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Abstract 

 

BioFeatureFinder is a novel algorithm which allows analyses of many 

biological genomic landmarks (including alternatively spliced exons, DNA/RNA-

binding protein binding sites, and gene/transcript functional elements, nucleotide 

content, conservation, k-mers, secondary structure) to identify distinguishing 

features. BFF uses a flexible underlying model that combines classical statistical 

tests with Big Data machine-learning strategies. The model is created using 

thousands of biological characteristics (features) that are used to build a feature 

map and interpret category labels in genomic ranges. Our results show that BFF 

is a reliable platform for analyzing large-scale datasets. We evaluated the RNA 

binding feature map of 110 eCLIP-seq datasets and were able to recover several 

well-known features from the literature for RNA-binding proteins; we were also 

able to uncover novel associations. BioFeatureFinder is available at 

https://github.com/kbmlab/BioFeatureFinder/.  

 

Background 

 

The emergence of high-throughput sequencing technologies has led 

to an enormous number of datasets available for researchers, and multiple types 

of analysis have been built on top of these technologies [1]. It is now possible to 

use strategies to identify protein binding sites (ex. ChIP [2]/CLIP-seq [3]), 

alternative splicing (AS) events [4], and differentially expressed genes [5], detect 

SNPs [6] and achieve a multitude of other applications [7,8], resulting in large 

sets of genomic coordinates (e.g., binding sites, AS exons, polymorphisms). 

Such results are particularly challenging to interpret from a biological perspective. 

Several approaches have been used to characterize genomic coordinates sets 

and identify the enriched characteristics (features) in these datasets, especially 

when using the results from ChIP-seq or CLIP-seq experiments [8–12]. However, 

several of the most commonly used tools in these analyses focus on a particular 

aspect of the target regions in their process, such as structural models or 

sequence motifs [9,11,13]. Although these tools provide valuable insight into 

which characteristics are enriched in the genomic regions associated with these 

datasets, there is a clear deficiency in the computational tools that can perform 
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more comprehensive analyses and integrate multiple types of sources of 

variation. 

In previous high-throughput studies, some individual features were 

revealed to be key contributors in large datasets: GC content [14–16], nucleotide 

composition [14], length [14,16], CpG islands [16,17], conservation [18], 

microRNA [19,20] and protein-binding [21] target sites, methylation sites [22], 

single nucleotide polymorphisms (SNPs) [23], microsatellite regions [24] and the 

aforementioned sequence motifs and structural characteristics of these regions. 

However, due to biological variability within the genome sequences [25–27], we 

must also consider that sets of genomic regions are composed of a 

heterogeneous population of sequences, each with a unique profile of 

characteristics. While not all these characteristics are enriched and/or important 

for creating a profile for the whole-region groups, it is possible that a combination 

of many factors is responsible for separating groups of genomic regions and/or 

determining the binding of a protein to that particular region. 

We present BioFeatureFinder (BFF), a flexible and unbiased algorithm 

for the discovery of distinguishing biological features associated with groups of 

genomic regions. In addition, BFF can help discover how these characteristics 

interact with each other. This is useful for creating an accurate map of the 

features that are more important for explaining differences between the input 

genomic regions and the remaining regions of the genome. To achieve this, we 

applied machine-learning strategies that are already widely used in other 

transcriptomics, genomics and system biology studies [21,28–31]. Instead of 

analyzing the genomic regions as individual data points, we analyzed the 

cumulative distribution functions drawn from the population of regions for each of 

the features described above and then applied binary classification algorithms to 

identify which characteristics are more important for group separation. This 

strategy has already been applied in other studies [32] but is here applied for the 

first time in the context of classification of features associated with groups of 

genomic regions on this scale. Furthermore, we aimed to develop a flexible tool 

that can use data from multiple public databases, such as UCSC 

GenomeBroswer [33], Ensembl [34], GENCODE [35], ENCODE [36] and others, 

and is capable of performing in an unsupervised and unbiased way. 
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Results and Discussion 

 

For our BFF algorithm, we define “biological features” as the set of 

characteristics that can be used to distinguish regions from other sections of the 

genome. These features can include but are not limited to nucleotide content, 

length, conservation, k-mer occurrence, presence of SNPs, protein-binding sites, 

microRNA target sites, methylation sites, microsatellite, CpG islands, repeating 

elements, and protein domains.  

Our algorithm can analyze the distribution of values for each feature in 

a set of genomic regions of interest, compare this distribution to a randomized 

background to identify which features represent the most distinguishing 

characteristics associated with the input dataset, and then rank them by 

importance values. This tool can be used as an important information source for 

scientists, who can use the data provided to generate new and more accurate 

hypotheses or guide wet-lab experiments more efficiently. BFF can also be used 

in large-scale computational projects that can analyze hundreds of datasets with 

ease and produce consistent results. 

