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 2 

ABSTRACT 1 

Visual neuroscientists have long characterized attention as inducing a scaling or additive effect 2 

on fixed parametric functions describing neural responses (e.g., contrast response functions). 3 

Here, we instead propose that top-down effects are more complex and manifest in ways that 4 

depend not only on attention but also other cognitive processes involved in executing a task. To 5 

substantiate this theory, we analyze fMRI responses in human ventral temporal cortex (VTC) in 6 

a study where stimulus eccentricity and cognitive task are varied. We find that as stimuli are 7 

presented farther into the periphery, bottom-up stimulus-driven responses decline but top-down 8 

attentional enhancement increases substantially. This disproportionate enhancement of weak 9 

responses cannot be easily explained by conventional models of attention. Furthermore, we find 10 

that attentional effects depend on the specific cognitive task performed by the subject, indicating 11 

the influence of additional cognitive processes other than attention (e.g., decision-making). The 12 

effects we observe replicate in an independent experiment from the same study, and also 13 

generalize to a separate study involving different stimulus manipulations (contrast and phase 14 

coherence). Our results suggest that a quantitative understanding of top-down modulation 15 

requires more nuanced and more precise characterization of multiple cognitive factors involved 16 

in completing a perceptual task.   17 

 18 

 19 

  20 
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INTRODUCTION 1 

To tackle the immense size and complexity of visual inputs, the brain concentrates limited 2 

attentional resources on the most informative aspects of visual inputs. The mechanisms of 3 

attentional allocation have been an active research area in past years, because of the pivotal role 4 

that attention plays in different sensory processes, such as feature binding (Treisman AM and G 5 

Gelade 1980), object recognition (Walther D et al. 2002), and scene understanding (Itti L et al. 6 

1998). Neuroscientists are particularly interested in the neural substrates of attention. Converging 7 

evidence from primate electrophysiology and human neuroimaging suggests that attention 8 

induces enhancement in microscopic neuronal activity (Reynolds JH et al. 2000) as well as 9 

macroscopic cortical responses (Gandhi SP et al. 1999; Murray SO and E Wojciulik 2004). Such 10 

attention-induced response enhancement is thought to produce more robust sensory 11 

representations (Kastner S and LG Ungerleider 2000; Reynolds JH and L Chelazzi 2004).  12 

 Despite the well-established finding of attentional enhancement of neural responses, the 13 

precise quantitative nature of attentional enhancement remains unclear. One conventional 14 

approach to tackling this issue is to characterize the impact of attention on the shape of contrast 15 

response functions (CRFs) (Reynolds JH et al. 2000; Buracas GT and GM Boynton 2007; 16 

Boynton GM 2009), that is, functions describing the relationship between input stimulus contrast 17 

and output neural response. Under the assumption that neural responses follow a fixed 18 

parametric form (such as the commonly used Naka-Rushton function (Albrecht DG and DB 19 

Hamilton 1982)), attention is characterized as imposing a scaling or additive effect on either 20 

input contrast or output response. As illustrated in Figure 1, attention could have the effect of 21 

amplifying the overall CRF (Figure 1A), enhancing the input contrast (Figure 1B), or inducing a 22 

baseline shift (Figure 1C). Though mathematically elegant, this approach cannot fully explain 23 

some experimental measurements found in the attention literature (Luck SJ et al. 1997; Reynolds 24 

JH et al. 2000; Li X et al. 2008; Murray SO 2008), and moreover, it is not clear whether this 25 

fixed-parameter approach generalizes to stimulus dimensions other than contrast. Thus, it 26 

remains an open question whether the approach provides a satisfactory account of attentional 27 

effects.  28 

 In this paper, we advocate moving beyond the fixed-parameter approach and argue that it 29 

is more appropriate to consider attention as a flexible process that depends on the specific stimuli 30 

and task demands faced by the observer. In this flexible-attention framework, attention is not a 31 
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simple binary variable (i.e., ‘present’, ‘absent’), but rather, attentional effects depend on specific 1 

properties of the cognitive processes involved in a task (e.g., whether a detection or a 2 

discrimination task is being performed). Since tasks are remarkably diverse, the effects of 3 

attention on neural responses may manifest in different ways, and a fixed parametric function 4 

might not accurately capture attentional effects observed in an arbitrary experiment. Empirical 5 

evidence inspiring the flexible-attention framework comes from a recent study (Kay KN and JD 6 

