this new scenario, although the
subsets at each grid point for the two GWASs are the same, the subset-based-PGS vector will
still differ between the two GWASs because of the difference in t-values for the GWASs. The
correlation between this new subset-based-PGS and the overall PGS is plotted across the λ-
grid in the top and bottom panels second from left. As in the leftmost panels, the correlation
plots increase monotonically in this case also, and plateaus after a certain threshold. Thus,
yet another way to pick λPGSoptimal is to pick the point where the curve plateaus in these new
plots. Since the common subset will be obviously smaller than the individual subsets, the
correlation at each λ grid in these panels will be smaller than corresponding correlations in
the leftmost panels. In other words, the new curves increase at a slower rate compared to the
previous plots for the same λ grid, and plateaus at a point much further to the right. Thus,
if we pick λPGSoptimal as the x-point where the curve plateaus in the second-from-left-panel, then
it will be further to the right (that is, smaller) than the corresponding λPGSoptimal picked based
on the curves in the left-most panels.

All the above-mentioned rules for selecting λPGSoptimal are valid in our opinion - the essential
difference is related to the sensitivity and specificity associated with each decision as we
will see below. Choosing a λ relatively to the left-end of the x-axis gives results with more
specificity but less sensitivity, while picking a λ more to the right yields less specificity but
more sensitivity. Thus the decision related to picking one among the three λPGSoptimal outlined
above depends on the investigator’s goals. In figure 2, a long-dashed vertical line was plotted
at the point where the curves in the left-most panel plateaus, a solid vertical line was plotted
where the curves in the second-from-left panel plateaus, and small-dashed vertical line was
plotted at the point where the curves in the left-most panel reach a correlation of 0.8. These
three vertical lines represent the three choices of λPGSoptimal presented above. Although the
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red and blue curves (corresponding to the two GWASs) more or less coincide, they are not
exactly one on top of the other. Thus, we have to pick one among them when selecting the
points for the vertical lines (that is, λPGSoptimal). In all the figures, we used the curve closer to
the y-axis when picking the points for the vertical lines.

In the third panels from left, the correlation between the common-subset-based-PGS for
the two GWASs at each λ are plotted as red curves. We may consider these values as the
common-subset based rg (rsubsetg ). The rg based on the entire set of SNPs (roverallg ), 0.22
in the current example, is plotted as the horizontal green line. It is easy to notice that
rsubsetg s differ from roverallg on the left-end of the λ-grid, but matches with it as the subset size
increases. For the current example, in the top panel third from left, rsubsetg is very close to
roverallg starting from around grid point 25, which was the grid point at which the curves in
the top leftmost panel flattened. So, for λPGSoptimal, the question comes up again: whether we
should choose the grid point 25 based on the first and third panels from the left, or a more
“conservative” grid point 50 based on the second panel from left. In order to get a better
sense of the underlying concepts regarding this choice, we consider the plots in the rightmost
panels.

In the rightmost panels, we plot the sensitivity of the method (-Lasso for the top panel, and
elastic net with α = 0.001 (QRR) for the bottom panel-) across the λ grid as the red curve
and specificity as the blue curve. Recall that for our current example, we had simulated
100 SNPs which were placed as SSEs in both GWASs. These 100 SNPs are the (actual)
positives, and the remaining 900 SNPs in each GWAS are the (actual) negatives. At each
grid point, sensitivity (i.e. true positive rate) is defined as the ratio of the number of true
SSEs within the subset identified at that grid point to the total number of actual SSEs
(100, in this example). The SNPs in the shared subset which are not true SSEs are the
false positives. 900 minus the number of false positives gives the number of true negatives
correctly identified by the method, and the ratio of this number to the actual number of real
negatives (900) is the specificity (true negative rate). It is easy to see that specificity is very
high and sensitivity low towards the left end of the λ-grid, while the opposite is true towards
the right end of the grid. Hence, when choosing the optimal grid point, the essential choice is
between good specificity but low sensitivity versus low specificity but high sensitivity. At the
10th grid point in the top panel, the number of SSEs identified is 18, specificity is 98.6% and
sensitivity is 5%. At the 53rd grid point in the top panel (which is the right most point for
the example under consideration), the number of SSEs identified is 914, specificity is 8.6%
and sensitivity is 91%. Thus, if the investigator does not necessarily care about identifying
all the truly common SNPs, but if for her, it is more important that the subset that she
identifies (even if small), should contain almost 0% false positives, then choosing grid point
10 will be more suitable to her goals. On other hand, if her purpose is to get a pool of SNPs
which is smaller than the original set of SNPs (e.g. 914 instead of 1000), but contains about
90% of the truly common SNPs, then she could go with the rightmost grid point. In the
former case, most of the signals might have been left out of the small subset selected, but
she is guaranteed that the signal-to-noise ratio within the selected subsample is very high.
In the latter case, the large subsample that she selects will have almost all the true positives,
but contains a lot of noise also (that is signal-to-noise ratio is very weak). We elaborate
more on the practical consequences of this choice in the discussion section. An important
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note that we would like to make here is that within the top and bottom rows of the figure,
the rightmost panel can be obtained only for simulated data, because for simulated data we
will be able to specify a priori the true positives (that is, the SNPs with shared effects across
both phenotypes), while for real data analysis, an analyst will be able to generate only the
first three plots from the left. An important advantage of the simulation study undertaken
in this paper, is the insight into the sensitivity and specificity mentioned above.

