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Abstract 

 

Background 

Genome wide association studies (GWAS) are greatly accelerating the pace of discovery of germline variants 

underlying the genetic architecture of sporadic breast cancer predisposition. We have built the first 

knowledge-base dedicated to this field and used it to generate hypotheses on the molecular pathways 

involved in disease susceptibility.    

 

Methods 

We gathered data on the common single nucleotide polymorphisms (SNPs) discovered by breast cancer risk 

GWAS. Information on SNP functional effect (including data on linkage disequilibrium, expression 

quantitative trait locus, and SNP relationship with regulatory motifs or promoter/enhancer histone marks) 

was utilized to select putative breast cancer predisposition genes (BCPGs). Ultimately, BCPGs were subject 

to pathway (gene set enrichment) analysis and network (protein-protein interaction) analysis.  

 

Results 

Data from 38 studies (28 original case-control GWAS enrolling 383,260 patients with breast cancer; and 10 

GWAS meta-analyses) were retrieved. Overall, 281 SNPs were associated with the risk of breast cancer with 

a P-value <10E-06 and a minor allele frequency >1%. Based on functional information, we identified 296 

putative BCPGs. Primary analysis showed that germline perturbation of classical cancer-related pathways 

(e.g., apoptosis, cell cycle, signal transduction including estrogen receptor signaling) play a significant role in 

breast carcinogenesis. Other less established pathways (such as ribosome and peroxisome machineries) were 

also highlighted. In the main subgroup analysis, we considered the BCPGs encoding transcription factors 
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(n=36), which in turn target 252 genes. Interestingly, pathway and network analysis of these genes yielded 

results resembling those of primary analyses, suggesting that most of the effect of genetic variation on 

disease risk hinges upon transcriptional regulons. 

 

Conclusions 

This knowledge-base, which is freely available and will be annually updated, can inform future studies 

dedicated to breast cancer molecular epidemiology as well as genetic susceptibility and development.  
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Introduction 

 

With a 10-12% lifetime risk, breast cancer is the most common cancer among women with about 1,700,000 

new cases and more than 500,000 deaths each year worldwide (1). Breast cancer is a multifactorial disease 

stemming from a complex interplay between environmental, reproductive/endocrine and genetic risk 

factors. Dissecting the genetic architecture of breast cancer susceptibility is a pivotal step to understand the 

cascade of molecular events underlying breast carcinogenesis, which ultimately could lead to better 

preventive and therapeutic strategies according to the precision medicine principles (2).  

Familial aggregation of breast cancer (which occurs in about 10% of cases) has led to family-based linkage 

analysis and positional cloning studies demonstrating that rare (<1%) germline DNA variation in high to 

moderate penetrance cancer predisposition genes - such as BRCA1, BRCA2, PTEN, CHEK2, ATM, BRIP1 and 

PALB2 - accounts for about 15-20% of the familial risk of this disease (3,4). The residual heritability for breast 

cancer is believed to be sustained by a polygenic model according to the common disease/common variant 

hypothesis. Subsequent case-control studies based on the candidate gene approach (also known as 

hypothesis testing approach) have identified some common germline variants (mainly single nucleotide 

polymorphisms, SNPs) linked to breast cancer risk, though the evidence quality is often low mainly because 

of small sample size and result heterogeneity (5,6). More recently, the completion of the Human Genome 

Project and the implementation of genome-wide association studies (GWAS) – based on a hypothesis 

generating (also known as data driven) approach and testing hundreds of thousands of SNPs at a time - has 

greatly accelerated the pace of discovery of low penetrance variants linked to the risk of many diseases, 

including several cancer types (7).  

To date, tens of GWAS dedicated to breast cancer have been published, and many single SNPs have been 

associated with the risk of this malignancy (3,6). This has led to an overwhelming wealth of data which are 

often difficult to manage by the single reader, in part because most susceptibility loci are intergenic (and thus 
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are linked neither to an obvious gene nor to an obvious functional effect), which hinders a straightforward 

biological interpretation typical of candidate gene studies.  

With the present work we intended to systematically review breast cancer GWAS findings in order to provide 

readers with the first publicly available knowledge-base dedicated to the relationship between germline 

genomic DNA variation and breast cancer risk. According to the above mentioned polygenic model of 

sporadic tumor inheritance and using modern SNP-to-gene and gene-to-function approaches such as 

integrative analysis of genomic data (8,9) as well as pathway and network analysis (10,11), we also aimed to 

suggest a biological interpretation of current findings. In particular, we tried to exploit the available GWAS 

evidence to comprehensively identify the cell pathways whose germline variation condition the 

predisposition to breast cancer, with an additional effort to prioritize genes/pathways/networks which could 

be of special relevance to inform future studies in the fields of both molecular epidemiology and biology of 

breast cancer.  
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Materials and Methods 

We collected GWAS findings on breast cancer risk (along with other genomic data, see below) to identify 

breast cancer risk associated SNPs, which were then linked to breast cancer predisposition genes (BCPGs): 

the data from this knowledge-base were used to perform pathway and network analysis. A flowchart of the 

study design is reported in Figure 1. 

 

Figure 1 

Study design: flow chart of the integrative analysis of genomic data on breast cancer susceptibility 
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Breast cancer risk associated SNPs 

GWAS addressing the role of germ-line single nucleotide polymorphisms (SNPs) in breast cancer susceptibility 

were retrieved in the GWAS Catalog repository (7) as well as by performing a systematic review in PubMed 

(search terms: “breast cancer”, “GWAS”). GWAS meta-analyses were also included for data extraction. 

Searches were updated until the 11th of December 2017.  

To be included in the knowledge-base, each SNP had to be associated with breast cancer risk with a nominal 

P-value lower than 1x10E-06 (genome-wide significance level) and have a minor allele frequency ≥ 1% in the 

general population of European ancestry. 