For the first time, we apply Big Data strategies in an unbiased way, 

thereby effectively reducing observer bias, to take advantage of the large 

amounts of data produced by high-throughput experiments, such as 

CLIP/CHIP/RNA/DNA-seq, and data deposited in publicly available databases 

(e.g., UCSC GenomeBroswer [33], Ensembl [34], GENCODE [35], ENCODE 

[36]) to extract a set of significant information from genomic regions and uncover 

the latent relationships inside the datasets. First, we present the framework used 

by BFF in its analytic process, with an overview of the input data types, workflow 

and output. Second, as a control, we applied BFF to the RBP (RNA-binding 

protein) RBFOX2 eCLIP-seq (enhanced crosslink immunoprecipitation RNA-

sequencing) data because this protein is widely studied, and its binding sites are 

well characterized in the literature [37–40]. Finally, to showcase potential 

applications of the algorithm, we analyzed 112 eCLIP datasets obtained from 

human cell lines that are available in the ENCODE database and identified the 

biological features associated with the binding sites of all RBPs and their 

respective importance scores.  
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The BioFeatureFinder workflow 

 

BioFeatureFinder focuses on flexibility, consistency and scalability. It 

is python-based with scalable multi-thread capabilities, is memory-friendly and 

compatible with most commonly used UNIX-based systems (e.g., CentOS, 

Ubuntu, openSUSE and macOS) and can be used with a wide range of hardware, 

from notebooks to HPC clusters. In Figure 1, we show a schematic representation 

of the BFF workflow. The types of inputs required to use the algorithm are as 

follows: a set of BED coordinates with genomic regions of interest (e.g., 

CLIP/CHIP-seq binding sites, promoter regions for differentially expressed 

genes, splice sites for alternatively spliced exons/introns and others); and 

compatible fasta files with sequences (e.g., Reference genome transcriptome). 

However, for increased accuracy, it is also possible to use a GTF/GFF file with 

region annotations (exons, introns, CDS, UTR and others). These can be 

optionally used to increase the number of features that are analyzed using BED 

files with genomic regions of biological features (e.g., microRNA sites, 

methylation sites, CpG islands, protein binding sites, SNPs and mutations, 

repeating elements and multiple bigWig files with phastCons scores for multiple 

alignment).  

The analytical process of the algorithm is divided into two sub-

sections: Build datamatrix and Analyze features. Building the datamatrix starts 

with selecting an appropriate background to compare the input regions of interest, 

which are obtained using the shuffle function of bedtools. Although it is not 

required, the use of a reference annotation improves the algorithm’s accuracy by 

guiding the included/excluded background regions. The total number of 

background regions (B) is proportional to the number of regions in the input list 

(I) of bed coordinates, which can be represented by the following formula: 𝐵 = 𝐼 ∗

𝑁, where N is an integer variable that can be set as an option (default = 3; i.e., 

the number of background regions is 3 times the number of input regions). These 

two sets of regions are then used to produce a datamatrix. Each bed entry in the 

regions is converted into a line in the matrix, and each feature corresponds to a 

column. Every feature is represented as numeric value, which can be a 

continuous, discrete or Boolean variable. To obtain these values, BFF uses 

multiple freely available tools such as bedtools [41] for the nucleotide content and 
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counting intersections with features in bed format, bigWigAverageOverBed [42] 

for extracting conservation scores, EMBOSS wordcount [43] for k-mer counting, 

Vienna’s RNAfold [44] for RNA secondary structure MFE (minimum free energy) 

values and QRGS Mapper [45] for G-quadruplex scoring. Designed with a 

modular concept, new functions and sources of data can be easily added by 

researchers to answer project-specific questions. 

Once the matrix is created, the algorithm runs a two-step analysis to 

identify important features in the dataset. The first step is to analyze each feature 

in the matrix with a two-sample Kolmogorov-Smirnov test (KST), with 

implementation by SciPy [46], to compare the distribution of values of the regions 

of interest (group 1) to background regions (group 0). In addition to using a 

statistical tool to identify the significant features, it is possible to use KST as a 

tool for feature selection by extracting statistically significant features that are 

correlated with differences between the groups, a strategy that has been shown 

to improve the classification performance of high-dimensional data [47–49]. As 

an additional benefit, filtering the features by KST p-values reduces the size of 

the datamatrix used in the following classification step, which can be helpful for 

reducing both the computational time and the resources used in the analyses. 

The second step involves the use of a Stochastic GradientBoost Classifier (St-

GBCLF) from Scikit-learn [50] that can naturally handle mixed datatypes, is fairly 

robust to outliers and possesses reliable predicative power. Additionally, this 

method has been shown to be preferable for high-dimensional two-class 

prediction [51,52]. Additionally, similar to other ensemble methods, St-GBCLF is 

less likely to suffer from overfitting [53]. This stage will use the feature values 

extracted from the matrix (which can be filtered, or not, by KST) for each group 

(0, background and 1, input) and calculate the feature importance, a score that 

measures how valuable each feature is in the decision-making process of the 

trees [54]. Higher importance values indicate that the feature is considered in key 

decisions and can thus be inferred to have more biological significance. To 

address the class imbalance problems inherent to these types of analysis [52,55], 

our algorithm draws a random sample from the background (group 0), which is 

the same size as the input dataset (group 1), thereby increasing the overall 

accuracy of the classifier. However, to address biological variability, our algorithm 

performs multiple classification runs, drawing a new sample of background 
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regions each time. The final classification score is calculated as the average of 

the importance values obtained in each classification run. 