2.1.4. Effects of sample size

In the illustrative example considered above, the sample size N (= 3000) was 3 times the
number of SNPs M (= 1000). In a typical GWAS, the number of LD-independent SNPs will
be usually above 100,000. In such a scenario, requiring the N to be 3 times M is not always
feasible. With this thought in mind, we explore the effects of smaller sample sizes, N = 2000,
1000 and 500, with M fixed at 3000. Everything except the sample size was kept the same
as for the simulated toy example above. Figure 3 below shows the sensitivity/specificity
plots for the cases N = 3000, 2000, 1000 and 500 (from left to right), with top row for
Lasso and bottom row for QRR. As we move from left to right, it is easily noted that the
sensitivity/specificity curves are relatively unaffected by lower sample sizes for the bottom
row, but they are dramatically different for the upper row. To get a better understanding
of the underlying reason, we plot the subset size at each λ grid value in figure 4 below -
panels from left to right again correspond to N = 3000, 2000, 1000 and 500, and red and
blue dots corresponding to Lasso and QRR, respectively. In this figure we note that the blue
curves are not much different across the panels, while the red curves significantly change.
For smaller sample sizes (e.g. N = 500 or 1000), the subsets chosen by Lasso are significantly
smaller even for the least stringent λ (i.e. the rightmost grid point). Hence the sensitivity is
relatively lower and specificity higher for Lasso compared to the panels with larger sample
sizes for the same λ. We may surmise that the difference in the performance of Lasso for
smaller sample sizes, is essentially due to the smaller subsets of SNPs that is picked by it.
So, the choice between Lasso and QRR for smaller sizes is very similar to the choice between
higher λ-threshold versus lower λ-threshold for the panels in figure 2 - essentially it boils
down to the size of the subset picked by our choice of α and λ. Again, simulations as done
in this paper, provide insights into this relationship between SNP-subset size and α and λ.
One slight advantage of choosing QRR over Lasso for smaller sample sizes, as seen from the
rightmost panel in figure 4, is that for QRR, the range of sensitivity (approximately 0% to
90%) and specificity (approximately 100% to 10%) is much larger than the corresponding
ranges for Lasso, for the same range of the λ-thresholds. Thus, for smaller sample sizes,
QRR provides a wide range choices in terms sensitivity and specificity compared to Lasso.
For meaningful comparisons between the two methods (Lasso vs. QRR), we keep the sample
size N equal to 3 times M , in our simulation study. We also mention here that even for real
GWASs with large number ( > 100, 000) of LD-independent SNPs, if we subdivide the set
of SNPs along chromosomes, and then conduct the analyses proposed in this paper (that is,
the selection of SNPs based on elastic nets for each GWAS and intersecting the subsets),
then we will be able to require the sample size to be 3 times the number of SNPs in the
largest chromosomal arm, which will result in a sample size reasonable enough in practical
situations.
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Figure 3: From left to right, N = 3000, 2000, 1000 and 500.
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Figure 4: From left to right, N = 3000, 2000, 1000 and 500.

2.1.5. Results from simulations

The toy example used above, to illustrate our approach, had small sample size (N = 3000)
and small number of SNPs (M = 1000). In order to check whether the above method and
results were valid for larger N and M , we did further simulations with M = 20000 and
N = 60000. All the results from the simulations are given in the figures A1 to A6 in the
appendix.

First, we did a simulation with everything kept the same as in our illustrative example,
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except that the M , N and m were larger - 20K, 60K and 2K, respectively. See figure A1.
The correlation between the polygenic scores for the two simulated GWASs based on the
entire SNP matrix (i.e. our estimate of rg plotted as the green horizontal line in the third
panel) was 0.219, comparable to the one obtained for the toy example. The results seen in
Figure A1 are very similar to that seen for the toy example. Next we considered examples
with smaller rg values (0.119 in figure A2 and 0.0247 in figure A3). These smaller rg values
were obtained by varying the mean-pairs for the simulated second phenotype. The results
seen in figures A2 and A3 are very similar to that seen in A1.

Next we considered a scenario where rg was large (close to 0.6, for example). With M = 20K
and N = 60K, it was impossible to generate such a large rg with m = 2K, by varying the
mean-pair for the second phenotype alone. Thus, in order to get such a larger rg we increased
m from 2K to 10K. rg for the simulation scenario for fig A4 was 0.58. The results in this
case also are very similar to those seen in the previous figures, except in the third panel from
left. In this panel, rg estimated on the SNP-subsets gets close to the original rg only towards
the right end of the λ grid. So, for this case, it would be preferable to pick a λ towards the
right end of the grid.

In order to assess the performance of the elastic nets, when the number of SSEs was much
lower, we considered the case with m = 400. The results for this case are plotted in figure A5,
and are very similar to the results from previous scenarios. In the five simulation scenarios
that we considered so far, the SSEs were selected using shared-effect-SNP-selection-method-1
mentioned above. That is, all the common SNPs had very small effects. In the last scenario,
we considered the case where a few of the common SNPs (- 5 to be exact -) had moderate
effects. For this scenario, shared-effect-SNP-selection-method-2 mentioned above, was used.
The results for this final scenario, plotted in figure A6, are essentially the same as for the
previous scenarios.