 

SNP-to-gene analysis 

Following the principles of integrative analysis of genomic data (8,9), the functional association between a 

breast cancer risk associated SNP and a gene (hereafter called BCPG) was scored according to three types of 

information: 

A) SNP relationship with gene(s):  

[Category 1 – score=2] This applies to within-gene non-synonymous variants (e.g., missense SNPs), 

variants associated with expression quantitative trait locus (eQTL) data (based on GTex portal 

database (12)), variants in high linkage disequilibrium (LD) (pairwise r-squared ≥ 0.8) with another SNP 

that is an eQTL hit, or variants in high LD with a within-gene non-synonymous variant; 

[Category 2 – score=1] This applies to within-gene synonymous variants, or variants located in a non-

coding gene region (e.g., intronic SNPs), or variants in high LD with another within gene SNP 

(synonymous variant, or variant located in a non-coding gene region);  

[Category 3 – score=0] intergenic and non eQTL hit variants.  
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B) SNP relationship with regulatory motifs (i.e., variant potentially affecting the binding of transcription 

factors based on a library of position weight matrices scored on genomic sequences (13)):  

[Category 1 – score=1] variant changing these motifs, or variant in high LD with another SNP changing 

these motifs; 

[Category 2 - score = 0] no change of motif/LD with SNP changing motif. 

C) SNP relationship with breast tissue specific promoter/enhancer histone marks (based on data from 

the Roadmap Epigenomics Project (14)):  

[Category 1, score=1] variant co-localization with these marks, or variant in high LD with another SNP 

co-localising with these marks;  

[Category 2, score=0] no co-localization with epigenetic marks/LD with SNP colocalising with 

epigenetic marks. 

The principles underlying the above scoring system are analogous to those employed in well-established 

functional annotation databases (such as RegulomeDB (15) and HaploReg (16)). However, we added the 

information deriving from LD analysis (which was performed using the LDLink website (17)), which increases 

the likelihood of identifying additional functional variants relevant to disease susceptibility. 
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Gene-to-function: pathway and network analysis 

Once BCPGs were identified, we used them to perform pathway and network analysis in order to identify 

biological functions whose genetic perturbations can predispose to breast cancer development (10,11).  

For pathway analysis purposes we utilized gene set enrichment analysis (GSEA) as performed by the EnrichR 

web server (18). Hypergeometric distribution was used to calculate the statistical significance of gene 

overlapping (19), followed by correction for multiple hypotheses testing (using the false discovery rate [FDR] 

method (20)). Only pathways with a FDR <0.05 were considered of interest. 

Also protein-protein interaction (PPI) networks can be employed to select gene sets. In contrast to pathways, 

networks are not based on specific biological functions but are built on the basis of both direct (physical) and 

indirect (genetic) interactions between gene products (proteins). For network analysis, we utilized the 

STRING 10.5 web server (21). In order to consider only highly reliable information on protein-protein 

interactions (PPI), we set the interaction score to ≥ 0.7 (high confidence). The resulting network provides 

information of the degree of overall connectivity across imputed gene products (as quantified by the ratio 

between observed and expected interactions [a.k.a. “edges”] between proteins [a.k.a. “nodes”], and formally 

tested by means of a PPI enrichment test). Then, molecular clusters (subnetworks) can be identified that can 

be utilized for gene set enrichment analysis (only subnetworks with at least three BCPGs were considered). 

When the network connectivity is low, the PPI database can be exploited to add first-shell interactors (we 

chose to add no more than 10 such interactors to avoid data over-interpretation) and then re-run pathway 

analysis. Ultimately, this data augmentation process increases the likelihood of identifying relevant biological 

pathways which would be otherwise overlooked when starting with only few BCPGs belonging to a given 

pathway.  
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Other analyses 

Within the frame of network analysis, we searched for so called “hub proteins”: these are molecules with a 

high degree of connectivity with the other network components and thus are likely to play a dominant role 

in the activity of the network itself (they are also known as “influencers”) (22). To this aim, we used the EsyN 

webtool (23) to calculate the collective influence score, which defined as the product of a node-reduced 

degree (number of edges minus one) times the sum of the reduced degree of the nodes that are two steps 

away (a.k.a. radius) (24).  

Finally, in order to provide further information beyond the cis effects of included variants (as done in the 

above analyses), we explored the potential effect in trans of breast cancer associated SNPs. To this aim, we 

first identified the transcription factors among the putative BCPGs: then, the genes whose expression were 

regulated by these transcription factors (identified by using the Uniprot (25) and TRRUST (26) repositories) 

were input in both pathway and network analysis to assess the cellular functions potentially affected by 

germline variation linked to cancer risk.  
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Results 

Breast cancer risk associated SNPs 

We found 38 studies (published between 2007 and 2017) which matched our inclusion criteria (27-64). Of 

these, 28 were original case-control GWAS (overall enrolling 383,260 patients with breast cancer) and 10 

were meta-analyses of previously published case-control GWAS (overall enrolling 239,271 patients with 

breast cancer) (Supplementary Table 1). 

In most studies, patients and controls were of European ancestry (71% among original GWAS; 97% among 

GWAS meta-analyses); in the remaining studies, individuals were mainly of Asian ancestry among original 

GWAS (96%) and African-American among GWAS meta-analyses (100%). Only one original study was 

dedicated to male breast cancer. As regards tumor subtype by estrogen receptor expression, two original 

GWAS were dedicated to receptor negative and two to receptor positive breast cancer, whereas four GWAS 

meta-analyses were dedicated to ER negative cases. In the original articles associations were reported (and 

are reported hereafter in the text) as per-allele odds ratios (ORs).    

Overall, 281 SNPs were associated with the risk of breast cancer with a P-value <10E-06 and a MAF >0.01 

(Supplementary Table 2); the median minor allele frequency was 0.28 (interquartile range [IQR]: 0.16-0.39); 

the median OR was 0.93 (IQR: 0.91-0.95) and 1.11 (IQR: 1.06-1.19) for protective and risk alleles, respectively.  

Chromosome distribution showed an over-representation of chromosome 5 (signals observed: 32; expected: 

15; FDR: 0.0003) and chromosome 19 (signals observed: 12; expected: 5; FDR: 0.014).  

Linkage disequilibrium (LD) analysis of the 281 SNPs showed that 48 polymorphisms were tagged by one or 

more other variants (LD r-squared >0.8), leading to the identification of 233 breast cancer predisposition loci 

(Supplementary Table 3).  

Out of 281 reported SNPs associated with breast cancer risk at a genome-wide significance level, only 34 

(12.1%) were reported by two or more data sources.  
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Whereas most studies (n=21, 55.3%) enrolled women with unspecified sporadic breast cancer, subgroups 

were specifically investigated by others: estrogen receptor negative breast cancer (n=7); estrogen receptor 

positive tumor (n=2); triple negative tumor (n=1); breast cancer in BRCA1/2 mutation carriers (studies, n=3); 

early onset breast cancer (n=1); breast cancer in post-menopausal women (n=1); lobular carcinoma (n=1); 

and breast cancer in males (n=1).   

