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Abstract 

Chronic pain is exacerbated by maladaptive cognition such as pain catastrophizing (PC). Biomarkers 

of PC mechanisms may aid precision medicine for chronic pain. Here, we investigate EEG biomarkers 

using mass univariate and multivariate (machine learning) approaches. We test theoretical notions 

that PC results from a combination of augmented aversive-value encoding (“magnification”) and 

persistent expectations of pain (“rumination”). Healthy individuals with high or low levels of PC 

underwent an experimental pain model involving nociceptive laser stimuli preceded by cues 

predicting forthcoming pain intensity. Analysis of EEG acquired during the cue and laser stimulation 

provided event-related potentials (ERPs) identifying spatially and temporally-extended neural 

representations associated with pain catastrophizing. Specifically, differential neural responses to 

cues predicting high vs. low intensity pain (i.e. aversive value encoding) were larger in the high PC 

group, largely originating from mid-cingulate and superior parietal cortex. Multivariate 

spatiotemporal EEG patterns evoked from cues with high aversive value selectively and significantly 

differentiated the high PC from low PC group (64.6% classification accuracy). Regression analyses 

revealed that neural patterns classifying groups could be partially predicted (R2 = 28%) from those 

neural patterns classifying the aversive value of cues. In contrast, behavioural and EEG analyses did 

not provide evidence that PC modifies more persistent effects of prior expectation on pain 

perception and nociceptive responses. These findings support the hypothesis of magnification of 

aversive value encoding but not persistent expression of expectation in pain catastrophizers. 

Multivariate patterns of aversive value encoding provide promising biomarkers of maladaptive 

cognitive responses to chronic pain that have future potential for psychological treatment 

development and clinical stratification. 
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1 INTRODUCTION 

Across a range of physical health conditions, cognitive factors are known to impact on outcomes 

(Edwards et al., 2011; Ottaviani et al., 2016; Trick et al., 2016). While there has been substantial 

interest in identifying biomarkers that increase the precision of psychiatric classification and predict 

outcomes in mental health disorders (Singh and Rose, 2009), more research is needed into 

biomarkers of cognitive risk factors for physical health conditions. For example, chronic pain is highly 

prevalent in the population, estimated to be from 19% to 50% depending on survey methods and 

definitions of severity (Croft et al., 2010). However, treatments for chronic pain are poorly targeted 

to underlying mechanisms (Jones and Brown, 2017), partly due to a lack of viable biomarkers. 

Suggested biomarkers have ranged from salivary cortisol (van Aken et al., 2018) to BOLD signals 

(Woo and Wager, 2015), but research has not specifically focussed on markers of cognitive risk 

factors. 

A maladaptive cognitive trait that is widely studied in relation to chronic pain is pain catastrophizing 

(PC). PC has been defined as “an exaggerated negative mental set brought to bear during actual or 

anticipated pain experience” (Sullivan et al., 1995). PC predicts the severity of chronic pain (Edwards 

et al., 2011) and physical dysfunction above and beyond the effects of concurrent depression 

(Arnow et al., 2011). While the importance of PC in chronic pain is rarely disputed, its sub-

component mechanisms have not so far been clearly defined. 

Sub-components of PC can be described in both psychological and neurobiological terms. The most 

common characterisation of PC has been in terms of the three subscales of the Pain Catastrophizing 

Scale (PCS (Sullivan et al., 1995)) which recognises augmentation of the aversive value of pain 

(“magnification”), perseverative thinking about pain (“rumination”) and deficits in coping ability 

(“helplessness”). Although historically there are alternative conceptualisations of PC (reviewed in 

(Neblett, 2017)), in the present work we utilise the tripartite concept underlying the PCS. However, 
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neurobiological research has tended to focus on the neural correlates of PC as a unitary construct. 

EEG and fMRI studies in chronic pain patients have found greater activation of the secondary 

somatosensory cortex to non-painful stimuli (Vase et al., 2012) and painful stimuli (Gracely et al., 

2004) in pain catastrophizers, as well as greater activation of anterior cingulate cortex in both 

healthy volunteers (Seminowicz and Davis, 2006) and fibromyalgia patients (Gracely et al., 2004). 