The above M and N (20K and 60K, respectively) were the largest that we could run on a
cluster machine with 252GB of memory. We were constrained by several factors specific to
the simulation procedure: 1) the fact that we needed N to be 3 times M, 2) for simulating
and N ×M SNP matrix, the design of our simulations required simulating a N × (2m+4M)
matrix first. Note that this is not an issue for real data. With the same amount of available
memory and other computational hardware capacity, we could easily consider GWASs with
M = 40K and N = 120K or larger.

2.2. Method for finding SSEs when only summary level data is available

The previous subsection described our approach for selecting the genetic loci shared by a
pair of phenotypes using individual genotype data. Our approach was based on elastic
nets applied to polygenic scores with threshold selection adapted to polygenicity. With the
proliferation of GWASs in the last decade, a plethora of information is now available in the
form of summary statistics without available individual-level data. In this subsection we
describe an extension of our strategy above for summary level data from a pair of GWASs.

The overall idea is to simulate individual level genotype data using summary statistics and
then apply the method described in the previous subsection. A brief overview of the key
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steps involved in simulating individual level data (-the green section in the bottom row of the
figure 1-) is as follows. If the summary statistic is not an odds ratio (OR), the first step is to
convert it into OR, for each SNP, using conversion formulas from meta-analysis literature.
Thus we will be dealing with a binarized phenotype temporarily in the intermediate steps.
We provide formulas and strategies on how to fill in the frequencies within a 3×2 cross-table
for this binarized phenotype versus the genotype groups for each SNP, assuming Hardy-
Weinberg equilibrium (HWE). Based on the frequencies in this 3× 2 table, we will be able
to generate individual genotype data for each SNP. The details of all the steps involved are
presented below.

In order to illustrate the key elements of the method, we first focus on a single phenotype
for which the trait values is a continuous variable and the corresponding SNP matrix (that
is only one GWAS, not a pair of GWASs). We begin the illustration of our method with
a toy example consisting of 1000 SNPs in the GWAS and with 3000 subjects, and then
later move onto bigger datasets. As before, we calculate PGS by regressing the phenotype
variable on each SNP variable, and then multiplying the SNP variable by its corresponding
t-value and adding up the weighted columns. Let us name this PGS vector as pgs.orig ; we
will use it later to assess how good the proposed method is. Of course, we will not require
the availability of a SNP matrix or the individual polygenic scores for the new method
because the whole point is to have a method which utilizes only summary level data. The
key strategy within the new method proposed below is to generate a polygenic score based
on only summary data, which will be highly associated with the pgs.orig. Thus for the toy
example, we calculate the pgs.orig and set it aside for later comparisons with the simulated
PGS. To clarify further, the vector of individual polygenic scores, pgs.orig, will be available
only to the investigators who conducted the original GWAS, but not to someone reading the
published paper which presents only the summary level results. Since, in the toy example,
we generated the ‘original data’, we have ‘access’ to pgs.orig, which we will utilize to assess
the performance of the method described in this section by comparing with the polygenic
scores generated from summary level data (which we will name as pgs.sim). For the next
few paragraphs, we take the perspective of the reader of the published GWAS paper, and
pretend that only the summary level data (that is, β and its standard error) for all SNPs is
available for us.

Focusing on one SNP from a hypothetically published GWAS paper for a moment, let us
assume that the β, its standard error SEβ, and the corresponding sample size n are (publicly)
known for that SNP. The first step in our method is to obtain the corresponding odds ratio
(OR) and the variance of log(OR) using the well-known conversion formulas typically used
in meta-analyses literature [21]:

d =
β√
n SEβ

, Vard = SE2
β, log(OR) =

dπ√
3
, Varlog(OR) =

π2

3
Vard.

d in the above formulas is Cohen’s d [22] which is calculated only as an intermediary step.
Let us assume that for our example SNP the above formulas were applied and the OR and
Varlog(OR) were obtained as 1.0378 and 0.2797. Assume also that the minor allele frequency
for the given SNP is given as p = pmaf = 0.257. Our next key step is to create a 3× 2 table
with a binarized phenotype of the following form,
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Table 6
‘Disease’ ‘Controls’ Row totals

aa x u m1

Aa y v m2

AA z w m3

Column totals n1 n2 N

where x, y, z, u, v, w are cell frequencies, m1,m2,m3 are the row totals, n1, n2 are the column
totals, and N is the overall total number of subjects. Here we assumed that the genotype
groups for the SNP under consideration are aa, aA and AA. In the context of the GWAS
under consideration, a binary phenotype with “disease”/“controls” categories may not make
sense, but this binary variable is needed only in this intermediary step. We have to create
this table in such a way that the genotype frequencies are in HWE. Assume that we would
like to have (N =) 3000 subjects with (n1 =) 1500 cases and (n2 =) 1500 controls. It does
not matter what number we choose for N and how we split N into n1 and n2 - the only thing
that matters is to have the same triplet (N, n1, n2) consistently for all the SNPs. For the
SNP under consideration, we can fix the row-marginal totals based on p = pmaf and HWE:

m1 = Np2,m2 = 2Npq and m3 = Nq2.