 

Breast cancer predisposition genes  

The majority of SNPs were located within coding genes (n=160, 56.9%). More specifically, SNPs were located 

in gene 3’-UTR (n=7, 2.5%), intron (n=140, 49.8%), exon (n=13, 4.6%; of these: missense, n=8, synonymous, 

n=4 and non-sense [stop gain], n=1). The remaining SNPs were intergenic region (n=95, 33.8%) and within 

non-coding genes (n=17, 9.2%). Of note, 6 intergenic SNPs (2.1%) were in high LD with non-tested SNPs 

located within a gene and other 8 SNPs (2.8%) were in high LD with non-tested missense variants. 

As regards eQTL analysis, 107 SNPs (38.1%) were directly associated with a significant effect on the 

expression of one or more genes, and 3 SNPs (1.1%) were in high LD with SNPs with an eQTL effect. A large 

majority of 229 variants (81.5%) were associated with changing regulatory motifs, with 43 SNPs (15.3%) in 

high LD with those 229 variants, whereas only 9 SNPs had no impact on regulatory motifs. In addition, 79 

SNPs (28.1%) co-localized with promoter/enhancer histone marks, with 107 variants (38.1%) in high LD with 

those 79 SNPs, and 95 SNPs (33.8%) having no such property. 

Based on the above information, we associated the 281 SNPs linked with breast cancer risk to 334 genes with 

a score ranging from 0 to 4 (Supplementary Table 4): SNPs with low (0-1), intermediate (2) and high (3-4) 

functional score were 30 (10.7%), 68 (24.2%), and 183 (65.1%), respectively. In order to exclude genes with 

low level of evidence of association with breast cancer risk SNPs, we further considered only SNPs with a 

score equal or greater than 2 (n=251). With this cut off, we identified 296 putative BCPGs, which were the 

genes utilized in the following primary analysis. These genes code for known proteins in most cases (n=255, 

86.1%).  
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Pathway and network analysis 

Primary gene set enrichment analysis demonstrated that the 296 BCPGs are enriched in genes involved in 

apoptotic pathway and peroxisome machinery, as illustrated in Table 1. 

 

Table 1: Pathway analysis of breast cancer predisposition genes (BCPGs). Overlap: number of 
BCPGs over number of pathway genes. FDR: false discovery rate.  

 

PRIMARY ANALYSIS (296 BCPGs) 

Pathway Overlap FDR Genes 

Apoptosis 9/140 0.04330 PIDD1;DFFA;BCL2L11;CASP8;TNFSF10;ITPR1;PIK3R3;CTSW;CFLAR 

Peroxisomal importomer 18/82 <0.00001 
DCLRE1B;TCF7L2;DFFA;CDKN2B;STXBP4;PDE4D;MKL1;EBF1;LSP1;PEX14
;RAD51B; 
BABAM1;TOX3;ADAM29; RALY;MDM4;LGR6;CASC16 

 

FIRST-SHELL AUGMENTATION (296 BCPGs + 10 interactors) 

Pathway Overlap FDR Genes 

Prostate cancer 6/89 0.04198 TCF7L2;CCND1;CCNE1;PIK3R3;FGFR2;CREB5 

Apoptosis 8/140 0.02506 DFFA;BCL2L11;CASP8;TNFSF10;ITPR1;PIK3R3;CTSW;CFLAR 

FoxO signaling 8/133 0.02373 CDKN2B;BCL2L11;CCND1;IRS1;TNFSF10;PIK3R3;FBXO32;TGFBR2 

Ribosome 10/137 0.00261 RPS16;RPS15A;RPS29;RPLP1;RPS3;RPLP2;RPS2;MRPL34;RPS13;RPS23 

Non-alcoholic fatty liver 
disease 9/151 0.01670 ITCH;NDUFA13;BCL2L11;CASP8;IRS1;NDUFB3;NDUFA2;PIK3R3;COX6A1 

 

SMALL SUBNETWORK (5 BCPGs) 

Pathway Overlap FDR Genes 

Translation Initiation 3/114 0.00001 RPLP2;EIF2S2;RPS23 

Ribosome formation 3/180 0.00003 RPLP2;WDR43;RPS23 

 

LARGE SUBNETWORK (59 BCPGs) 

Pathway Overlap FDR Genes 

Pathways in cancer 11/397 <0.00001 
TCF7L2;CDKN2B;CASP8;CCND1;CCNE1;ADCY3;LPAR2;PIK3R3;BRCA2;FG
FR2;TGFBR2 

Pancreatic cancer 4/66 0.00057 CCND1;PIK3R3;BRCA2;TGFBR2 

Prostate cancer 6/89 <0.00001 TCF7L2;CCND1;CCNE1;PIK3R3;FGFR2;CREB5 

Colorectal cancer 4/62 0.00049 TCF7L2;CCND1;PIK3R3;TGFBR2 

Small cell lung cancer 4/86 0.00118 CDKN2B;CCND1;CCNE1;PIK3R3 

Endometrial cancer 3/52 0.00258 TCF7L2;CCND1;PIK3R3 

Acute myeloid leukemia 3/57 0.00312 TCF7L2;CCND1;PIK3R3 

Chronic myeloid leukemia 3/73 0.00520 CCND1;PIK3R3;TGFBR2 

Proteoglycans in cancer 5/203 0.00219 PPP1CB;CCND1;ERBB4;PIK3R3;ESR1 
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MicroRNAs in cancer 4/297 0.03057 BCL2L11;CCND1;CCNE1;IRS1 

FoxO signaling 8/133 <0.00001 CDKN2B;BCL2L11;CCND1;IRS1;TNFSF10;PIK3R3;FBXO32;TGFBR2 