Both classification and statistical results are compiled into a table, 

which allows easy interpretation. Additionally, graphical representations of each 

feature are output in both the cumulative distribution function (CDF) and kernel 

density estimation (KDE) plots. This allows the visualization of the distributions 

found in the input and background and leads to conclusions about how the 

distribution is shifted from the reference. Additionally, classifier importance and 

KS test values are output in bar charts. Finally, classifier performance is 

measured by several parameters: accuracy, sensitivity, sensibility, positive 

predictive value, negative predictive value, adjusted mutual information (aMI), 

mean squared error (MSE) value, receiver operating characteristic (ROC) and 

precision-recall (P-R) area under curve. These metrics are output in both table 

(with scores) and graphical (bar charts and curves) format. Together, these 

outputs can be used to explore the data and identify features that may be of 

significance in a biological context. 

 

Analysis of RBFOX2 eCLIP dataset 

 

To evaluate the performance of our algorithm, we analyzed the subset 

of RNAs binding regions bound by the RNA binding protein RBFOX2. We used 

public eCLIP experiments deposited in the ENCODE database. Within this set, 

we found 922 statistically significant biological features that were used in the 

classification step (Figure 2A). The classifier provided an overall average of 

accurate predictions of 9 out of 10 times. The scores were 91% mean accuracy 

score, 88% positive predictive value (P.P.V.), 93% negative predictive value 

(N.P.V.), 93% sensitivity, and 89% specificity. We also obtained average scores 

for adjusted mutual information (aMI) and mean squared error (MSE) of 0.56 and 

0.09, respectively. Both the receiver operating characteristic (ROC) and 

Precision-Recall (P-R) area under curve (AUC) were measured at 0.97 (Figure 

2A, Additional File 1). Among all of the statically significant features, our approach 

identified 16 features with a relative importance score of at least 10% (i.e., 1/10 

of the importance score of the highest scoring feature, Figure 2B, Additional File 

2), rediscovering known literature-reported features and novel features. As a 
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known feature, we found conservation of the binding site and enrichment of the 

canonical GCAUG k-mer; and within novel features, we found higher GC-content 

in the binding sites, lower MFE for RNA secondary structure, a higher G-

quadruplex score and overlap of binding sites with DDX6 and other RBPs. 

We identified enrichment of the GCAUG 5-mer as a major feature that 

characterized the RBFOX2 eCLIP binding sites by both KS test (p-value < 0.001) 

and variable importance in classification. Our analysis indicated that 33% of the 

binding sites identified in the RBFOX2 eCLIP contained at least 1 repetition of 

the GCAUG motif, whereas only 6% randomized background regions exhibited 

at least 1 instance of this motif (Figure 3A). Additionally, we found significant 

enrichment of the UGCAUG 6-mer, which occurred in 22% of binding sites, in 

contrast to 2% of the background regions (Figure 3B). Both results are consistent 

with the RBFOX2 nucleotide sequence motif enrichment and occurrence in RNA 

binding sites [37,40], indicating that our algorithm successfully recovered known 

features. 

Interestingly, we identified several major components associated with 

the RNA secondary structure of the RBFOX2 binding sites. GC content had the 

second highest importance value of all features, with RBFOX2 binding sites 

exhibiting a higher distribution of GC than randomized background regions and 

most of the binding sites having a range of 50% to 80% GC content in their 

sequences, whereas the background regions were more evenly distributed 

(between 20% to 60% - Figure 4A). It is known that RNA regions with higher GC 

content correlate to more stable secondary RNA structures [56], with alterations 

in splicing patterns through an effect on pre-mRNA secondary structure [57], a 

known mechanism for RBFOX2 splicing regulation [37]. Although the importance 

of RNA secondary structure as a guiding factor for RBP binding was shown 

before [13,58,59], our data pointed to RBFOX2 because we identified that the 

minimum free energy (MFE) for RNA folding is a major feature for distinguishing 

protein binding sites from a randomized background. We identified 70% of 

binding sites with an MFE lower than 0, indicating the possible existence of a 

localized secondary structure, while only 47% of background regions exhibited 

similar behavior (Figure 4B). Additionally, we also identified the presence of G-

quadruplexes, a specific type of secondary structure, as enriched in RBFOX2 

binding sites. Our analysis indicates that 53% of RBFOX2 binding sites had a 
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positive score for their presence, in contrast to only 15% of background regions 

(Figure 4C). 

This result is particularly interesting because although this feature was 

not previously associated with RBFOX2, it can be supported extensively by 

literature evidence. First, RBFOX2 has been described as a member of the 

RG/RGG family of RNA-binding proteins, with an RNA recognition region rich in 

arginine-glycine rich regions that is known as RGG-box [60]. Second, other 

proteins from this family were shown to bind to RNA G-quadruplex by their 

RG/RGG regions [61]. Third, the existence of G-quadruplexes in intronic regions 

can have impacts on alternative splicing regulation [62,63]. Taken together, these 

results indicate that secondary RNA structure may play a larger role in RBFOX2 

targeting for binding sites than previously assumed, combined with the existence 

of the GCAUG motif for increased accuracy in target selection. This is further 

evidenced by the fact that 50% of the binding sites containing GCAUG were also 

positive for the presence of G-quadruplexes (Figure 4D). 