Since the marginal totals are fixed, we may re-write the above 3× 2 table as

Table 7
‘Disease’ ‘Controls’ Row totals

aa x m1 − x m1 = Np2 = 198.4041
Aa y m2 − y m2 = 2Npq = 1146.1918
AA n1 − (x+ y) (m3 − n1) + (x+ y) m3 = Nq2 = 1655.4041

Column totals n1 = 1500 n2 = 1500 N = 3000

Note that the values in cell in the 3rd row and 2nd column could also have been written as
(n2−m1−m2) + (x+ y), so, implicitly we are assuming that

∑3
i=1mi =

∑2
i=1 ni. Note also

that we have included the specific margin totals for the example under consideration, and
we have left the decimal places intact, as rounding off will lead to a slight approximation,
and hence we will do it only at the very end of all calculations.

Thus the only unknowns to be figured out are x and y. Since we assume that the dose-
response (that is, OR = 1.0378, for our example) between AA and Aa to be the same as
that for Aa and aa, we get two equations in x and y as follows:

OR =
x(m2 − y)

y(m1 − x)
(2)

and

OR =
y
[
(m3 − n1) + (x+ y)

]
(m2 − y)

[
n1 − (x+ y)

]
.

(3)

Re-arranging eq.2 we get

x =
ORm1y

m2 + y(OR− 1)
, (4)
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and from eq.3 we get

x =

[
OR(m2 − y)(n1 − y)

]
− y

[
(m3 − n1) + y

]
y + OR(m2 − y)

. (5)

Eq.4 and eq.5 present x as functions of y, which can be plotted as curves, and the point at
which the two curves intersect is the solution that we are looking for. For plausible values
of y for the example under consideration, x(y) as a function of y is plotted in the figure 5
below as a red curve for the function given in eq.4 and as a blue curve for the function given
in eq.5. The point where the two curves intersect, y = 578.25, x = 101.63, is the solution.
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Figure 5: Plots of x(y) as functions of y given in eq.3 (blue curve) and eq.4 (red curve), intersecting at the
point y = 578.25 and x = 101.63.

Plugging in the above solution into our table, we obtain

Table 8
‘Disease’ ‘Controls’ Row totals

aa 101.6279 96.7761 198.4041
Aa 578.2500 567.9418 1146.1918
AA 820.1221 835.2820 1655.4041

Column totals 1500 1500 N = 3000

Let us double-check that everything is as we desired. Clearly the genotype frequencies (i.e.
the row totals) are in HWE with

pmaf =
(2× 198.4041) + 1146.1918

2× 3000
= 0.257,

and OR for Aa versus AA is (578.25/567.9418)/(820.1221/835.2820) = 1.037 and OR for aa
versus Aa is (101.6279/96.7761)/(578.25/567.9418) = 1.0314. They are both close enough
to the OR that we originally started with. So everything is as we desired.

We may summarize the above algorithm as follows:

Step 1) Derive OR from summary statistics; p.maf should be available.
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Step 2) Calculate the marginal totals (in HWE) using OR and p.maf .
Step 3) Calculate x and y that is needed to fill in the rest of the table, using equations 4 and 5.

Now the next step is to simulate a sample SNP vector coded 0, 1, 2 that will match exactly
with the cell numbers above. We will follow the rule that the first 1500 values for each
SNP will correspond to controls and the next 1500 correspond to the cases. (It does not
matter whether we consider the first 1500 as the controls or we consider them as cases; more
important is that we select one rule and do it consistently for all SNPs). Then we randomly
generate a vector with 97 0’s, 568 1’s and 835 2’s and put it on top of another vector with
102 0’s, 578 1’s and 820 2’s. This step can be done, for example, using the ‘rep’ and ‘sample’
functions in R, as illustrated below:

c(sample(c(rep(0, 97), rep(1, 568), rep(2, 835))), sample(c(rep(0, 102), rep(1, 578), rep(2, 820))))

We repeat the above steps for each SNP to finally get a SNP matrix XSNP
sim . We also have a

pseudo binary vector of trait values ybinary with the first 1500 coded as 0 (for controls) and
the next 1500 coded as 1 (for cases), which we will not need for any further steps. From the
summary statistics, β and SEβ, we can calculate the t-value as β/SEβ, and then multiply
the corresponding column in XSNP

sim with this t-value, and finally add up all such weighted
columns to get the polygenic score vector from the simulated data, pgs.sim, which will be a
vector with 3000 elements (each element corresponding to each subject).

In order to assess how good the above strategy is, we apply Lasso to regress pgs.orig and
pgs.sim to their respective SNP matrices, XSNP

orig and XSNP
sim . (Remember, we have access

to XSNP
orig because we generated the toy example. Normally, someone reading the published

GWAS paper, will not have access to such data.) Since the dimensions of the SNP matrices,
XSNP
orig and XSNP

sim , are the same the λ-grid used in each Lasso has the same number of grid
points (in this case, 53 grid points). At each λ-grid point, both for the Lasso with original
data and with simulated data, we get Lasso-β-vectors with the same dimension as the number
of SNPs (- in this case 1000). We correlated the Lasso-β-vectors for the original and simulated
data at each λ-grid point, and the correlations across all grid points are plotted in the left
panel in the figure below. Instead of Lasso, we could have applied an elastic net to regress
pgs.orig and pgs.sim to their respective SNP matrices, XSNP

orig and XSNP
sim ; the corresponding

correlation plot for the β-vectors, from an elastic net with α = 0.001 are shown in the right
panel of the figure.
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Figure 6: Correlation between original and simulated beta vectors, across the λ-grid for elastic nets with
α = 1 and α = 0.001. The grid points where the correlations are 0.8 and 0.9 are marked using vertical lines.