PI3K-Akt signaling 10/341 <0.00001 EFNA1;COL1A2;BCL2L11;CCND1;CCNE1;IRS1;LPAR2;PIK3R3;FGFR2;CRE
B5 

p53 signaling 3/69 0.00481 CASP8;CCND1;CCNE1 

cAMP signaling 6/199 0.00048 PPP1CB;GIPR;PDE4D;ADCY3;PIK3R3;CREB5 

Rap1 signaling 5/211 0.00249 EFNA1;ADCY3;LPAR2;PIK3R3;FGFR2 

AMPK signaling 4/124 0.00258 CCND1;IRS1;PIK3R3;CREB5 

Hippo signaling 4/153 0.00481 PPP1CB;TCF7L2;CCND1;TGFBR2 

MAPK signaling 4/255 0.02078 MAP3K1;TAB2;FGFR2;TGFBR2 

Phospholipase D signaling 3/144 0.02410 ADCY3;LPAR2;PIK3R3 

TNF signaling 6/110 0.00002 ITCH;CASP8;PIK3R3;TAB2;CFLAR;CREB5 

Longevity regulation 4/94 0.00147 IRS1;ADCY3;PIK3R3;CREB5 

Apoptosis 5/140 0.00065 BCL2L11;CASP8;TNFSF10;PIK3R3;CFLAR 

Cell cycle 4/124 0.00258 CDKN2B;CCND1;CCNE1;ORC2 

Viral carcinogenesis 6/205 0.00049 CDKN2B;CASP8;CCND1;CCNE1;PIK3R3;CREB5 

Hepatitis B 6/146 0.00010 MAP3K1;CASP8;CCND1;CCNE1;PIK3R3;CREB5 

Measles 5/136 0.00061 CCND1;CCNE1;TNFSF10;PIK3R3;TAB2 

HTLV-I infection 7/258 0.00022 CDKN2B;MAP3K1;TERT;CCND1;ADCY3;PIK3R3;TGFBR2 

Herpes simplex infection 3/185 0.04043 PPP1CB;CASP8;TAB2 

Estrogen signaling 4/99 0.00170 ADCY3;PIK3R3;ESR1;CREB5 

Thyroid hormone 
signaling 

4/118 0.00249 NCOA1;CCND1;PIK3R3;ESR1 

Oxytocin signaling 4/158 0.00511 PPP1CB;CCND1;ADCY3;PIK3R3 

Prolactin signaling 3/72 0.00513 CCND1;PIK3R3;ESR1 

Focal adhesion 4/202 0.01145 PPP1CB;COL1A2;CCND1;PIK3R3 

Toll-like receptor signaling 3/106 0.01327 CASP8;PIK3R3;TAB2 

Endocytosis 4/259 0.02105 ITCH;ERBB4;FGFR2;TGFBR2 
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Network analysis suggested that BCPGs protein products did not have more interactions among themselves 

than expected for a random protein set of equal size drawn from the proteome (observed edges: 98; 

expected edges: 83; PPI enrichment test P-value: 0.0527), indicating that these proteins are not remarkably 

biologically connected as a group. When 10 first-shell interactors were added to the network, ribosome 

proteins were then included in the enrichment list (Table 1).  

Network analysis also enabled us to identify one large (n=59) and one small (n=5) subnetwork (Figure 2): the 

former was enriched in several cancer-related pathways, including apoptosis and estrogen receptor signaling, 

whereas the latter was enriched in ribosome machinery components (see Table 1). Finally, influence analysis 

of the large subnetwork identified estrogen receptor 1 (ESR1) as the most influential protein (Suppementary 

Table 5).  

 

 

Figure 2 

Network analysis: network plot of protein-protein interactions regarding the products of the putative 
breast cancer predisposition genes identified through the integrative analysis of GWAS data 
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Subgroup analysis 

In a first subgroup analysis we considered the BCPGs encoding transcription factors: there were 36 such 

genes (Figure 3), which represent 12.2% of the BCPGs identified in this work, a figure only slightly higher than 

expected (10%). These transcription factors target 252 genes (Figure 3), with nine also being BCPGs (AHRR, 

BRCA2, CCND1, CDKN2B, ESR1, FOXP1, FTO, LPAR2, TERT).   

 

 

 

Figure 3 

Breast cancer susceptibility regulons: targets of transcription factors whose germline variation is associated 
with breast cancer risk  
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Pathway analysis of the 252 targets demonstrated a significant enrichment in many cancer-related pathways, 

including those involved in the pathogenesis of different tumor types (mainly but not only carcinomas), cell 

cycle and apoptosis, multiple signaling pathways (such as p53, PI3K-Akt, Wnt, Hippo, Mapk, ErbB, HIF-1 and 

VEGF), hormone pathways (including sex hormones), immunity (with special regard to anti-viral immune 

response), and cell adhesion (Table 2).  

 

 

Table 2: Pathway analysis of breast cancer predisposition genes (BCPGs) encoding transcription 
factors. Overlap: number of BCPGs over number of pathway genes. FDR: false discovery rate.  

 

Pathways Overlap FDR Genes 

Pathways in cancer 51/397 <0.00001 

RET;ITGB1;CDKN1A;SPI1;CDKN1B;ITGA2B;PTEN;PIK3CD;BRCA2;MECOM;CCND1; 
CDH1;MYC;HSP90AA1;ITGA3;WNT5A;ARNT;FOS;MMP9;AR;COL4A1;COL4A4; 
RARA;BIRC5;TP53;CSF1R;PTGER2;LPAR2;TGFA;CXCR4;KLK3;PTGS2;HIF1A;EGFR; 
FOXO1;RELA;RASGRP3;ERBB2;E2F1;JUN;CDKN2B;STAT1;STAT3;NFKB1;VEGFA; 
IL6;CXCL12;CDK4;MDM2;BCL2;CTNNB1 

Prostate cancer 19/89 <0.00001 
HSP90AA1;CDKN1A;CDKN1B;PTEN;TGFA;PIK3CD;KLK3;RELA;EGFR;FOXO1;NFKB1; 
AR;CCND1;ERBB2;BCL2;E2F1;MDM2;CTNNB1;TP53 

Small cell lung cancer 18/86 <0.00001 
ITGB1;CDKN2B;CDKN1B;ITGA3;ITGA2B;PTEN;PIK3CD;PTGS2;RELA;NFKB1;CCND1; 
CDK4;COL4A1;MYC;COL4A4;BCL2;E2F1;TP53 

Non-small cell lung cancer 8/56 <0.00001 CCND1;CDK4;ERBB2;E2F1;TGFA;PIK3CD;TP53;EGFR 

Pancreatic cancer 14/66 <0.00001 STAT1;STAT3;TGFA;PIK3CD;BRCA2;RELA;EGFR;NFKB1;VEGFA;CCND1;CDK4;ERBB2; 
E2F1;TP53 

Bladder cancer 12/41 <0.00001 CDKN1A;CCND1;CDK4;CDH1;MYC;ERBB2;MDM2;E2F1;MMP9;TP53;EGFR;VEGFA 