Yeatman 2017) in which we measured cortical responses to different stimulus categories while 7 

subjects performed different tasks (henceforth referred to as the category study). 8 

Here, we strengthen support for the flexible-attention framework through a re-9 

examination of experimental measurements from an independent study (Kay KN et al. 2015). In 10 

this study, cortical responses were measured for different stimulus positions while subjects 11 

performed different tasks (henceforth referred to as the position study). We quantify attentional 12 

effects in human ventral temporal cortex (VTC) as a function of stimulus eccentricity, and apply 13 

the same type of analysis to the category study, thereby allowing direct comparison of results. 14 

Across studies, we show that weak stimulus-driven responses receive disproportionately large 15 

attentional enhancements and attentional enhancements are more pronounced for certain tasks 16 

compared to others. Such effects are not well explained by conventional models of attention, and 17 

therefore suggest the need to develop a more flexible framework for attention. In the Discussion, 18 

we propose specific ways in which the concept of “flexible attention” might be formalized into a 19 

quantitative model. 20 

 21 

  22 
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 1 
Figure 1. Schematics of conventional models of attention and the flexible-2 
attention framework. The first row depicts contrast response functions under 3 
unattended (respunatt) and attended (respatt) conditions. Arrows indicate attentional 4 
enhancement. The second and third rows depict the amount of attentional 5 
enhancement under two different metrics: percent enhancement (Equation 1) and 6 
the raw enhancement (Equation 2), respectively. The response-gain model posits 7 
that attention imposes a scaling effect (g) on the output, and therefore predicts that 8 
percent enhancement is a flat function of contrast. The contrast-gain model posits 9 
that attention imposes a scaling effect (g) on the input contrast, and predicts that 10 
both percent enhancement and raw enhancement are inverted U-shaped functions. 11 
The additive-shift model posits that attention imposes an additive effect (a) on the 12 
output, and predicts that raw enhancement is a flat function of contrast. In contrast 13 
to these fixed-parameter approaches, the flexible-attention framework allows for 14 
the possibility that attentional effects are neither constant in percent enhancement 15 
nor constant in raw enhancement. Here we depict one possibility where attention 16 
disproportionately enhances low-contrast responses. 17 

 18 

MATERIALS AND METHODS 19 

Experiment and MRI data acquisition. Three adults participated in the position study (Kay KN et 20 

al. (2015)). In the task experiment (Figure 2), face stimuli (3.2º diameter) appeared at different 21 

positions of a 5 x 5 spatial grid (1.5º spacing). This grid sampled six distinct eccentricities (0º, 22 

1.5º, 2.1º, 3º, 3.4º and 4.2º). Each trial consisted of 7 sequentially presented faces (500ms/face) at 23 
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a single position but with various identities and viewpoints. Some trials involved two 1 

consecutive faces sharing the same identity but different viewpoints, and some trials involved a 2 

red dot appearing at the center of the faces (coincident with one of the 7 faces). A stream of 3 

digits (0.3º x 0.3º) was placed at the center-of-gaze. In a given run, participants were instructed 4 

to perform either (1) a digit task, during which participants pressed a button whenever the same 5 

digit repeated; (2) a dot task, during which participants pressed a button whenever a red dot 6 

appeared; or (3) a face task, during which participants pressed a button whenever the same face 7 

identity repeated within a trial. Participants fixated the central stream of digits during all three 8 

tasks (verified using an eyetracker). There were 75 experimental conditions (25 locations x 3 9 

tasks) and 8 trials for each condition over the course of the experiment. All experimental details 10 

are described in Kay KN et al. (2015). 11 

 The position study included another experiment, called the interleaved-task experiment. 12 

This experiment was the same as the task experiment (Figure 2) except that the three tasks were 13 

randomly intermixed in a trial-by-trial fashion within each run. A central red letter (0.3° x 0.3°) 14 

presented at the beginning of each trial served as a cue for which task to perform. This 15 

experiment provides an additional, independent set of data. 16 

 17 

 18 

Figure 2. Stimuli and tasks from the position study (Kay KN et al. (2015)). In a 19 
given trial, a sequence of face stimuli (7 face images) appears in one of twenty-20 
five positions. The digit task is a one-back task on the stream of digits at the 21 
center-of-gaze. The dot task is to detect the occurrence of a red dot on the faces. 22 
The face task is a one-back task on the identity of the faces. Subjects maintained 23 
central fixation, and stimuli were identical across the three tasks. 24 