Appendix B has similar figures when the number of SNPs is 20,000 and the number of
subjects is 60,000. From the figure above (and the ones in Appendix B) we deduce that the
results (- that is, the β-vectors and the subsets selected based on them-) from the simulated
PGS is very similar to the results from original (unknown) PGS, especially for λ values
towards the right side of the grid, which justifies the use of the simulated PGS and SNP
matrix to identify shared polygenicity.
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Figure 7: Results from two simulated GWASs, simulated using the method described in subsection 2.2.
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Thus, our proposed method for summary statistics data based on simulations may be sum-
marized as follows: if summary statistics from two GWASs are available, we simulate the
PGS and SNP data for each GWAS, and then run elastic net (with α = 0 or α = 0.001)
with each simulated PGS regressed against the corresponding simulated SNP matrix. The
two subsets of SNPs obtained (one from each GWAS) are intersected to get the shared poly-
genic SNPs. Figure 7 above shows the results from two simulated GWASs. SNP matrices
were generated using the SNP-selection-method described in the previous section, and 100
SSEs, generated using the shared-effect-SNP-selection-method -1 were placed at randomly
chosen columns of the two GWASs. In the notation used in the previous subsection, we have
M = 1000, N = 3000 and m = 100 for this example. Phenotypes for the first GWAS was
created using a mean-pair (25, 5) and for the second GWAS with a pair (15, 10). Thus the
design parameters used for this example were the same as the ones used for the example
related to figure 2 in the previous subsection. Univariate GLMs were run on each GWAS to
obtain the summary statistics. These summary statistics were input into the new algorithm
presented in this section to create a simulated PGS and a simulated SNP matrix, on which
an elastic net was applied, for each GWAS. PGS based on the subsets thus obtained for each
GWAS were correlated with the PGS from the whole simulated GWAS, and these correla-
tions plotted in the left-most panel in figure 7. The subsets for each GWAS at each λ-grid
point were intersected to obtain the set of SNPs common to both GWASs. The correlation
of the two PGS vectors based on this common subset at each λ is plotted in the left panels
in figures 7. The SSEs identified by the elastic nets at each λ were compared with the actual
SSEs (that we generated a priori by design) to obtain the sensitivity and specificity of the
method. The sensitivity/specificity values across the λ-grid are plotted in the right panels in
figure 7, and could be compared to the plots in the rightmost panels in figure 2. The results
obtained in figure 7 are very similar to those obtained using figure 2, which was based on
individual genotype data, justifying our proposed simulation-based method presented in this
section that requires only summary level data.

3. Real data example: determining shared polygenicity for fasting glucose levels
and BMI

We further illustrate our methods by applying them to summary level data from two GWASs:
1) the first data, with fasting glucose (FG) level as the phenotype, was downloaded from
Meta-Analysis of Glucose and Insulin related traits Consortium’s (MAGIC’s) web site [23],
[24], 2) the second dataset, with body mass index as the phenotype, was downloaded from
the Genetic Investigation of ANthropometric Traits (GIANT) consortium’s website [25], [26].

MAGIC is a consortium that was formed to conduct large-scale meta-analyses of genome-
wide data for continuous diabetes-related traits in participants without diabetes [27], and
GIANT consortium is an international collaboration that seeks to identify genetic loci that
modulate human body size and shape, including height and measures of obesity. Only data
from individuals related to European ancestry were considered from both GWASs. The
downloaded data from MAGIC consortium’s website consisted of 2470476 SNPs, and that
from GIANT consortium’s website consisted of 2554637 SNPs. In addition to the rs IDs,
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the following summary level information was available for each SNP in each data set: effect
(β), standard error (of β), minor allele frequency (maf), and p-value. The FG data set was
LD pruned using PLINK [28] to obtain 141963 SNPs (with r2 threshold of 0.20), out of
which 140802 SNPs were available in the BMI dataset. The MAFs for a few SNPs were
listed as greater than 0.5. Eliminating the SNPs with MAF greater than 0.5 resulted in
140450 SNPs. For computational ease, we further restricted the SNPs with MAF greater
than 0.05. The final list after all the above steps contained 94402 SNPs, which was used
for all further analyses. To further ease the computational burden, analyses were done
grouped by chromosomes. Chromosome groupings were done as following: chromosomes 1
& 2, chromosomes 3 & 4, chromosomes 5 & 6, chromosomes 7 & 8, chromosomes 9 & 10,
chromosomes 11 & 12, chromosomes 13 & 14, chromosomes 15, 16, 17 & 18, and chromosomes
19, 20, 21 & 22.