Chronic myeloid leukemia 12/73 <0.00001 CDKN1A;CDKN1B;MECOM;CCND1;CDK4;MYC;E2F1;MDM2;PIK3CD;TP53;RELA; 
NFKB1 

Glioma 10/65 <0.00001 CDKN1A;CCND1;CDK4;E2F1;MDM2;PTEN;TGFA;PIK3CD;TP53;EGFR 

Melanoma 10/71 <0.00001 CDKN1A;CCND1;CDK4;CDH1;E2F1;MDM2;PTEN;PIK3CD;TP53;EGFR 

Endometrial cancer 9/52 <0.00001 CCND1;CDH1;MYC;ERBB2;PTEN;CTNNB1;PIK3CD;TP53;EGFR 

Colorectal cancer 9/62 <0.00001 JUN;CCND1;MYC;BCL2;BIRC5;CTNNB1;PIK3CD;FOS;TP53 

Renal cell carcinoma 6/66 0.00052 JUN;TGFA;ARNT;PIK3CD;HIF1A;VEGFA 

Acute myeloid leukemia 8/57 <0.00001 SPI1;CCND1;MYC;STAT3;RARA;PIK3CD;RELA;NFKB1 

PI3K-Akt signaling 37/341 <0.00001 
ITGB1;CSF1R;CDKN1A;CDKN1B;FLT1;CSF1;EPO;ITGB4;ITGA2B;PTEN;LPAR2;PIK3CD; 
PRL;BRCA1;RELA;EGFR;CCND2;CCND1;YWHAQ;MYC;KDR;JAK2;HSP90AA1;ITGA3; 
NFKB1;IL2;VEGFA;COL1A1;IL3;IL6;COL4A1;CDK4;COL4A4;IL2RA;MDM2;BCL2;TP53 

MAPK signaling 14/255 0.00001 
JUN;SRF;HSPB1;FOS;RELA;EGFR;NFKB1;RASGRP3;MECOM;MAPKAPK3;MYC;IL1B; 
NF1;TP53 

ErbB signaling 8/87 0.00004 JUN;CDKN1A;CDKN1B;MYC;ERBB2;TGFA;PIK3CD;EGFR 

Ras signaling 11/227 0.00043 CSF1R;FLT1;CSF1;KDR;NF1;PIK3CD;RELA;EGFR;NFKB1;VEGFA;RASGRP3 

p53 signaling 11/69 <0.00001 CDKN1A;CCNB1;CCND2;CCND1;CDK4;CCNG2;SERPINE1;MDM2;PTEN;PMAIP1;TP53 

FoxO signaling 15/133 <0.00001 
CDKN2B;CDKN1A;CDKN1B;STAT3;PTEN;PIK3CD;EGFR;FOXO1;CCNB1;IL6;CCND2; 
CCND1;BCL6;CCNG2;MDM2 

cAMP signaling 13/199 <0.00001 OXTR;JUN;PTGER2;PIK3CD;FOS;ATP1A1;RELA;NFKB1;MC2R;FSHR;AMH;MYL9;CFTR 

Rap1 signaling 14/211 <0.00001 ITGB1;CSF1R;FLT1;CSF1;ITGA2B;ITGB2;LPAR2;PIK3CD;EGFR;VEGFA;RASGRP3;CDH1; 
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KDR;CTNNB1 

Chemokine signaling 10/187 0.00039 CXCL12;STAT1;STAT3;CCL3;PIK3CD;CXCR4;JAK2;RELA;NFKB1;PF4 

Jak-STAT signaling 19/158 <0.00001 CDKN1A;CSF2;EPO;STAT1;IL13;STAT3;MPL;PIK3CD;PRL;IL2;IL3;IL6;CCND2;CCND1; 
IFNG;MYC;IL2RA;BCL2;JAK2 

NF-kappa B signaling 9/93 0.00001 CD40;CXCL12;IL1B;BCL2;LY96;PRKCQ;PTGS2;RELA;NFKB1 

Hippo signaling 15/153 <0.00001 
WNT5A;SERPINE1;ITGB2;AFP;BMP7;CCND2;CCND1;YWHAQ;CDH1;DLG4;MYC;BIRC5; 
SNAI2;CTNNB1;AMH 

Wnt signaling 7/142 0.00496 JUN;CCND2;CCND1;MYC;WNT5A;CTNNB1;TP53 

HIF-1 signaling 19/103 <0.00001 
CDKN1A;FLT1;CDKN1B;EPO;SERPINE1;STAT3;CYBB;ARNT;PIK3CD;HIF1A;RELA;EGFR; 
NFKB1;VEGFA;IL6;IFNG;ERBB2;BCL2;TIMP1 

VEGF signaling 6/61 0.00034 MAPKAPK3;KDR;HSPB1;PIK3CD;PTGS2;VEGFA 

TNF signaling 13/110 <0.00001 JUN;CEBPB;CSF2;CSF1;PIK3CD;FOS;PTGS2;MMP9;RELA;NFKB1;IL6;IL1B;JUNB 

Apoptosis 12/140 <0.00001 IL3;JUN;BCL2;BIRC5;HTRA2;PMAIP1;PIK3CD;FOS;TP53;CTSD;RELA;NFKB1 

Cell cycle 15/124 <0.00001 
CDKN2B;CDKN1A;PCNA;CDKN1B;CCNA2;CCNB1;CCND2;CCND1;YWHAQ;CDK4;MYC; 
E2F1;MDM2;TP53;MAD2L1 

Estrogen signaling 8/99 0.00012 HSP90AA1;JUN;SP1;PIK3CD;FOS;ESR1;MMP9;EGFR 

Steroid hormone 
biosynthesis 

15/58 <0.00001 
HSD3B2;UGT1A1;HSD3B1;UGT2B15;AKR1C4;CYP19A1;CYP17A1;CYP11B2;CYP11A1; 
CYP11B1;CYP1A2;CYP1A1; 
CYP1B1;UGT1A4;UGT1A6 

Prolactin signaling 14/72 <0.00001 LHCGR;STAT1;STAT3;LHB;PIK3CD;PRL;FOS;ESR1;RELA;NFKB1;CYP17A1;CCND2;CCND1; 
JAK2 

Thyroid hormone signaling 12/118 <0.00001 NOTCH1;CCND1;STAT1;MYC;MDM2;CTNNB1;PIK3CD;ATP1A1;TP53;ESR1;HIF1A;FOXO1 