5 positions x 5 positions x 3 tasks = 75 conditions

1°

12
.5

° 3.0°
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 1 

Functional MRI data were collected at the Stanford Center for Cognitive and 2 

Neurobiological Imaging using a 3T GE Signa MR750 scanner, a Nova 16-channel visual RF 3 

coil, and a gradient-echo EPI pulse sequence (TR 2 s, 2-mm voxels). The fMRI data were pre-4 

processed by performing slice time correction, spatial distortion correction and motion 5 

correction. The fMRI data were further analyzed using GLMdenoise (Kay KN et al. 2013) to 6 

estimate the percent BOLD signal change (beta weight) evoked by each stimulus location under 7 

each task. This analysis also generated 100 bootstrap samples of beta weights via resampling of 8 

scanning runs. 9 

Visual field maps (V1, V2, V3, and hV4) were defined using standard retinotopic 10 

mapping scans. Three face-selective regions (inferior occipital gyrus, IOG-faces/OFA 11 

(abbreviated IOG); posterior fusiform gyrus, pFus-faces/FFA-1 (abbreviated pFus); and middle 12 

fusiform gyrus, mFus-faces/FFA-2 (abbreviated mFus)) were defined using independent 13 

functional localizer scans. We also defined IPS as an additional ROI (beyond that described the 14 

original paper). Specifically, we used the IPS-0 region from an atlas of visual topographic 15 

organization (Wang L et al. 2015); this choice is reasonable given the limited coverage of 16 

parietal cortex available in the position study and the localization of top-down modulation to 17 

IPS-0/1 as shown in (Kay KN and JD Yeatman 2017).  18 

 19 

Region-level analysis. After the GLM analysis, we pooled voxels within corresponding regions 20 

of interests (ROIs) across subjects and hemispheres. The same voxel selection criterion 21 

(goodness-of-fit of the population receptive field model) used in our previous paper was applied 22 

to exclude non-spatially selective voxels (Kay KN et al. 2015). To calculate region-level 23 

responses, we first computed the median across bootstrap samples to obtain the response of each 24 

voxel to the 75 experimental conditions. The responses of individual voxels were then positively 25 

rectified to remove negative responses. Finally, we calculated the region-level response by 26 

computing the mean across voxels.  27 

Two metrics were used to quantify the magnitude of attentional effects: percent 28 

enhancement and raw enhancement, which are defined as follows:  29 

Percent enhancement = (Rdot/face - Rdigit) / Rdigit x 100  (1) 30 
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Raw enhancement  = Rdot/face - Rdigit    (2) 1 

where Rdot/face indicates an ROI’s response for a stimulus location in the dot or the face task and 2 

Rdigit indicates the ROI’s response for the same location in the digit task. This calculation 3 

provides 50 values (25 for the dot task and 25 for the face task) for each metric. 4 

 5 

Analysis of data from the category study. We reanalyzed data from the category study (Kay KN 6 

and JD Yeatman 2017) using the same methods described above for the position study. In brief, 7 

the category study involved presentation of words, faces, and other stimulus categories varying 8 

in contrast and phase coherence. Subjects performed one of three tasks: (1) a fixation task, 9 

during which participants pressed a button whenever the fixation dot turned red; (2) a 10 

categorization task, during which participants reported whether the stimulus was a word, face, or 11 

neither; and (3) a one-back task, during which participants pressed a button whenever an image 12 

was repeated twice in a row.  13 

 In Figures 6–8, we directly compare results across the position and category studies. To 14 

facilitate comparison, we pooled voxels from pFus and mFus in the position study to match the 15 

definition of fusiform face area (FFA) in the category study. Also, since overall response 16 

amplitudes might vary for incidental reasons across subjects, we normalized bottom-up 17 

responses (responses during the digit task of the position study and responses during the fixation 18 

task of the category study) by dividing by the maximal response amplitude observed in each 19 

study and ROI. For example, the full set of responses measured from FFA in the category study 20 

(including both contrast and phase coherence conditions) was divided by the maximum response. 21 

Note that this normalization affects raw enhancement values but not percent enhancement 22 

values. 23 

 24 

Error bars. Unless otherwise indicated, error bars indicate 68% confidence intervals, obtained by 25 

bootstrapping across locations that share the same eccentricity (position study) or bootstrapping 26 

across subjects (category study). 27 

 28 

RESULTS 29 

Cortical responses as a function of stimulus eccentricity and behavioral task 30 
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We refer to the main experiment in the position study as the task experiment (see Methods for 1 

details). In the task experiment, participants performed three different cognitive tasks on face 2 

stimuli that appeared at six different eccentricities while blood oxygenation level dependent 3 