Our motivation for selecting the above-mentioned GWASs is the fact that obesity and raised
fasting plasma glucose are considered as intermediate traits for type 2 diabetes [29], [30].
It is widely accepted that obesity [31] and T2DM [32] are polygenic disorders. For exam-
ple, Loos and Janssens [33] note that multiple genetic variants that are common and have
small effects contribute to an individual’s susceptibility to gain weight. More than 200 such
low-risk, common genetic variants have been identified [34]. One of the potential reasons
for the relative scarcity of insulin resistance genes found via GWAS-approaches has been
attributed to modest effect sizes of the variants that influence insulin resistance [35]. Since
2007, GWASs of T2DM and diabetes mellitus related quantitative traits have identified 53
common, consistently replicated single nucleotide variants associated with fasting glucose
and fasting insulin [36] [37]. It has been reported in the literature that 11p11.2 MADD locus
seems to consistently associated with glucose and insulin regulation [36], [24], [38]. The
possibility of having modestly-effect-sized common polygenic loci for both fasting glucose
and BMI phenotypes, makes the summary level data downloaded from MAGIC and GIANT
Consortiums’ web sites an ideal candidate to apply our methods.

For illustration and comparison, we used elastic nets with both α = 1 and α = 0.001
(i.e. Lasso and QRR). Correlation plots similar to the left-most panels in figure 1 for all
chromosome groups are shown in figure 8, with blue curves representing the correlation plots
for the FG-GWAS and green curves for BMI-GWAS. Within each GWAS and within each
chromosome group, we considered λ′s based on two correlation thresholds: 0.92 and 0.80.
The former (0.92) was chosen because that is roughly where each curve started flattening,
and the latter (0.80) was chosen because, as mentioned in the methods section, a correlation
of 0.80 is typically considered large enough.
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Figure 8: Correlation plots for all chromosome groups.

The numbers of shared SNPs detected by the elastic net methods with α = 1 or α = 0.001
with λ corresponding to correlation threshold 0.80 or 0.92, are given in Table 9a. The
number of shared SNPs detected at a lower correlation threshold (i.e. more stringent λ)
is much smaller than those detected at a higher correlation threshold (i.e. less stringent
λ). Based on our simulations, we know that for more stringent λ, specificity is high but
sensitivity is low while as the opposite (- low specificity, high sensitivity) is true for less
stringent λ. For lower correlation threshold the percentage of SNPs detected by both α’s
are roughly the same (2.6% for α = 0.001 versus 2.2% for α = 1), but the difference between
the α’s is larger for 0.92 correlation threshold (15.2% for α = 0.001 and 11.0% for α = 1)

Table 9a
Correlation # of SNPs (%) of detected SNPs (%) of detected SNPs
threshold α detected by ENBM with p-value > 0.5 with p-value > 0.5

(% of total) for either of the GWASs for both GWASs
0.80 0.001 2476(2.6%) 6.6% 0.04%

1 2083(2.2%) 3.2% 0.0%
0.92 0.001 14375(15.2%) 32.7% 3.6%

1 10384(11.0%) 15.6% 0.7%

One obvious question is whether the results obtained by the new analyses proposed in our
paper is different from the simple approach based on rank-ordering the p-values. Simply
rank-ordering the SNPs based on p-values within each GWAS and selecting the SNPs with
p-values less than 0.5 in both GWASs would have yielded 23699 SNPs. The number of SNPs
detected by the elastic net based method is much lower (e.g. 2476 for α = 0.001 and 2083 for
α = 1 with 0.8 correlation threshold). Most of these SNPs (93.3% for α = 0.001 and 97.8%
for α = 1) had p-values for both GWASs less than 0.5. The fact that a small percentage
(6.6% for α = 0.001 and 3.2% for α = 1) of the detected SNPs have p-value greater than 0.5
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for at least one GWAS may be attributed to the fact that there could be residual dependence
among the SNPs even after LD pruning and thus in the presence of collinearity, multivariate
methods such as elastic net regression will be more suitable than the univariate method
based on rank-ordering. Having mentioned that, it is worthwhile pointing out that among
the SNPs detected if there are SNPs with corresponding p-values for both GWASs greater
than 0.5 then such SNPs are probably noise than signal. Since for both α’s the percentage
of such SNPs are nearly zero (actually exactly zero for α = 1), we may safely conclude that
the amount of noise among the detected SNPs, is very little.

With correlation threshold of 0.92, the number of SNPs detected (14375 with α = 0.001 and
10384 with α = 1) is still much lower than those obtained via the rank-ordering method,
but much larger than the list generated with 0.80 correlation threshold. In this case, the
percentage of SNPs differing from the simple rank-ordering method also increases (32.7%
for α = 0.001 and 15.6% for α = 1), which makes intuitive sense because the chances (and
the amount) of residual collinearity is much higher when we consider a larger SNP-list. The
percentage of SNPs with p-value greater than 0.5 is near zero (0.7%) with α = 1, but 3.6%
with α = 0.001 suggesting that with α = 0.001 and 0.92 correlation threshold, the list of
shared SNPs obtained may also include a non-trivial amount of noise. In this regard it might
be advisable to choose α = 1 for larger correlation threshold to err on the conservative side.

The correlation between the absolute value of the FG and BMI β’s (effects) in the final list of
94402 SNPs that we considered for analysis was 0.16. The corresponding correlations within
the subset of shared SNPs obtained via the elastic net based methods are shown in the third
column of table 9b. The correlations are substantially improved in the subsets selected with
largest improvement seen with α = 1 and correlation threshold 0.92, where the correlation
is more than doubled (0.34). The median p-values for the subsets of shared SNPs are also
shown in table 9b. The median p-values were roughly about 0.10 for both α′s when the
correlation threshold was 0.80, while as the median p-values ranged between 0.17 and 0.24
with 0.92 correlation threshold. Thus, with more stringent λ, the elastic based methods pick
only shared SNPs with relatively stronger signals.