Further research provided more precise mechanistic insights by identifying anticipatory deficits in 

lateral prefrontal cortex activity in chronic pain patients with greater levels of PC (Brown et al., 2014; 

Loggia et al., 2015), suggestive of a failure of the top-down inhibitory control provided by this brain 

region (Lorenz et al., 2003), which can be remedied through psychological intervention (Brown and 

Jones, 2013). This provides a basis for further investigation of clinically viable biomarkers of PC.  

One approach is to investigate PC in pain-free individuals, in order to avoid the potential confound of 

chronic pain symptoms. In this study, we acquired scalp EEG in pain-free individuals with high and 

low levels of PC in order to characterise PC in terms of two hypothesised neural processes: aversive 

value encoding (“magnification”) and perseverative expectation effects (“rumination”). These 

processes were operationalised with respect to the transient (magnification) and persistent 

(rumination) effects of expectancy cues on the temporal dynamics of neural responses as 

participants anticipated and experienced experimental (laser) pain stimuli. This approach to 

perseverative expectation builds on our previous research showing that expectancy effects on 

nociception and pain persist even if initial expectancy cues are followed by contrary information 

indicating no threat of pain (the so-called ‘prior expectancy effect’ (Almarzouki et al., 2017)). Here 

we tested the hypothesis of a more persistent expectancy effect (i.e. augmented nociceptive 

processing and reported pain) in pain catastrophizers. Secondly we tested an alternative hypothesis 

in which magnified cue processing occurs in pain catastrophizers more transiently without affecting 

subsequent pain processing. 
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Our analyses utilised standard mass univariate as well as multivariate analysis of event-related 

potentials (ERPs) in order to identify spatiotemporal patterns that classify high from low PC groups, 

as a step towards biomarker development. Specifically, we used Multivariate Pattern Analysis 

(MVPA), which applies machine-learning algorithms to neuroimaging data. In recent years, MVPA 

has provided predictive measures of pain at the single individual level (Brodersen et al., 2012; Wager 

et al., 2013) and has been applied to ERPs to classify patients with psychiatric disorders (Taylor et al., 

2017); here, we provide the first attempt to apply this methodology to classifying PC. 

 

 

  

Figure 1. Conditioning procedure, experimental conditions and contrasts for analysis.  

A) A brief training procedure involved randomised trials of high and low intensity laser stimuli (pain and non-painful 

respectively), each of which was preceded by a visual cue that reliably predicted the laser intensity.  

B) The experiment consisted of randomised trials of conditions 1 to 4 plus reinforcement trials. The conditions differed 

according to the presentation of visual cues consisting of upward and downward-pointing arrows (shown here as triangles), 

and variably intense laser stimuli (represented as circles). In conditions 1 and 2, “low” cues were presented, which most of 

the time (two-thirds, condition 2) led to a low intensity laser stimulus, while the other one-third of trials (condition 3) led 

to a medium intensity laser stimulus that they had previously not been trained to expect (and were not informed might 
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occur). Conditions 3 and 4 consisted of a “high” cue that was replaced after 2.5s by a “low” cue. Following this after 

another 2.5s, two-thirds of trials (condition 3) led to a low intensity laser stimulus, while the other one-third of trials 

(condition 4) led to a medium intensity laser stimulus, in a similar way to the contingency in conditions 1 and 2 (which are 

identical except for the lack of a prior “high” cue). Condition 5 acted as a reinforcement of their prior expectation from 

training, i.e. that upward arrows lead to high intensity pain. On every trial, after the laser stimulus participants were asked 

rate the pain intensity on a 0 – 10 numerical rating scale.  