Oxytocin signaling pathway 10/158 0.00011 OXTR;JUN;CDKN1A;CCND1;PIK3CD;OXT;FOS;PTGS2;MYL9;EGFR 

T cell receptor signaling 11/104 <0.00001 JUN;CSF2;IFNG;CDK4;CTLA4;PIK3CD;PRKCQ;FOS;RELA;NFKB1;IL2 

Toll-like receptor signaling 11/106 <0.00001 JUN;IL6;CD40;STAT1;IL1B;CCL3;LY96;PIK3CD;FOS;RELA;NFKB1 

Cytokine-cytokine receptor 
interaction 26/265 <0.00001 

CSF1R;CD40;CSF2;FLT1;CSF1;EPO;MPL;CXCR4;TNFRSF11B;PRL;EGFR;KDR;CCL3;AMH; 
TNFRSF18;IL13;BMP7;IL2; 
VEGFA;IL3;IL6;CXCL12;IFNG;IL1B;IL2RA;PF4 

Leukocyte transendothelial 
migration 

10/118 <0.00001 ITGB1;OCLN;CXCL12;ITGB2;CYBB;CTNNB1;PIK3CD;CXCR4;MYL9;MMP9 

Regulation of actin 
cytoskeleton 

10/214 0.00107 ITGB1;ITGA3;ITGB4;RDX;ITGA2B;ITGB2;PIK3CD;MYL9;MYH10;EGFR 

Hepatitis B 22/146 <0.00001 JUN;CDKN1A;PCNA;CDKN1B;STAT1;STAT3;PTEN;PIK3CD;FOS;MMP9;RELA;NFKB1; 
CCNA2;IL6;CCND1;YWHAQ;CDK4;MYC;E2F1;BCL2;BIRC5;TP53 

HTLV-I infection 27/258 <0.00001 
CD40;CDKN1A;SPI1;PCNA;CSF2;SRF;ITGB2;PIK3CD;RELA;CCND2;TERT;CCND1;MYC; 
E2F1;JUN;CDKN2B;WNT5A;FOS;NFKB1;IL2;IL6;CDK4;IL2RA;CTNNB1;TCF3;TP53; 
MAD2L1 

Measles 19/136 <0.00001 CDKN1B;STAT1;MX1;IL13;STAT3;PIK3CD;RELA;NFKB1;IL2;IL6;CCND2;CCND1;IFNG; 
CDK4;IL1B;IL2RA;PRKCQ;JAK2;TP53 

Herpes simplex infection 12/185 0.00001 JUN;IL6;IFNG;STAT1;IL1B;FOS;JAK2;TP53;CLOCK;RELA;NFKB1;ARNTL 

Epstein-Barr virus infection 19/202 <0.00001 
JUN;CD40;CDKN1A;CR2;SPI1;CDKN1B;STAT3;HSPB1;PIK3CD;RELA;NFKB1;CCNA2; 
IFNG;YWHAQ;MYC;MDM2;BCL2;TP53;PTMA 

Influenza A 10/175 0.00023 JUN;IL6;IFNG;STAT1;IL1B;MX1;PIK3CD;JAK2;RELA;NFKB1 

Hepatitis C 9/133 0.00015 OCLN;CDKN1A;STAT1;STAT3;PIK3CD;TP53;RELA;EGFR;NFKB1 

Viral carcinogenesis 17/205 <0.00001 
JUN;CDKN2B;CDKN1A;CDKN1B;SRF;STAT3;PIK3CD;RELA;NFKB1;CCNA2;CCND2; 
CCND1;YWHAQ;CDK4;MDM2;PMAIP1;TP53 

Chemical carcinogenesis 10/82 <0.00001 UGT1A1;CYP1A2;UGT2B15;CYP1A1;CYP1B1;ARNT;UGT1A4;CYP2C19;PTGS2;UGT1A6 

Drug 
metabolism_cytochrome 
P450 

9/69 <0.00001 CYP2B6;UGT1A1;MAOA;CYP2D6;CYP1A2;UGT2B15;UGT1A4;CYP2C19;UGT1A6 

Xenobiotics 
metabolism_cytochrome 
P450 

9/73 <0.00001 CYP2B6;UGT1A1;CYP2D6;CYP1A2;UGT2B15;CYP1A1;CYP1B1;UGT1A4;UGT1A6 

Insulin resistance 9/109 0.00003 IL6;PPP2R4;STAT3;PTEN;PIK3CD;PRKCQ;RELA;FOXO1;NFKB1 

Choline metabolism in 
cancer 8/101 0.00013 DGKG;SLC22A4;JUN;SP1;PIK3CD;FOS;HIF1A;EGFR 

Retinol metabolism 7/65 0.00005 CYP2B6;UGT1A1;CYP1A2;UGT2B15;CYP1A1;UGT1A4;UGT1A6 

Central carbon metabolism 
in cancer 8/67 <0.00001 RET;MYC;ERBB2;PTEN;PIK3CD;TP53;HIF1A;EGFR 

Focal adhesion 20/202 <0.00001 ITGB1;JUN;FLT1;ITGA3;ITGB4;ITGA2B;PTEN;PIK3CD;EGFR;VEGFA;COL1A1;CCND2; 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 12, 2018. ; https://doi.org/10.1101/279984doi: bioRxiv preprint 

https://doi.org/10.1101/279984
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

CCND1;COL4A1;COL4A4;ERBB2;KDR;BCL2;CTNNB1;MYL9 

Cell adhesion molecules 
(CAMs) 

9/142 0.00024 ITGB1;OCLN;CD40;CD6;CDH1;ITGB2;CTLA4;NCAM1;CD34 

Adherens junction 5/74 0.00540 CDH1;ERBB2;SNAI2;CTNNB1;EGFR 

Tight junction 9/139 0.00021 OCLN;CDK4;PTEN;SYMPK;CTNNB1;MYH11;PRKCQ;MYL9;MYH10 

ECM-receptor interaction 8/82 0.00003 COL1A1;ITGB1;ITGA3;COL4A1;ITGB4;COL4A4;ITGA2B;GP1BA 

Transcriptional 
misregulation in cancer 

27/180 <0.00001 
CSF1R;CD40;CEBPB;CDKN1A;CSF2;SPI1;FLT1;CDKN1B;MPO;RELA;FOXO1;CCND2; 
MYC;ELANE;MMP9;RUNX2;NFKB1;PBX1;IL3;IL6;ZEB1;BCL6;SP1;MDM2;RARA; 
TCF3;TP53 