Table 9b
Correlation Correlation between median p-values (IQR) median p-values (IQR)
threshold α absolute values of β’s in the FG list in the BMI list

0.80 0.001 0.28 0.10 (0.04, 0.22) 0.10 (0.04, 0.21)
1 0.29 0.08 (0.03, 0.17) 0.10 (0.04, 0.19)

0.92 0.001 0.24 0.22 (0.09, 0.41) 0.24 (0.11, 0.43)
1 0.34 0.17 (0.07, 0.30) 0.19 (0.09, 0.33)

The actual list of shared SNPs found by the elastic net based methods for both α’s and for
both correlation thresholds are provided as Excel files in the supplementary sections.

4. Discussion

In this paper, we develop statistical approaches to identify shared genetic loci that are
influential, but with modest effect sizes, for a pair of phenotypes. The setting that we
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consider is a pair of GWASs, one for each phenotype, with the same SNPs available in each
GWAS. The goal of the methods is to identify the SNPs that affect each phenotype even
if the effect sizes are modest. First we considered the case where individual genotyping is
available for all SNPs in each GWAS. In this setting the vector of polygenic scores within
each GWAS can be calculated as a weighted sum of the SNP vectors, with t-statistics as
weights. The t-statistics considered here are the ones obtained by univariate GLMs of the
phenotype corresponding to the GWAS onto each SNP. Our basic strategy in this setting is
to regress back the PGS onto the SNP matrix, multivariately, using shrinkage based elastic
net methods, which results in subset selection of the SNPs. Throughout the paper, we
consider two elastic nets from opposite ends of the spectrum based on the α-parameter set
to 1 (Lasso) and 0.001 (very close to ridge regression). Each elastic net has a penalization
parameter λ. Typically, a grid of λ-values are considered, with each λ-value on the grid
providing a subset selection of the SNPs, and the optimal λ-value is usually chosen based
on cross-validation (CV). This CV-based approach typically yields the most parsimonious
subset of SNPs, especially if some of the SNPs have large effect sizes. One of the main
features of this paper was to develop an alternative to the CV-based approach, which is
more suited for identifying polygenicity. Our strategy was to correlate the PGS based on
the entire SNP matrix with the PGS of the subsets obtained at each λ-grid point. The
correlation curves were seen to increase and then flatten as λ-values moved from the left
end of the grid to the right end. Our strategy was to pick the λ-value at which the curve
plateaued, or corresponding to a 0.8 correlation. Once we identified subsets from each GWAS
based on this polygenicity-adapted λ-optimization method, we intersected the two subsets to
get a common subset of SNPs. The common subset of SNPs thus obtained is our candidates
for common polygenicity.

We did extensive simulations to better understand our strategy. Simulations were designed
to have shared-effect SNPs inserted a priori within each GWAS. Based on the number of
a priori -set shared-effect SNPs identified at each λ-grid value, we were able to assess the
sensitivity and specificity of each method. The main message from the all the simulation
scenarios was that for large λ-values at the left end of the grid (where the methods select
smaller-sized subsets), the specificity was high and sensitivity was low. That is, among the
very small number of SNPs identified correctly to be the common SNPs by the elastic net,
greater than 90% indeed had shared-effects for both phenotypes. But, since only a very small
subset is selected to begin with, a large chunk of the true shared-effect SNPs are left out of
this subset. On the opposite side of the grid (that is, the right-side of the grid where elastic
nets select larger-sized subsets), sensitivity is high but specificity is low. In other words,
most of the truly shared-effect SNPs are included in the large subset, but the subset being
large, includes a lot of noise too. Thus a geneticist may ignore the λ-optimization criteria
that was mentioned earlier and may decide on a λ by considering the sensitivity/specificity
requirements related to the scientific question that she is trying to address.

The setting that we considered so far is when individual genotype data from GWASs are
available. In this day and age, when results from multiple published GWASs are available
for the same phenotype, summary level data based on pooling the individual data sets are
becoming more and more available. Pooled data has obvious advantages that comes with
larger number of subjects: more accuracy and precision of the estimates, lower type II
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error and generalizability, to name a few. In order to adapt to this new setting, we extend
our methods to work only based on summary level data, which we consider as the main
contribution of our paper. The method that we developed for individual-level data, earlier
in the paper, may be considered as a background approach for the second approach which
requires only summary level data as input. The key strategy for the second method is to
simulate a PGS vector and a SNP matrix (i.e. individual genotypes) based on the summary
level data, and then proceed by applying elastic nets on this simulated data just as we did
when individual-level data was available. We show via simulations that the elastic-net-β-
vectors obtained from the second approach is very correlated to the elastic-net-β-vectors if
individual-level data was known. Hence subsets selected based on this second approach will
be very similar to the ones obtained using the first approach if the individual-level data
was known - this is our justification for the simulations based approach for summary level
data. The observations related to sensitivity and specificity follow the same pattern for the
method based on individual-level data, and hence our overall conclusions remain the same.
We further illustrate our method by applying it to summary level data from a pair of GWASs,
one with fasting glucose as the phenotype and another with BMI as the phenotype obtained
from the MAGIC and GIANT consortiums, respectively.