(BOLD) signals in human ventral temporal cortex (VTC) were measured. Using face stimuli 4 

rather than artificial visual stimuli (e.g., checkerboards) produces strong responses not only in 5 

early visual areas but also in high-level category-selective regions. This allows us to assess 6 

attentional effects throughout the visual cortical hierarchy.  7 

 Participants performed three different tasks. The digit task is a one-back task on a stream 8 

of digits placed at the center-of-gaze. Face stimuli in this task are irrelevant to the participants, 9 

and the purpose of this task is to maintain participants’ attention at the central fixation point. 10 

Although participants may occasionally attend to the face stimuli, we interpret responses in the 11 

digit task as primarily reflecting bottom-up visual processing with minimal top-down influences. 12 

The dot task requires participants to detect the occasional appearance of a red dot superimposed 13 

on the face stimuli. In this task, face features (e.g., identity, viewpoint) are irrelevant to the 14 

participants. The face task requires participants to perform a one-back task on face identity; thus, 15 

face features in this task are highly relevant to the participants.   16 

 17 
Figure 3. Percent BOLD signal change as a function of stimulus eccentricity and 18 
task. The order of stimulus eccentricity is reversed to make eccentricity-response 19 
functions visually comparable to contrast-response functions. BOLD responses 20 
are pooled across subjects and hemispheres (see Methods). Error bars indicate 21 
68% confidence intervals on the bootstrapped mean of responses across locations 22 
at the same eccentricity (note that 0° corresponds to only one location and thus 23 
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 10 

has no error estimate). Unless specifically mentioned, the same error-bar 1 
convention is used in subsequent figures. Responses in high-level visual areas 2 
exhibit substantial dependence on both eccentricity and task. Black arrows 3 
highlight the disproportionate attentional enhancement at high eccentricities, 4 
reminiscent of the schematic of the flexible-attention framework in Figure 1. 5 

 6 
 We summarized the responses of each region-of-interest (ROI) as a function of stimulus 7 

eccentricity, producing eccentricity-response functions (ERFs). This is analogous to 8 

conventional contrast-response functions where responses are plotted as a function of stimulus 9 

contrast. Examining the ERFs allows us to inspect whether attentional effects observed for 10 

contrast response functions generalize to other feature dimensions. We discovered several 11 

prominent effects. First, the evoked responses in high-level face-selective areas generally 12 

decrease as stimulus eccentricity increases (Figure 3), indicating that stimulus eccentricity, like 13 

contrast, has a strong influence on cortical responses. Second, the fact that responses increase 14 

from the dot task to the face task suggests that the brain enhances responses if the task requires 15 

detailed processing  of the attended stimulus. Finally, the effect of task on cortical responses 16 

progressively developed along the visual cortical hierarchy, suggesting that attentional effects are 17 

more pronounced in brain regions whose representations are critical to successful execution of 18 

the task (i.e., face-selective regions for judging face identity). 19 

Conventional models of attention cannot fully account for observed attentional effects 20 

We next evaluate the accuracy of different attentional models. We quantified attentional effects 21 

as a function of stimulus eccentricity and task using two metrics: percent enhancement (Equation 22 

1) and raw enhancement (Equation 2). These metrics were used because they allow direct 23 

assessment of the accuracy of the response-gain and the additive-shift models of attention 24 

(Figure 1). Results indicate that previously proposed models of attention do not fully account for 25 

the data (Figure 4). The reasons are as follows. 26 
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 1 

Figure 4. Attentional enhancement as a function of stimulus eccentricity and task. 2 
BOLD responses during the stimulus-relevant tasks (dot and face tasks) are 3 
expressed as percent enhancement (upper row) and raw enhancement (bottom row) 4 
relative to the responses during the digit task. The horizontal dashed line indicates 5 
no attentional enhancement. The magnitude of the attentional effect increases from 6 
fovea to periphery, from the dot task to the face task, and from low-level to high-7 
level visual areas. This pattern is inconsistent with the three conventional models 8 
of attention (see explanations in main text). Note that the data point at 0° 9 
corresponds to only one location and thus has no error estimate. 10 