MicroRNAs in cancer 26/297 <0.00001 
CDKN1A;CDKN1B;NOTCH1;ABCB1;PTEN;BRCA1;PTGS2;SLC7A1;EGFR;CCND2; 
CCND1;MYC;ERBB2;E2F1;CYP1B1;RDX;STAT3;MIR27A;MMP9;NFKB1;VEGFA; 
FOXP1;ZEB1;MDM2;BCL2;TP53 

Signaling pathways of stem 
cells 

11/142 <0.00001 ZFHX3;SETDB1;MYC;WNT5A;STAT3;CTNNB1;PIK3CD;TCF3;KLF4;JAK2;POU5F1 

Proteoglycans in cancer 20/203 <0.00001 ITGB1;CDKN1A;RDX;STAT3;WNT5A;IGF2;TWIST1;PIK3CD;HIF1A;ESR1;MMP9; 
EGFR;VEGFA;CCND1;MYC;ERBB2;KDR;MDM2;CTNNB1;TP53 
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Network analysis revealed a very high degree of connectivity across these target genes (observed edges: 

3105; expected: 1104; PPI enrichment p-value: <10E-16); influence analysis showed that the top ten most 

influential proteins largely overlapped with those identified in the primary analysis (8/10), with ESR1 being 

the second ranking molecule (Suppementary Table 5). 

Data were available for 238 SNPs linked to 275 genes which also allowed us to perform a subgroup analysis 

dedicated to estrogen receptor negative breast cancer (only four SNPs were available for estrogen receptor 

positive cases). Pathway and network analysis yielded results very similar to those obtained in the primary 

analysis where all breast cancer cases (both receptor positive and negative) were included (data not shown), 

likely because of the high degree of overlapping between the SNPs (and consequently of genes) of the two 

series. 

 

SNPs shared with other tumors 

Finally, we assessed whether some breast cancer risk associated SNPs are shared with other malignancies, a 

phenomenon known as pleiotropy (65). Querying the GWAS Catalog, we found 37 breast cancer risk SNPs 

shared with other eight tumor types (details are reported in Table 3): ovarian carcinoma (n=7), prostate 

carcinoma (n=4), lung carcinoma (n=2), thyroid carcinoma (n=1), esophageal carcinoma (n=1), renal cell 

carcinoma (n=1), cutaneous melanoma (n=1), glioma/glioblastoma (n=1) and a tumor miscellany mainly 

including ovarian, prostate and lung carcinoma (n=28). In two cases, the breast cancer susceptibility locus 

was shared with other three tumor types: one SNP (rs13016963) was located in chromosome 2q33.1 (sharing 

tumors: prostate and esophageal carcinomas, and cutaneous melanoma), the other SNP (rs10069690) in 

chromosome 5p15.33 (sharing tumors: ovarian and thyroid carcinomas, and glioma/glioblastoma). 

These shared SNPs were associated with 34 genes: when we input these BCPGs into a pathway analysis, 

enrichment in apoptosis and cancer-related pathways was observed (Supplementary Table 6). Upon network 

analysis, the connectivity was very low (observed edges: 2; expected edges: 1; PPI enrichment P-value: 
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0.386). Adding 10 first-shell interactors showed the enrichment in cancer-related pathways as well as 

ribosome machinery and degenerative disease pathways (Supplementary Table 6).  

 

Table 3: Breast cancer risk associated single nucleotide polymorphisms (SNPs) shared with other 
malignancies  

 

Cancer Chromosome SNP Genes 

Glioma/Glioblastoma 5p15.33 rs10069690 TERT 

Ovarian carcinoma 5p15.33 rs10069690 TERT 

Thyroid carcinoma 5p15.33 rs10069690 TERT 

Miscellany 9p21.3 rs1011970 CDKN2B 

Prostate carcinoma 9p21.3 rs1011970 CDKN2B 

Miscellany 19p13.11 rs10419397 ABHD8;ANKLE1;BABAM1 

Ovarian carcinoma 19p13.11 rs10419397 ABHD8;ANKLE1;BABAM1 

Miscellany 14q24.1 rs10483813 RAD51B 

Miscellany 10q26.13 rs1078806 FGFR2 

Miscellany 10q26.13 rs11200014 FGFR2 

Lung carcinoma 13q13.1 rs11571833 BRCA2 

Miscellany 14q24.1 rs11844632 RAD51B 

Miscellany 20q11.22 rs11907546 CHMP4B 

Miscellany 10q26.13 rs1219648 FGFR2 

Esophageal carcinoma 2q33.1 rs13016963 CASP8;ALS2CR12 

Melanoma (cutaneous) 2q33.1 rs13016963 CASP8;ALS2CR12 

Prostate carcinoma 2q33.1 rs13016963 CASP8;ALS2CR12 

Miscellany 3p24.1 rs1352941 NEK10;SLC4A7 

Miscellany 19p13 rs1469713 MAU2;SUGP1;NDUFA13;GATAD2A;CILP2;TM6SF2 

Prostate carcinoma 5p15.33 rs2242652 TERT 

Ovarian carcinoma 19p13.11 rs2363956 ABHD8;ANKLE1;MRPL34;OCEL1 

Miscellany 3p24.1 rs2590265 NEK10 

Miscellany 10q26.13 rs2912780 FGFR2 

Miscellany 10q26.13 rs2981575 FGFR2 

Miscellany 10q26.13 rs2981582 FGFR2 

Miscellany 10q26.13 rs3135718 FGFR2 

Prostate carcinoma 1q32.1 rs4245739 MDM4;PIK3C2B 

Miscellany 19p13.11 rs4808075 ANO8;ABHD8;ANKLE1;BABAM1;OCEL1 

Ovarian carcinoma 19p13.11 rs4808075 ANO8;ABHD8;ANKLE1;BABAM1;OCEL1 

Miscellany 3p24.1 rs481519 NEK10 

Miscellany 3p24.1 rs571978 NEK10 

Miscellany 3p24.1 rs580057 NEK10 

Miscellany 5q11.2 rs59957907 C5orf67;MAP3K1 
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Miscellany 19p13.11 rs61494113 ABHD8;ANKLE1;OCEL1 