Finally, the most important feature, an association previously 

unreported in the literature, represents the overlap of RBFOX2 binding sites with 

DDX6 binding sites, an RNA helicase. We identified 18% of RBFOX2 peaks with 

at least 1 nucleotide position in common with DDX6 binding sites, which is 

significantly higher than the value obtained for randomized background regions 

that scored almost 0% of overlap (Figure 5A). Although this association is novel, 

it is known that DDX6 homologs in S. cerevisiae interacts with EFTUD2 homolog, 

another RBP identified as an important feature for RBFOX2, which suggests that 

the interaction between these proteins is evolutionarily conserved. [64]. We also 

identified several other RPBs with significant overlap with RBFOX2, including 

known splicing regulators and/or components of the spliceosome such as 

HNRNPM, EFTUD2, PRPF8, QKI, HNRNPK and PCBP2 (Additional File 2). 

Using data available from BioGrid 3.4 [65] and STRINGdb 10.5 [66], we found 

that these targets were associated with RBFOX2 through a curated protein-

protein interaction network (Figure 5B), with RBFOX2 directly interacting with QKI 

[67–70] and HNRNPK [70]. The latter, in turn, has been shown to interact with 

EFTUD2 [71].  

Taken together, our results indicate the existence of a combinatorial 

mechanism of both RNA structure and nucleotide sequence to direct binding 
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specificity to RBFOX2. However, our analysis is limited to identifying the similar 

and diverging characteristics of their binding sites. For a deeper understanding 

of the relationship between RBFOX2 binding features, further experiments are 

required. They would contribute to the comprehension of target binding specificity 

and would shed light on novel biological functions for RBFOX2. 

 

Identification of important features for 110 RNA-binding protein-binding 

sites from ENCODE 

 

To showcase the potential applications of BioFeatureFinder in high-

throughput studies, we applied our algorithm to the large dataset of 110 eCLIP-

seq available at ENCODE. First, we identified the preferential binding regions for 

each RNA Binding Protein (RBP) in the dataset (Figure 6, Additional File 6), with 

our results indicating that 59% of the analyzed proteins had preferential binding 

to the intronic regions. The second most frequent region was 3’UTR (15%), 

followed by CDS (15%), 3’ splice site (7%), 5’ splice site (2%) and the 5’UTR 

(2%). Among the identified preferential regions for the RBPs, some were already 

known from the literature (such as U2AF1 [72], U2AF2 [72], SF3A3 [73], PRPF8 

[74], FMR1 [75], PUM2 [76], TIA1 [77], TARDBP [78] and RBFOX2 [37]), which 

demonstrates that our algorithm correctly identified their binding region 

preferences. We used this information to generate the appropriate background 

for each RBP. Overall, our algorithm performed consistently, with an average 

accuracy of 0.9 and average ROC and Precision-Recall AUCs of 0.95. The 

largest variance was obtained for the aMI (adjusted mutual information) scores, 

with an average of 0.57 and standard deviation of 0.16 (Figure 6B, Additional File 

2). We also observed a strong correlation (Pearson’s R² ≥ 0.95) between aMI 

(Adjusted Mutual Information, Figure 7A) and MSE (Mean Squared Error, Figure 

7B) scores with overall classifier Accuracy, indicating that RBPs with higher aMI 

scores tended to reach a higher degree of resolution of the binding site features. 

This can be inferred to be a consequence of the binding characteristics of the 

RBPs. For example, TARDBP has a strict set of characteristics that guide their 

binding to specific targets, whereas other RBPs, such as SF3B1, appear to have 

a higher degree of flexibility in their binding target selection (Additional File 2). 
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Overall, we identified three major classes of features that were 

important for the determination of binding site selection for this group of RBPs: 

K-mer enrichment (motifs), secondary RNA structure and overlap with other 

RBPs (Figure 8A, Additional File 7). All 110 RBPs have at least one of these as 

an important feature for the classification of their binding site with 10% or more 

relative importance. Furthermore, we found that most of the RBPs (56%) have a 

combination of these three factors as important features for the determination of 

binding site specificity. We identified 107 (out of 110) RBPs with some degree of 

overlap with at least 1 other RBP, which reflects the characteristic of RBPs 

working in protein complexes to perform biological functions [79,80]. We 

recovered information for known protein complexes, such as FMR1-FXR1-FXR2 

[68,81] (Figure 8B), identifying 68% of FXR1 binding sites with overlap with FXR2 

binding sites and 58% with overlap with FMR1 binding sites. Interestingly, the 

reciprocal did not hold true, with only 19% of FMR1 and 22% of FXR2 binding 

sites having an overlap with FXR1 (see Additional File 4), which might reflect the 

molecular dynamics involved in the formation of the complex [81]. In addition, we 

identified overlaps in the binding sites of RBPs without any previous association 

reported, such as the AGGF1, which had 40% overlap with GTF2F1, (see 

Additional File 4). While this information may indicate that they only bind to the 

same targets in similar positions, it could also suggest the existence of some 

biological relationship between proteins that is yet to be uncovered. 