 11 
First, the response-gain model posits that attention amplifies the overall magnitude of 12 

ERFs, leading to larger attentional effects when bottom-up stimulus-driven responses are larger, 13 

i.e., in the fovea. It also predicts percent enhancement will be a flat line as a function of stimulus 14 

eccentricity. These predictions are not consistent with Figure 4–in the face-selective regions, raw 15 

enhancement is not large in the fovea and there is a clear rising trend of percent enhancement 16 

from fovea to periphery.  17 

Second, the additive-shift model posits that attention vertically shifts ERFs; thus, raw 18 

enhancement should be a flat function of stimulus eccentricity. This prediction seems only 19 

consistent with the data in the dot task. The dot task, however, involved no demands for 20 

processing face features and the ROIs exhibiting the largest attentional effects are face-selective 21 
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regions (also see Discussion). In the face task, raw enhancement as a function of eccentricity is 1 

not a flat line and instead rises in face-selective regions as stimulus eccentricity increases.  2 

Finally, the contrast-gain model predicts the largest percent enhancement and raw 3 

enhancement in middle levels of eccentricity, resulting in inverted U-shaped functions of percent 4 

enhancement and raw enhancement (Figure 1B). It is also unsuited here since the strongest 5 

attentional effects, under both metrics, appear in the far visual periphery (also see Discussion).  6 

 Since the results are inconsistent with attentional models proposed in previous literature, 7 

we propose the idea of flexible attention in which attentional effects do not necessarily conform 8 

to simple parametric changes. Before elaborating on this idea, we show first that the observed 9 

effects are not idiosyncratic features of this particular experiment but generalize across several 10 

stimulus and task manipulations. 11 

Reproducible effect of flexible attention on an independent dataset 12 

All analyses thus far are based on the data from the task experiment where three different 13 

cognitive tasks were performed in different scanning runs. We also conducted an interleaved-14 

task experiment in which tasks were interleaved in a trial-by-trial fashion within a run (see 15 

Methods for details). This experiment provides an independent dataset that can be used to 16 

confirm the observed effects. We applied the same analysis above on the data from the 17 

interleaved-task experiment. The two independent experiments yield highly consistent results 18 

(Figure 5), further supporting the presence of flexible attentional modulation. 19 
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 1 

Figure 5. Disproportionate attentional enhancements at high eccentricities in the 2 
interleaved-task experiment. A-B. Results are plotted in the same format as the 3 
results from the task experiment shown in Figures 3-4. Overall, the results from 4 
the two independent experiments are highly consistent. 5 

 6 

Evidence for flexible attention in other experimental manipulations 7 

The form of attentional modulation discovered in this study, especially the dependency of 8 

attentional effects on the level of physical stimulus, has rarely been discussed in previous 9 
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literature. However, we found similar effects in Kay KN and JD Yeatman (2017) (termed the 1 

category study) in which responses to different stimulus categories are investigated. In that 2 

study, we reported that attention selectively imposes larger scaling effects on weaker responses, 3 

a phenomenon termed “stimulus-specific scaling”. We thus consider applying the same analyses 4 

demonstrated above to the data from the category study. Exploiting the data from that study has 5 

two major attractions: (1) In the position study, only one stimulus feature–eccentricity–is 6 

manipulated. In the category study, stimuli are manipulated in both contrast and phase 7 

coherence, thus providing two extra feature dimensions that influence bottom-up visual 8 

processing. (2) The responses in another ROI–visual word form area (VWFA)–were also 9 

measured. This allows us to test whether our findings are specific to FFA or generalize to other 10 

high-level visual regions.  11 

 We extracted BOLD responses in FFA and VWFA toward their preferred stimulus 12 

categories–faces and words, respectively. To make data from the two studies more comparable, 13 

voxels from pFus and mFus in the position study were pooled, consistent with the definition of 14 

FFA in the category study. Furthermore, we highlight data from the stimulus-relevant tasks that 15 

yielded strongest attentional effects: the face task in the position study and the one-back task in 16 

the category study.  17 

 18 

Figure 6. Disproportionate attentional enhancements generalize across 19 
experiments. Panels A–B show results from the position study for the task and the 20 
interleaved-task experiments, respectively. Panels C–F show results from the 21 
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category study. Data from that study have been analyzed in the same way as 1 
Panels A–B, except that error bars reflect 68% confidence intervals on the mean 2 
across subjects (see Methods for details). Across metrics, the amount of 3 
attentional enhancement generally decreases as stimulus strength (eccentricity, 4 
contrast, phase coherence) increases. Enhancement tends to be greatest when 5 
stimulus strength is low and bottom-up responses (green curves in the first row) 6 
are weak. 7 
 8 