While we were working on the current paper, a new interesting paper by Mak and co-authors
[12] was published. Although, the title of their paper suggests similarities to our work, there
are important differences, which we list below, for comparison. The key idea in Mak et al
is that the Lasso regression of the SNP matrix X on the phenotype values y can be re-
written in terms of the LD matrix R and the SNP-phenotype correlation vector r, if the
SNP matrix X is standardized (eq.4 in their paper). This approach is feasible because R and
r are summary statistics available publicly. Mak and co-authors consider only continuous
phenotypes; although, not presented in their paper, we think their method can be easily
extended to binary phenotypes. In this regard, we mention here that our method also
applies equally well for both quantitative and binary phenotypes. One of the key differences
between their approach and ours is that they apply Lasso on phenotype values, but we apply
it on the PGS. There is a slight advantage of doing it on PGS, when it comes to ‘tuning
parameter’ selection (which will become clearer when we consider further differences below.
Since the genotype matrix used to estimate R is generally different from that used to estimate
r, Mak et al essentially introduces another tuning parameter s that eventually makes the
problem (i.e. minimizing f(β) in eq. 8 of their paper) still a Lasso problem. This is the
second key idea in their paper. However, that means, there are two tuning parameters s and
λ, in their approach. In our case, if we just focus on Lasso, we have only one parameter:
λ. However, if we consider the whole spectrum of elastic nets between ridge regression and
Lasso, then our approach also will have two tuning parameters: λ and α, where α is the
convex combination weight between ridge regression and Lasso. We don’t recommend this
in our approach - we recommend either picking α = 1 or α = 0.001. The major difference,
though, is that their version of ridge regression (when s = 1, λ = 0) and elastic-nets will
give a scaled version of β weights. None of the elastic nets that we considered will have
this problem. However as argued in Mak et al the scaling of PGS is somewhat an irrelevant
issue when it is used in genomic risk prediction. The third key idea in Mak and co-authors’
paper is that they use correlation to find the optimal tuning parameter: correlation between
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PGS and estimated phenotype ŷ. We use the correlation between PGS of the whole sample
versus PGS based on the subset for selecting the subset. There is some thematic similarity
in that they and we both use correlations. However, as acknowledged in their paper, ŷ is
rarely publicly available, so that in order to apply their method we have to resort to using
an approximation based on the r̂, which itself is based on r and estimated FDR values, to
substitute for ŷ. None of the methods presented in this paper need any such substitution,
which we consider as really the advantage over their approach - that is, of doing penalized
regression on PGS instead of phenotype values. Finally, comparison between our paper and
their elegant work is a bit like comparing apples and oranges because the goal of their paper
is essentially to come up with a PGS scoring method based on a subset of genes (which is
better than a method based on thresholding p-values). Our paper goes beyond that goal to
identify SNPs with shared effects across two phenotypes.

There are certainly limitations to our method. The most obvious is that the sample size
(number of subjects) required to make our methods work nicely is triple that of the number
of SNPs. With about 150K LD-pruned SNPs common to a pair of typical GWAS, this would
mean having approximately 450K subjects. Although the size of GWASs are ever-increasing,
450K subjects are, to date, only available for phenotypes that are easily captured on scale
of population biobanks. Although the second method presented in this paper, which is what
we consider as our main contribution, is based on only data simulated from summary-level
inputs, generating a SNP matrix with 450K rows and 150K columns is beyond the compu-
tational capacity of powerful servers available in many of the modern day GWAS research
labs. It certainly was beyond the capacity of (approximately) 252 GB server available in
our lab/institution. The way around this limitation that we suggest is to conduct the anal-
ysis for each chromosome separately. With approximately 40-45K SNPs from the largest
chromosome, the sample size required is 120-135K, which certainly meets the capacity of a
252GB server.
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Figure A1: M = 20000, N = 60000, m = 2000 (all common SNPs had small-effect sizes), rg = 0.219

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lambda

co
rre

la
tio

n

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lambda

co
rre

la
tio

n

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lambda

co
rre

la
tio

n

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lambda

se
ns

iti
vi

ty
/s

pe
ci

fic
ity

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lambda

co
rre

la
tio

n

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lambda

co
rre

la
tio

n

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lambda

co
rre

la
tio

n

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lambda

se
ns

iti
vi

ty
/s

pe
ci

fic
ity

Figure A2: M = 20000, N = 60000, m = 2000 (all common SNPs had small-effect sizes), rg = 0.119
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Figure A3: M = 20000, N = 60000, m = 2000 (all common SNPs had small-effect sizes), rg = 0.0247
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Figure A4: M = 20000, N = 60000, m = 10000 (all common SNPs had small-effect sizes), rg = 0.58
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Figure A5: M = 20000, N = 60000, m = 400 (all common SNPs had small-effect sizes), rg = 0.163
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Figure A6: M = 20000, N = 60000, m = 2000 (1995 SNPs had small-effect sizes, 5 SNPs had large effects),
rg = 0.148
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Figure B1: Correlation between original and simulated beta vectors, across the λ-grid for elastic nets with
α = 1 and α = 0.001. The grid points where the correlations are 0.8 and 0.9 are marked using vertical lines.
M = 20000, N = 60000 and m = 2000 were used for this simulation.
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