C) For EEG analysis, three contrasts were derived from comparisons of conditions 1-4. Contrast 1 was the aversive 

valuation contrast on cue processing, namely EEG responses to the “high” cues (conditions 3 and 4) vs. the “low” cues 

(conditions 1 and 2). Contrast 2 was the laser intensity contrast of medium intensity stimuli (conditions 2 and 4) vs. low 

intensity stimuli (conditions 1 and 3). Contrast 3 was the prior pain expectancy contrast on laser stimulus processing, 

namely medium intensity laser stimulus processing from condition 4 vs. condition 2. 

2 METHODS 

2.1 STUDY DESIGN  

A single session 2×2x2 mixed design was used, with group (high, low catastrophizing) as the 

between-participants variable and two within-participants variables each with two levels: 

Expectancy (“prior high” and “low”) and laser heat intensity (“medium” and “low”); in addition to 

these conditions, additional trials were randomised into the procedure that served to reinforce pain 

expectancy responses to high cues by following these cues with high intensity laser stimuli (figure 1). 

The study consisted of a psychophysics test, a training procedure, and then the experiment proper, 

which took place over the course of two blocks of stimulation. 

2.2 POWER CALCULATION 

A large effect size (Cohen’s d > 0.8) was anticipated based on the recruitment strategy: study power 

was maximised by recruiting participants scoring in the upper and lower quartile of the Pain 

Catastrophizing Scale (PCS – see below), providing a large group separation on this measure (for 

illustration purposes, the measured (not expected) Cohen’s d effect size was 1.92 – see 
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supplementary table 1) that was expected to translate to large effect sizes in the outcomes of 

interest (pain ratings and EEG responses). The recruitment target of 52 participants was exceeded 

but due to exclusions (see Supplementary Methods) the final sample size was 34, providing power to 

detect effect sizes on group differences on the order of Cohen’s d = 1.0  with 80% power and an 

alpha of 0.05. 

2.3 ETHICS AND RECRUITMENT  

Ethical approval was obtained from North West Nine Research Ethics Committee in the United 

Kingdom. Volunteers were mainly recruited through The University of Manchester. Participants 

received an honorarium of £10 per hour, in addition to travel expenses.  

2.4 PARTICIPANTS: SCREENING 

All participants described themselves as above 18, right handed, free from pain, neurological illness, 

morbid psychiatric illness, peripheral vascular disease, ischemic heart disease, chronic skin disease 

(e.g. eczema, psoriasis) and hypertension not controlled by medication.  

Volunteers were screened by scores on the self-report Pain Catastrophizing Scale (PCS) (Sullivan et 

al., 1995), which they completed prior to recruitment by email or through an online survey tool. The 

PCS is a 13-item questionnaire relating to thoughts and feelings about pain, with 5-point Likert-scale 

response categories ranging from zero (“not at all”) to five (“all the time”). The questionnaire 

consists of separate subscales for rumination, magnification, and helplessness, which can be 

calculated separately or combined to form a total score.  

2.5 PARTICIPANTS: GROUPING 

Participants with total PCS scores in the upper (hitherto referred to as the “high PC” group) and 

lower quartile (“low PC”) of the PCS were identified according to the score ranges in the scale 

manual (Sullivan et al., 1995). These participants were invited to participate in the study. Participants 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2018. ; https://doi.org/10.1101/279992doi: bioRxiv preprint 

https://doi.org/10.1101/279992
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

were asked to repeat the PCS upon attending the laboratory to ensure the answers given during 

screening were reliable.  

2.6 STUDY PROCEDURES 

2.6.1 Participant expectations prior to the experiment 

While the PCS provided a general (trait) measure of expected distress from painful situations, it did 

not specify participants’ expected distress from the particular situation of this experiment. To check 

whether participants with high PCS scores were indeed anticipating the laser stimuli in this 

experiment to be more distressing that the low PCS group, following Brown et al. (Brown et al., 

2008b), participants were asked to rate their expected distress using nine items from the profile of 

mood states (POMS) scale (sad, angry, discouraged, hopeless, hostile, irritable, tense, anxious and 

worried). Specifically, they were asked to rate the extent to which they expected to experience each 

of these emotions while experiencing the laser heat pulses during the experiment, rating each on a 

5-point Likert scale from 0 (‘‘not at all”) to 4 (‘‘very much”). The sum of these items was taken as a 

measure of anticipated emotional distress as done previously (Brown et al., 2008b; Sullivan et al., 

2001). 