 The two studies show a consistent pattern (Figure 6): attentional effects are larger for 9 

stimuli that evoke weak bottom-up responses (digit task in the position study and fixation task in 10 

the category study). As explained previously, neither the response-gain nor the additive-shift 11 

model of attention can account for the results. Instead, these results suggest the need for the 12 

flexible-attention framework (Figure 1D). One exception to the general pattern of large 13 

attentional enhancement at weak stimulus strength lies in phase coherence (Figure 6D, F). We 14 

speculate that this may be due to the fact that 0% phase coherence images contain pure noise on 15 

which it may be easier to perform a one-back decision (also see Discussion). 16 

 To gain further insight into the relationship between bottom-up responses and the 17 

magnitude of attentional enhancement, we plot percent enhancement and raw enhancement 18 

values against the bottom-up responses across stimuli, tasks, studies, and ROIs (Figure 7). The 19 

clear inverse relationships between bottom-up responses and the amount of attentional effect 20 

indicate that attention disproportionately enhances weak neural responses. 21 

 22 

Figure 7. Inverse relationships between normalized bottom-up responses to 23 
percent enhancement (A), and normalized raw enhancement (B). All data points 24 
from the two studies depicted in Figure 6 are plotted. To ensure that BOLD 25 
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responses from different ROIs and experiments are in comparable units, we 1 
normalize the full set of responses observed during the bottom-up tasks (the digit 2 
task in the position study and the fixation task in the category study) in each ROI 3 
to a maximum of 1 (see Methods). The shaded area indicates the 95% confidence 4 
interval of a bootstrapped best-fit line. The results demonstrate that attentional 5 
enhancement tends to be greatest for stimuli that elicit weak bottom-up responses. 6 

 7 

Larger responses in IPS in high-demand tasks compared to low-demand tasks 8 

Why does the brain disproportionately enhance responses to some stimuli and under some tasks 9 

compared to other experimental conditions? We suggest that this flexibility in attentional 10 

enhancement reflects the interaction between attention and the process of evidence accumulation 11 

to accomplish a perceptual decision. In this sense, attention is just one component of a perceptual 12 

task and we must consider other top-down processes, such as decision-making, when interpreting 13 

top-down modulation of neural responses. Stimuli with certain properties (e.g., low contrast, low 14 

phase-coherence) may yield weak or noisy sensory signals, and may therefore require extra 15 

decision time to complete the evidence accumulation process. We have identified IPS as a 16 

potential region that forms perceptual decisions, and this was evidenced by the fact that an 17 

evidence-accumulation model can link behavioral reaction times and IPS activity (Kay KN and 18 

JD Yeatman 2017).   19 

Following this approach, we compared IPS responses across the various stimulus 20 

manipulations and tasks. IPS exhibited greater activity in the face task compared with the dot 21 

task in the position study (Figure 8A-B). This is in line with the more pronounced attentional 22 

effects observed in VTC for the face task. The result also mirrors the finding of greater IPS 23 

activity in the one-back task compared to the categorization task in the category study (Figure 24 

8C-D). The flexible-attention framework also suggests that IPS activity may show systematic 25 

variation as a function of stimuli within a given task. Indeed, the correlations between IPS 26 

activity to the contrast and phase-coherence levels were established in (Kay KN and JD Yeatman 27 

2017). However, in the position study, we did not find systematic correlation between IPS 28 

activity and attentional effects as function of eccentricity, possibly due to the limited slice 29 

coverage and suboptimal experimental design (see Discussion).  30 

 31 
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1 
Figure 8. Percent enhancement and raw enhancement as a function of IPS activity. 2 
A-B. Data from the position study (task experiment and interleaved-task 3 
experiment, respectively). The small open dots indicate different eccentricities, 4 
and the large solid dot indicates the mean across all locations. C-D. Data from the 5 
category study. The small open dots indicate individual contrast and phase-6 
coherence levels, and the large solid dot indicates the overall mean. The results 7 
show that IPS activity is larger for the face task compared to the dot task and for 8 
the one-back task compared to the categorization task, and this is accompanied by 9 
larger attentional enhancements in FFA and VWFA. 10 
 11 

DISCUSSION 12 

In this article, we analyzed cortical responses in human VTC as a function of stimulus 13 

eccentricity and task. We found that the degree of attention-induced response enhancement 14 

increases from fovea to periphery and from a face-unrelated task to a face-related task. 15 