Analysis of K-mer enrichment revealed that 74 RBPs had at least 1 K-

mer with 10% or more relative importance (see Additional File 7); although this 

represents the majority of analyzed RBPs (66%), it also shows that a nucleotide 

sequence is not a requirement for directing the binding of all RBPs to their targets. 

We managed to recover several well-known examples from the literature, such 

as TARDBP’s GUGU repeats [82], which are present in 88% of binding sites 

(Figure 8C). Other known examples include QKI [83] (ACUAA in 57% and UAAC 

in 68% of binding sites), PUM2 [75] (UGUA in 73% of binding sites), PTBP1 [84] 

(UCUU, 80%), HNRNPC [85] (UUUU, 63%), HNRNPK [86] (CCCC, 87%), 

KHDRBS1 [87] (UAAA, 80%) and TIA1 [88] (UUUU, 42%). In addition, our 

algorithm identified motifs for other 47 RBPs, which were found in approximately 

30% of binding sites and had an at least 15% difference compared to the 

background (Table 1, see Additional File 3).  
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RBP Motif Binding sites (%) Background (%) Difference 

FKBP4 GGGG 72 17 55 

DDX42 GGGG 70 17 53 

NKRF GGGG 71 19 52 

XRN2 GGGG 70 18 52 

TRA2A GAAGA 60 11 49 

DDX59 CCCC 67 19 48 

SRSF7 GUGUG 53 7 46 

PCBP2 CCCU 73 26 47 

GRSF1 GGGG 65 18 47 

EIF4G2 GUGUG 52 7 45 

SRSF9 GGAG 74 32 42 

SERBP1 CGCC 54 12 42 

KHSRP UUGU 69 26 43 

SLTM GGGC 62 20 42 

FUBP3 UUGU 66 25 41 

AKAP8L GGGG 59 18 41 

GEMIN5 GCCG 48 9 39 

FASTKD2 GGGG 54 17 37 

DKC1 GUGUG 42 4 38 

SRSF1 GGAG 69 32 37 

TAF15 GAGG 64 29 35 

DDX3X GCGG 54 22 32 

HNRNPM UGUG 57 25 32 

HNRNPA1 UUAG 49 17 32 

SUPV3L1 GGGG 46 15 31 

ZRANB2 GGUG 50 20 30 

CPSF6 GAAGA 41 12 29 

AARS GGGG 44 16 28 

RPS11 GCGG 32 3 29 

U2AF2 UUUC 61 33 28 

HNRNPU GGGG 44 16 28 

AGGF1 CACAC 33 6 27 

DDX6 GGGG 42 17 25 

HLTF GAAA 50 26 24 

SAFB2 GAAG 50 27 23 

SFPQ UGUG 51 28 23 

CDC40 GGGG 40 18 22 

SUGP2 UCUU 49 27 22 

SUB1 UGUG 44 22 22 

DGCR8 GGGG 32 11 21 

XRCC6 CUGG 50 29 21 

PRPF8 AGGU 47 26 21 

SLBP GAGC 32 12 20 

LSM11 GCUG 43 24 19 

NONO UGUG 40 24 16 

TROVE2 UUGACU 16 1 15 

SF3B1 GGGG 24 9 15 

Table1. Nucleotide motifs identified by BioFeatureFinder for 48 RNA-binding proteins. 
RBPs with nucleotide sequences (motifs) identified as important features were analyzed for 
percentage of binding sites (BS), which had the identified motif compared to the amount 
sampled from the background (BG). Differences (Diff) in percentage points (Diff = BS% – 
BG%) are also represented. 
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Finally, our algorithm also identified 74 RBPs with secondary RNA 

structure (either by lower Minimum Free Energy, MFE, calculated by Vienna’s 

RNAfold, or by a higher G-quadruplex score, from QGRS Mapper) as an 

important feature for classification (see Additional File 7). As an example, the 

increased G-quadruplex score for EWSR1 binding sites, which is a known RBP 

that binds to these types of RNA structures [89], with 62% of the sites exhibiting 

a positive score, whereas only 16% of the background regions showed the same 

behavior (Figure 8D). Another RBP that we identified as a binding secondary 

RNA structure is XRN2, which had 86% of binding sites with an MFE score lower 

than 0, whereas only 51% of background regions had values lower than 0. This 

particular RBP is reported to bind R-loop structures formed by G-rich pause sites 

associated with transcription termination [90], in accordance with our findings for 

motif enrichment, as we found that XRN2 had 70% of its binding sites containing 

a GGGG 4-mer, while only 18% of its background regions had the same 4-mer 

(Table 1). Other known examples from the literature that we recovered include: 

FMR1, also known to bind to G-quadruplexes [61,91] and DDX3X, DDX6, DDX24 

and DHX30, which are RNA-helicases. In addition, we also identified 34 RBPs 

with positive G-quadruplexes and 15 percentage points or more of difference 

compared to the background. Of these, 20 RBPs also exhibited an enrichment of 

GG repeats in their binding sites (Figure 9, Table 1, Additional File 5), which is a 

known characteristic for these structures [92]. They are: AARS, AKAP8L, CDC40, 

DDX3X, DDX42, DDX6, DGCR8, FASTKD2, FKBP4, GRSF1, HNRNP, NKRF, 

SLTM, SRSF1, SRSF9, SUPV3L1, TAF15, XRCC6, XRN2, and ZRANB2.  