2.6.2 Extraneous participant variables 

In addition to questionnaire measurement of PC, participants completed (prior to the experiment) a 

number of other questionnaires to characterise them psychologically; these data were used to shed 

light on the specificity of the groups to the PC construct. These additional instruments were: 

Depression (Patient Health Questionnaire 9, PHQ-9) (Spitzer et al., 2001), somatic symptoms (Patient 

Health Questionnaire 15, PHQ-15) (Kroenke et al., 2002), State and Trait Anxiety (State Trait Anxiety 

Inventory, STAI) (Spielberger et al., 2010) which includes separate subscales for state and trait 

anxiety, and the Fear of Pain Questionnaire (FPQ) with subscales for minor pain, severe pain and 

medical pain (Roelofs et al., 2005). 
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2.6.3 Laser stimulation and psychophysics 

All participants received “high” (moderately painful), “medium” (pain threshold) and “low” (non-

painful) intensity laser stimuli during the experiment. Laser stimuli were used due to their high 

selectivity to A-delta and C nociceptive fibers (Meyer et al., 1976), and were administered using a 

thulium laser with a beam diameter of 6 mm and pulse duration of 100 milliseconds to the dorsal 

surface of the right forearm. The pulses were systematically moved around the skin surface to avoid 

skin sensitisation, damage, and habituation. Participants wore protective safety goggles throughout 

the study. 

We sought to provoke roughly equivalent levels of painful and non-painful stimuli across individuals. 

Hence, laser intensities were individually calibrated using a psychophysics test prior to the 

experiment proper. In this test, participants rated the intensity of each stimulus on a 0 to 10 

numerical pain rating scale (NRS) in which level 4/10 was defined as pain threshold. Three additional 

points on the scale were defined as anchors to enable consistency across participants: level 3/10 

(low-intensity stimulus) was described to the volunteer as hot, but not painful; level 5/10 (medium-

intensity stimulus) was described as a low and ignorable painful sensation; level 7/10 (high-intensity 

stimulus) was described as moderately painful and not easy to ignore. To find these levels for each 

participant, the intensity of the stimuli was gradually increased starting from an imperceptible level 

and progressing to the moderately painful level (7/10), as decided by the participant. This was 

repeated three times. At the end of the test, the three levels were selected based on averaged 

scores from the three runs. 

2.6.4 Training procedure  

Participants were trained to calibrate their expectations of pain intensity in relation to two types of 

visual cues that would be presented prior to laser stimulation during the experiment. A brief training 

procedure (figure 1A) involved presentations of upward or downward arrows that predicted (after 

2.5s) the occurrence of high and low intensity laser stimuli respectively. There were 10 trials in total 
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consisting of five trials of each cue/laser pairing (randomised order). Participants were not made 

aware that they would also be presented with medium intensity laser stimuli during the subsequent 

experiment.  

2.6.5 Main experiment 

Participants were informed that, on each trial of the main experiment, the trial would start with an 

initial cue (a downward or upward arrow) that would inform them about the subsequent stimulus 

intensity. In addition, they were informed that, unlike during training, the arrows might change 

before the laser stimulus was delivered and that, in this case, it was only the arrow directly 

preceding each laser stimulus that was accurate in predicting its intensity.  

There were four experimental conditions (figure 1B), which varied according to the expectations 

created by different cue stimuli and the consistency between those cues and the laser stimulus that 

followed. Regarding expectancy cue conditions, all experimental trials presented a low intensity cue 

(downward arrow) followed by a laser stimulus that the participant was asked to rate. In conditions 

1 and 2 (“low” expectancy conditions), only a “low” cue was presented, followed by the laser 

stimulus 2.5s later. In conditions 3 and 4 (“prior high” expectancy conditions), the “low” cue was 

preceded by a “high” cue, which was delivered 2.5s earlier; the laser stimulus also occurred 2.5s 

after the “low” cues on these trials. Each cue was presented for 2s. This design enabled us to 

compare EEG responses to the “high” cues (conditions 3 and 4) vs. the “low” cues (conditions 1 and 

2) to identify the effect of aversive valuation of the cues (figure 1C).  