Moreover, analyses revealed consistent results in an independent experiment in the same study 16 

and another study involving additional stimulus manipulations and ROIs. Taken together, these 17 

results provide new evidence for constraining theoretical models of attention, and suggest that 18 

the effects of attention are dependent on stimuli and task in ways that are not captured by simple 19 

parametric models of attention that have been previously proposed. Understanding the 20 
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mechanisms of attention might require further delineating the interaction between attention and 1 

other cognitive processes (e.g., decision-making). 2 

 3 

Previous models of attention do not account for the observed effects 4 

 Most prior research on the quantitative nature of attention has investigated the impact of 5 

attention on the shape of CRFs (Li X et al. 2008; Murray SO 2008; Boynton GM 2009). This 6 

approach has prompted several influential computational frameworks, such as the response-gain 7 

model (McAdams CJ and JH Maunsell 1999), the contrast-gain model (Reynolds JH et al. 2000; 8 

Martinez-Trujillo JC and S Treue 2004), and the additive-shift model (Buracas GT and GM 9 

Boynton 2007).  One attraction of this fixed-parameter approach is that data from monkey 10 

electrophysiological, human fMRI, and psychophysical studies can be analyzed and compared 11 

within a common mathematical framework. Boynton GM (2009) used CRF modeling to 12 

summarize findings from seven different studies. Among three fMRI studies in his analysis, 13 

results in Buracas GT and GM Boynton (2007) and Murray SO (2008) are better explained by 14 

the additive-shift model, while results in Li X et al. (2008) are better explained by the contrast-15 

gain model. These models, however, do not provide satisfactory explanations for our data (see 16 

Results). 17 

With regard to the contrast-gain model, it is theoretically possible that attention shifts 18 

contrast response functions very far to the left so that only the upper asymptotic part of responses 19 

are observed, and this might be one way of attempting to reconcile the contrast-gain model with 20 

our measurements. However, notice that the contrast-gain model predicts that attention should 21 

produce no response difference at high contrast (i.e., 100%), but we can still see clear response 22 

differences at 100% contrast as well as 100% phase coherence and at the fovea (upper row in 23 

Figure 6). 24 

 Another limitation of the CRF modeling approach is that it is essentially a descriptive 25 

approach that merely summarizes the apparent structure of data into a function with a few 26 

parameters. The approach does not attempt to characterize the neural source of attentional 27 

modulations, such as where and how top-down influences are generated. In contrast, our efforts 28 

to characterize the IPS as the source of top-down modulations provides an opportunity to study 29 

more directly the causes that underlie modulations of sensory responses.  30 

 31 
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The flexible-attention framework takes into account stimulus and task 1 

Cognitive tasks are remarkably diverse, imposing different task demands on neural 2 

processing. For example, the categorization task in the category study requires attention to the 3 

stimuli and decisions made upon them; the one-back task in the category study requires both 4 

attention and temporal maintenance of information. We propose a flexible-attention framework 5 

that postulates that attention enhances responses in task-relevant regions in order to process 6 

specific stimuli and meet certain task demands. We emphasize that this is a framework that 7 

implies a change of conceptual stance, as opposed to a fully quantitative model of attention. In 8 

this framework, the observed top-down modulations in an experiment — which might be 9 

conventionally referred to as “attention” — depend on the details of the other cognitive processes 10 

used to fulfill the task (e.g., decision-making, memory). Conventional fixed-parameter modeling 11 

approaches do not take these complexities into account. For example, even though attention can 12 

be allocated to two different stimuli in seemingly the same way, the task difficulty might differ 13 

for these stimuli and lead to differing neural effects (Ress D et al. 2000; Kay KN and JD 14 

Yeatman 2017).  15 

Our results have shown the significance of the flexible-attention framework. The inverse 16 

relationship that we have demonstrated between the strength of bottom-up responses and the 17 

magnitude of attentional enhancement has a clear interpretation in the context of evidence-18 

accumulation models of perceptual decision-making. Most visual tasks require the brain to 19 

accumulate sensory evidence to make a decision, and in general we may suppose that weak 20 

neural responses constitute weak sensory evidence, therefore leading to longer evidence-21 

accumulation. 22 

Note that the flexible-attention framework does not imply that weak neural responses 23 

always receive disproportionately large top-down modulation. If a task involves no demand for 24 

processing weak stimuli, the attentional effect on weak stimuli might be small. For an 25 

illustration, consider the fact that attentional effects are relatively small for 0% phase-coherence 26 

stimuli (Figure 6D-F). It may be the case that the absence of any coherent form in these stimuli 27 

may render perceptual decisions (such as category judgment or one-back judgments) easier 28 

compared to the case of partially coherent stimuli. Accordingly, the evidence-accumulation 29 

process may be quite short. To more definitively resolve these unknowns, it is necessary to 30 

develop formal characterizations of the processes that underlie different tasks. 31 
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 1 