 

Conclusion 

 

Our results show that BioFeatureFinder is an accurate, flexible and 

reliable analysis platform for large-scale datasets while simultaneously providing 

a method to control observer bias and uncover latent relationships in biological 

datasets. By considering each genomic landmark as a separate data point in a 

distribution, we developed a novel implementation. This method combines 

statistical analysis and Big Data machine-learning approaches to provide 

accurate representations of the differences in sets of genomic regions and 

identify the characteristics that contribute more to the separation of these groups. 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 22, 2018. ; https://doi.org/10.1101/279612doi: bioRxiv preprint 

https://doi.org/10.1101/279612
http://creativecommons.org/licenses/by-nd/4.0/


As demonstrated by our analysis of the RBFOX2 dataset, our algorithm managed 

to recover multiple characteristics known from the literature, including nucleotide 

sequences for binding motifs, and infer protein-protein interaction from the 

overlaps between binding sites. In addition, we uncovered new associations that 

might link RBFOX2 to the targeting of specific RNA secondary structures to 

increase RBFOX2 binding specificity, a hypothesis that is strengthened by 

inferences from the literature from multiple sources.  

Furthermore, our analysis of 110 RNA-binding proteins’ CLIP-seq data 

from ENCODE recovered several well-known features from the literature, 

including major characteristics that influence the targeting of these proteins. The 

results for this dataset indicate RNA-target selection by RNA-binding proteins as 

a multi-factorial mechanism, which demands the existence of both cis- and trans-

regulatory factors to increase the RBP affinity to the target site. Among those 

features are important factors, such as the existence of a particular set of 

nucleotide sequences (binding motif); accessibility of the target site via RNA 

secondary structure; and the neighboring RBP context (i.e., other proteins 

binding to neighboring/same region), which all contribute to determining whether 

a particular RBP will bind to its target site. Additionally, our results suggest that 

the binding of RBPs to targets is heavily dependent on the cellular context, with 

some proteins relying on fewer features for directing their binding specificity (i.e., 

the presence of a sequence is sufficient for recognition by the RBP), while other 

proteins require a more complex targeting context, with multiple features involved 

in the binding of the RBP (i.e., requiring a specific sequence, nearby accessory 

proteins and a specific RNA structure). Together, our results not only deepen our 

knowledge of how these proteins select their targets in a broader scenario but 

also demonstrate how our approach can be applied to large-scale datasets from 

high-throughput experiments with a high degree of reproducibility.  

Although the present study focused on the applications of 

BioFeatureFinder for RNA-binding proteins, our algorithm can be applied to any 

type of genomic landmark. Some examples of regions that could be analyzed 

using BFF include: splicing sites for alternatively spliced exons (or whole exons), 

target sites for microRNAs, binding sites for DNA-binding proteins (for example, 

ChIP-seq data), promoter regions from differentially expressed genes, 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 22, 2018. ; https://doi.org/10.1101/279612doi: bioRxiv preprint 

https://doi.org/10.1101/279612
http://creativecommons.org/licenses/by-nd/4.0/


microsatellite/genomic markers, SNPs, whole transcript regions (5’UTR, 3’UTR 

and CDS) and any type of dataset that can be converted into a BED format. 

 

Materials and methods 

 

Extraction of information about biological features and RNA-binding 

proteins binding sites 

 

We downloaded tracks from biological features associated with 

genomic features from the UCSC Genome Browser [33] for the human genome 

hg19, downloading tracks for conservation scores (phastCon scores in bigWig 

format), benign and pathological CNVs, common and flagged SNPs, TS 

microRNA target sites, CpG islands, layered H3K4Me1/3 and H3K27Ac and 

microsatellites. Additionally, we obtained data for 112 RNA-binding proteins 

(RBP) available from ENCODE [36] eCLIP experiments (Additional File 8: Table 

S1), downloading the bed files containing the narrowPeaks obtained for hg19 

(Additional File 8: Table S2). Additionally, our algorithm is integrated with 

BedTools [41] (intersect, getfasta and nuc functions), UCSC’s 

bigWigAverageOverBed [42], EMBOSS wordcount [43], Vienna’s RNAfold [44] 

and QRGS Mapper [45]. Unless otherwise stated, all tracks were either 

downloaded or converted into BED format. We used GENCODE’s [35] 

GRCh37.p13 as a reference genomic sequence, along with release 19 of the 

comprehensive annotation.  