Ovarian carcinoma 19p13.11 rs61494113 ABHD8;ANKLE1;OCEL1 

Miscellany 14q24.1 rs61986943 RAD51B 

Ovarian carcinoma 9p34 rs635634 SURF6;ABO 

Miscellany 5q11.2 rs6450401 MAP3K1;SETD9 

Miscellany 5q11.2 rs6890270 MIER3;SETD9 

Miscellany 14q24.1 rs71423318 RAD51B 

Renal cell carcinoma 11q22.3 rs74911261 KDELC2 

Miscellany 5q11.2 rs7709971 C5orf67;MAP3K1  

Miscellany 5q11.2 rs7714232 C5orf67;MAP3K1  

Lung carcinoma 5p15.33 rs7726159 TERT  

Miscellany 5p15.33 rs7726159 TERT  

Ovarian carcinoma 19p13.11 rs8170 PLVAP;NR2F6;BABAM1;MRPL34;USHBP1;ABHD8;ANKLE1 
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Discussion 

We reported on the first knowledge-base dedicated on GWAS-based evidence linking common germline 

variants to the risk of breast cancer. The information on breast cancer risk associated SNPs forms a 

knowledge-base which will be made publicly available at our cancer dedicated website (www.mmmp.org 

(66)) and will be annually updated. 

Following the principles of integrative analysis of genomic data, we combined genome-wide information 

from different sources (e.g., high-throughput genotyping experiments, eQTL analysis, LD analysis, and so on) 

to make the most of the available evidence (8,9). This is of particular relevance because most SNPs do not 

have a direct functional effect, indeed a large proportion of associated SNPs are not in the coding regions of 

genes, and thus additional information is needed to link them to a gene. Then, we used these data to make 

tentative inferences on the pathways (and most influential molecules within them) whose variation can affect 

the risk of developing breast cancer.  

Data from almost 400,000 women affected with breast cancer showed that 281 SNPs are significantly 

associated with the risk of this disease, which reduced to 233 risk loci when linkage disequilibrium was taken 

into account. These findings add new information to the already existing recent literature reviews on this 

subject, which report up to 172 common variants linked to breast cancer susceptibility (3,4,6,67-71). These 

SNPs are estimated to account 15-20% of the genetic component of disease risk (3,72), which clearly implies 

that much more work is needed to fully elucidate the molecular basis of breast cancer predisposition. It has 

been argued that future GWAS will not lead to the discovery of many more risk variants (3). This appears 

especially true in terms of rare variants (that is, variants with a MAF <1%) (3,72), as GWAS studies are 

designed to identify only common polymorphisms (MAF >1%) through a tagging strategy (tested tag-SNPs 

are in high linkage disequilibrium with non-tested SNPs). Moving forward, massively parallel sequencing 

technology (a.k.a. next generation sequencing [NGS], which can directly interrogate every genomic position) 

could provide investigators with the right tool to overcome the challenging hurdle of interrogating rarer 

variants which may affect risk, thus adding essential information to this field of investigation (73).  
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The data collected in our knowledge-base can be used to build polygenic predictive models and thus help 

optimize breast cancer secondary prevention programs (i.e. early detection by mammographic screening) by 

selecting women at higher risk (74-77). So far, such models have yielded generally unsatisfactory results, as 

their accuracy remains too low to be clinically implemented. This could be due to the fact that the complex 

genetic architecture of sporadic breast cancer predisposition remains still to be fully elucidated, as well as to 

the lack of information on gene-environment interactions (78,79). Nevertheless, the systematic collection of 

variants associated with breast cancer risk, along with information on their functional effect (as proposed in 

our knowledge-base) is the first step to build more effective predictive tools. 

We utilized the collected information  to generate tentative mechanistic hypotheses on the pathways whose 

perturbation (as determined by germline variation of the corresponding genes) affect breast cancer 

susceptibility. Some studies have already investigated the role of the variation of a single pathway across the 

results of multiple GWAS or the variation of multiple pathways within a single GWAS in the determinism of 

breast carcinogenesis (80,81). However, to the best of our knowledge, this is the first time that the 

comprehensive collection of variants linked to breast cancer risk by means of all available GWAS (and their 

meta-analyses) has been employed to systematically explore the cell pathways potentially involved in breast 

cancer development. Our gene set enrichment analysis led to the identification of multiple pathways well 

known to be involved in cancer development in general (such as apoptosis, cell cycle, and signal transduction) 

and breast cancer in particular (such as steroid hormone pathways). As regards the latter, the estrogen 

receptor pathway was confirmed to play a pivotal role in the carcinogenesis of a hormone dependent 

neoplasm such as breast carcinoma (82), within this frame, the gene encoding the estrogen receptor alpha 

(ESR1) was a key influencer in the generated networks of BCPGs (see Figure 1 and Supplementary Table 5). 

This finding might be of relevance with regard to breast cancer chemoprevention, which aims to reduce 

disease incidence by the administration of anti-estrogen drugs such as selective estrogen receptor modifiers 

(e.g., tamoxifen) (83). The selection of women who could most benefit from these risk reducing medications 

might be improved by genetic testing based on polymorphisms that affect breast cancer risk (84).  
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Another interesting piece of information yielded from data analysis is the high degree of overlap between 

network-guided gene set enrichment primary analysis and the pathway analysis performed with the targets 

of BCSGs acting as transcription factors (see Table 1 and Table 2). This finding supports the hypothesis that 

most of the biological effect of the SNPs linked to breast cancer risk might actually be mediated by regulons 

governed by the transcription factors associated with those SNPs. Notably, our data confirm the results of a 

recent publication where investigators have identified a breast cancer risk regulatory network comprising 

some of the transcription factors we identified as BCPGs (85).  

Besides well known cancer-related pathways (such as apoptosis, signal transduction and so on), our gene set 

enrichment analysis showed that germline variation of other pathways might be of particular relevance for 

breast cancer susceptibility, such as those involved in anti-viral immunity, degenerative diseases as well as 

peroxisome and ribosome activity (see Table 1 and Table 2). Actually, peroxisomes are known to be linked 

to carcinogenesis through their production of reactive oxygen species (86), which in turn can initiate tumor 

development by causing DNA damage. Of special interest is also the case of genes encoding ribosome 

proteins, which were repeatedly enriched in our pathway and network analyses of the whole series, as well 

as in the analysis of pleiotropic SNPs. Indeed, it has recently been suggested that ribosome derangement 

may play a significant role in both development and progression of different tumor types (87,88), including 

breast cancer (89).  

In conclusion, we present the first knowledge-base dedicated to sporadic breast cancer predisposition 

variants. This wealth of information can inform future studies aimed to dissect the molecular epidemiology  

and the molecular basis of this disease. 
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