IPS as a potential source of top-down attentional enhancement 2 

One might wonder whether the flexible-attention framework can be translated into a quantitative 3 

model that characterizes neural responses. We proposed one such model, called IPS-scaling 4 

model, in the category study (Kay KN and JD Yeatman 2017). Researchers have long 5 

highlighted the crucial role of the parietal cortex in top-down attentional control; yet quantitative 6 

models have been rarely established. One important stride we made in the category study is to 7 

show that IPS activity predicts the amount of task-induced response scaling observed in FFA and 8 

VWFA.  9 

We extend this analysis to the data from the position study. As shown in Figure 8A-B, 10 

IPS responses increase from the dot task to the face task, which mirrors the increase in top-down 11 

modulation in VTC from the dot task to the face task. However, we did not find systematic IPS-12 

attention covariation across stimulus eccentricities within a task. This is possibly due to the 13 

specific experimental setting here. First, the position study did not set out to study interactions 14 

between IPS and VTC, and the scanning protocol provided only limited coverage of IPS 15 

(approximately up to IPS-0). This may have contributed to the noisy measurements of IPS 16 

responses (large horizontal error bars in Figure 8A-B). Second, the experimental design of the 17 

position study might not have been optimal for eliciting strong responses from the IPS. This is 18 

because the very quick presentation of stimuli (500ms/face) forces participants to quickly make 19 

decisions and this may preclude the complete unfolding of an evidence-accumulation process. 20 

 21 

Stronger attentional effect in high-level visual areas 22 

In the present study, we primarily focused on high-level category-selective visual regions 23 

instead of low-level or middle-level visual regions, which are the focus of previous studies. One 24 

benefit of choosing FFA and VWFA is that we have relatively advanced understandings of their 25 

functional selectivities (Grill-Spector K et al. 2017). Moreover, these high-level visual areas are 26 

known for receiving greater attentional impacts compared to low-level visual areas (Kastner S 27 

and LG Ungerleider 2000). Indeed, we found much stronger attentional effects in high-level 28 

face-selective areas than low-level areas (Figures 3-4). This provides the advantage of a larger 29 

dynamic range of attentional enhancement, which helps to adjudicate different models of 30 

attention. 31 
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  Another departure from previous studies is that we not only target high-level visual areas, 1 

but also measure their responses to a wide range of stimulus and task manipulations. For 2 

instance, previous studies using the CRF modeling approach typically manipulate only stimulus 3 

contrast. How attention influences visual coding on a broader range of feature dimensions (e.g., 4 

eccentricity, phase coherence) remains under-studied. In the position and category studies, we 5 

probed attentional effects as a function of three stimulus features (eccentricity, contrast, phase 6 

coherence), providing a more complete characterization of functional properties of the visual 7 

system. One recent study found that attentional effects were larger in fovea than in periphery 8 

(Bressler DW et al. 2013). That study, however, used checkerboard stimuli that elicited only 9 

strong responses in low-level visual areas. One important direction of future work might be to 10 

explain such differential attentional effect between low-level and high-level cortices. 11 

 12 

Region-level characterization of attentional effects  13 

The original analyses performed in the position study (Kay KN et al. 2015) examined 14 

attentional effects on spatial representation in human VTC at the level of single voxels. Through 15 

population receptive field (pRF) modeling, it was shown that task-specific attention alters the 16 

center, size and amplitude of pRFs of voxels in VTC. Analyses in the current paper pursue a 17 

fundamentally different approach and provide different insight into the nature of attentional 18 

modulation. Rather than characterizing the spatial tuning profile of individual voxels, we 19 

calculated region-level responses and investigated how and why the strength of attentional 20 

modulations varies for different stimuli and tasks. Though the motivations are different, the two 21 

approaches have revealed some conceptually consistent results. For instance, both analyses 22 

demonstrate greater attentional effects in the face task compared to the dot task, and attentional 23 

effects are found to progressively develop along the visual hierarchy. We believe that exploring 24 

different analyses and interpretations of neural measurements is critical for achieving a better 25 

understanding of attentional effects.  26 
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