 

Preferential region identification and background selection 

 

To identify preferential binding regions for each dataset analyzed, we 

separated the transcripts into 6 major regions: 5’UTR, 3’UTR, CDS, introns, 5’ 

splice sites and 3’ splice sites. We then used bedtools intersect to count how 

many RBP binding sites occurred in each region. These values were normalized 

by Z-score, and the highest scoring was selected as the preferential binding 

region. A randomized background was generated using bedtools shuffle (with -

excl, -incl, -chrom and -noOverlapping options), using the GTF reference 

containing the preferential binding region (or regions) to guide the selection of 
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regions, excluding overlaps with input regions (binding sites) and other 

randomized background regions. For RBPs with small differences in binding site 

z-scores (less than 10%) in their highest-scoring regions, we selected the 2 

highest scoring regions and used both as references for background generation. 

For each RBP dataset, we generate a randomized background region with three 

times the number of input regions (binding sites). 

 

Assembly of a data matrix with biological features 

 

The genomic regions (binding sites and background) and their 

associated biological features are converted to a numerical matrix, where each 

line is one region and each column is a biological features associated with that 

position. To convert biological features in numerical data, we used several freely 

available software. For most features, we use BedTools intersect (-s and -c 

options) to count the number of occurrences of that feature in the corresponding 

region. To obtain nucleotide sequence information, we used a combination of 

BedTools getfasta and nucBed (both with -s option). For the conservation score 

we used the tool bigWigAverageOverBed to obtain the average conservation 

score of covered bases in the region. For k-mer analysis, we used EMBOSS 

wordcount to count the number of occurrences of each 4-mer, 5-mer and 6-mer 

in each region. For RNA structure analysis, we used both Vienna’s RNAfold to 

calculate the lowest possible MFE (with -g option) and QGRS Mapper to calculate 

the maximum non-overlapping G-quadruplex score for each region. All 

operations were performed while considering strandedness. 

 

Group selection and statistical analysis of features 

 

For analysis, the input and background regions are separated into 

groups (1 and 0, respectively) using the unique identifier created during the 

datamatrix assembly and stored as the “name” field in the generated BED file. 

For all features in the matrix, we performed a Kolmogorov-Smirnov test by 

comparing the cumulative distribution function of the input regions (group 1) to 

the background (group 0) to filter out non-significant features between the groups. 

Features with a q-value ≤ 0.05, as adjusted by Bonferroni, were selected for 
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further analysis using the classification algorithm. This filtering aims to provide 

significantly different features between the groups and to minimize the noise 

introduced by non-significant features while simultaneously reducing the 

computational time required for the classification step and the overall required 

time for analysis. 

 

Classifier and feature importance estimation 

 

To evaluate the importance of each feature’s ability in separating the 

genomic region groups, we chose to use a stochastic gradient boost classifier 

python implementation from Scikit-learn [50]. The classifier was used with the 

following parameters: number of estimators = ‘1000’; learning rate = ‘0.01’; max 

depth = ‘8’; loss = ‘deviance’; max features = ‘sqrt’; minimum number of samples 

per leaf = ‘0.001’; minimum number of samples to split = ‘0.01’; random state = 

‘1’; and subsample = ‘0.8’. Importance values for each feature are calculated at 

every run, with the final value representing the mean scores and their 

corresponding standard deviation. The same scoring strategy is employed for 

relative importance score (percentage relative to the most important feature), 

accuracy, positive predictive value, negative predictive value, sensitivity, 

sensibility, ROC and Precision-Recall AUCs. 

 

Availability 

The BioFeatureFinder software is available for download at GitHub 

[93] and is included as Additional file 9 for archival purposes. 

 

Abbreviations 
aMI: Adjusted mutual information 

AUC: Area under curve 

BFF: BioFeatureFinder 

CDF: Cumulative distribution function 

CDS: Coding sequence 

ChIP-seq: Chromatin Immunoprecipitation sequencing 

CLIP-seq: Cross-linking Immunoprecipitation sequencing 

CpG: 5'—C—phosphate—G—3' 
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DNA: Deoxyribonucleic acid 

eCLIP-seq: enhanced Cross-link Immunoprecipitation sequencing 

FTD: Frontotemporal dementia 

GFF: General feature format 

GTF: General transfer format 

KDE: Kernel density estimation 

KST: Kolmogorv-Smirnov Test 

MFE : Minimum free energy 

MSE: Mean squared error 

N.P.V.: Negative predictive value 

P.P.V.: Positive predictive value 

P-R AUC: Precision-Recall area under curve 

RBP: RNA-binding protein 

RNA: Ribonucleic acid 

ROC AUC: Receiver operating characteristic area under curve  

SNP: Single-nucleotide polymorphism 

St-GBCLF: Stochastic gradient boost classifier 

UTR: Untranslated region 
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Figure 1: Schematic overview of BioFeatureFinder workflow. Schematic 

representation of the 3 steps involved in the BioFeatureFinder workflow. The first 

step (INPUT) involves the selection of genomic regions of interest to analyze and 

the biological information to be extracted from these regions (such as nucleotide 

sequence or bed files with biological data). The second step (ANALYSIS) refers 

to the process by which BFF converts the biological information for genomic 

regions in a numerical datamatrix and then proceeds to analyze this information 

using both statistical and machine-learning approaches. The final step (OUTPUT) 

represents the information that is extracted from our algorithm, comprising of both 

easily human-readable tables and graphical representations of both the biological 

features and the overall classifier performance. 
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Figure 2: BioFeatureFinder accurately identifies biological features 

associated with RBFOX2 CLIP-seq binding sites. A. Classifier performance 

scores as the mean values for RBFOX2 eCLIP sites, represented as a bar chart 

(P.P.V.: Positive predictive value, N.P.V.: Negative predictive value, aMI: 

Adjusted mutual information, MSE: Mean squared error, ROC AUC: Receiver 

operating characteristic area under curve, P-R AUC: Precision-Recall area under 

curve).; B. Feature importance score (white) and Kolmogorov-Smirnov test value 

(KS-test in gray) for the top 20 features associated with RBFOX2 sites, 

represented as horizontal bar chart. Black vertical bars represent the standard 

deviation found for each scoring parameter. 
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Figure 3: RBFOX2 CLIP-seq binding sites are enriched for the (U)GCAUG 

motif. A-B. Cumulative distribution function curves for GCAUG (A) and UGCAUG 

(B) k-mer sequences. Y-axis shows the cumulative distribution of samples, and 

X-axis indicates the number of occurrences for each k-mer. Solid lines represent 

randomized background regions, and dashed lines represent RBFOX2 binding 

sites. 
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Figure 4: RBFOX2 binding regions are enriched in GC content within 

structured RNA regions A-C. Cumulative distribution function curves for GC 

content (A), Minimum Free Energy (MFE, B) and maximum G-quadruplex score 

(C). Y-axis shows cumulative distribution of samples and X-axis indicates values 

obtained for each feature. Solid lines represent randomized background regions, 

and dashed lines represent RBFOX2 binding sites. D. Two-way Venn diagram 

showing the overlap between number of peaks identified with the GCAUG k-mer 

and those with a positive G-quadruplex score. 
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Figure 5: Discovered features include proteins with overlapping RNA 

binding profile and connected protein-protein interaction (PPI) network. A. 

RNA binding protein DDX6 was featured as having overlapped binding sites with 

RBFOX2. Cumulative distribution function curves where Y-axis shows the 

cumulative distribution of samples and X-axis indicates number of occurrences 

per overlap. Solid lines represent randomized background regions, while dashed 

lines represent RBFOX2 binding sites. B. PPI network created based on protein 

interactions obtained from BioGrid 3.4 and StringDB 10.5. Each node represents 

a different RBP, and lines represent known and inferred protein-protein 

interactions between them. 

  

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 22, 2018. ; https://doi.org/10.1101/279612doi: bioRxiv preprint 

https://doi.org/10.1101/279612
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Figure 6: BioFeatureFinder performs consistently and accurately for 110 

RBPs that bind to multiple transcript regions. A. Pie chart showing the 

percentage of RBPs with preferential binding to each transcriptomic region. Each 

slice of the chart corresponds to a different region (Intron, 3’UTR, CDS, 

3’SpliceSite, 5’UTR, 5’SpliceSite) and percentages correspond to number of 

RBPs with more binding sites to that region. B. Classifier performance scores as 

the mean values for 110 eCLIP sites, shown as bar charts (P.P.V.: Positive 

predictive value, N.P.V.: Negative predictive value, aMI: Adjusted mutual 

information, MSE: Mean squared error, ROC AUC: Receiver operating 

characteristic area under curve, P-R AUC: Precision-Recall area under curve). 

Black bars represent the standard deviation found for each scoring parameter. 
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Figure 7: Classifier overall accuracy significantly improves for RBPs with 

strict set of characteristics defining their binding sites. A-B. Scatter plot 

showing relationship observed between Accuracy scores (Y-axis) and aMI (A) 

and MSE (B, X-axis). In both cases, a high degree of correlation was identified 

by Pearson’s R² (>= 0.95). 
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Figure 8: RNA-target selection by RNA-binding proteins is a multi-factorial 

biological process requiring cis- and trans-regulatory factors. (A) Three-way 

Venn diagram showing overlap between RBPs identified with at least 1 K-mer 

enrichment (solid line), secondary RNA structure (dotted) and overlap of binding 

site with other RBPs (dashed) as an important feature for the characterization 

and group classification of their binding sites. B-D. Cumulative distribution 

function curves for FXR1 binding site overlaps with FMR1 and FXR2 (B), GUGU 

k-mer enrichment in ARDBP binding sites (C) and EWSR1-binding site maximum 

G-quadruplex score (D). Y-axis shows the cumulative distribution of samples, and 

X-axis indicates the values obtained for each feature. The solid lines represent 

randomized background regions, and dashed lines represent RBPs binding sites. 
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Figure 9: RBPs with enrichment of GG repeats in their motifs also have 

higher G-quadruplex scores. Two-way Venn diagram showing the overlap 

between number of RBPs identified with GG repeats in their enriched K-mers 

(dashed) and RBPs with positive maximum G-quadruplex score (solid) as 

important features for group classification. 
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