Regarding the orthogonal second within-participant factor in the design, namely laser stimulus 

intensity, in conditions 1 and 3 the intensity of the laser stimulus was consistent with the “low” cue 

on most (two thirds) of the trials; in the remaining third of trials (conditions 2 and 4) a medium 

intensity laser stimulus was delivered. This enabled the second major comparison which was with 

regarding to post-stimulus processing between medium intensity stimuli (conditions 2 and 4) vs. low 

intensity stimuli (conditions 1 and 3) to identify the effects of laser intensity (N.B. the numbers of 
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trials each intensity were matched for analysis purposes - see analysis section). The third 

comparison, also on post-stimulus processing, involved only medium intensity stimuli from condition 

4 vs. condition 2 to identify the prior pain expectancy effect. 

A fifth trial type was also used (but for the analysis, not regarded as an experimental condition of 

interest), in which only “high” cues were delivered followed by a high intensity laser stimulus 2.5s 

later. These trials were designed to ensure that the “high” cue was perceived as a meaningful 

predictor of a high intensity stimulus in conditions 3 and 4.  These trials were not included in the EEG 

analyses. The five trial types were delivered in random order, across two blocks of 140 trials each, 

with each block containing the same proportion of stimuli from each condition. The two blocks 

differed according to the instructions given, with participants being asked to focus on the 

painfulness of the stimuli in block 1 and to identify the location of the stimulus in block 2. However, 

to test the hypotheses in the current analysis, this block difference was not of interest; to account 

for any variance in the results as a results of task or time effects over blocks, block was included as a 

(nuisance) factor in the statistical models. 

2.6.6 Behavioural measures 

The primary behavioural outcome was the volunteers’ self-reported pain ratings (especially, for 

medium intensity stimuli) and their modulation by cues. To record this, on every trial, after the laser 

stimulus participants were prompted to rate the pain intensity on a 0 – 10 numerical rating scale 

(NRS) via appearance of the scale on the computer screen three seconds after the laser pulse. 

Volunteers reported their pain using a button pad. 

2.6.7 Post-experiment manipulation check  

After completion of the experiment we checked that participants were engaging with the visual 

cues. Three questions were asked: (i) During the task, how much did you focus on the direction of 

the arrows? (ii) How accurately did the arrow cues predict the intensity of the pain that followed? 

(iii) When rating the intensity of the pain, how much was your rating based on the direction of the 
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preceding arrow cue? In each case, participants were asked to select an answer ranging from “not at 

all” to “all the time”. Participants who reported ignoring the cues completely or most of the time 

were excluded from the analysis.  

2.6.8 EEG acquisition parameters 

Electroencephalography (EEG) was acquired during the main experiment from 59 Ag/AgCl surface 

electrodes attached to an elastic cap placed in accordance with the extended international 10-20 

system (BrainVision ActiCap combined with a Neuroscan head box and amplifier system). Band-pass 

filters were set at DC to 100Hz with a sampling rate of 500Hz. Electrodes were referenced to the 

ipsilateral (right) earlobe and later (during analysis) re-referenced to the common average. In 

addition to the 59 scalp channels, the horizontal and vertical electro-oculograms (EOG) were 

measured for detection of eye-movement and blink artefacts. 

2.7 EEG DATA PRE-PROCESSING  
EEG data pre-processing was performed using EEGLAB version 13.1.1 (Delorme and Makeig, 2004). 

Continuous data were initially low pass filtered at 45Hz to exclude electrical noise. Data were then 

segmented into epochs including from -5500ms preceding the laser stimulus (including from -500ms 

pre-cue) to 2000ms post-stimulus. Data containing excessive eye movement or muscular artefact 

were rejected by a quasi-automated procedure: noisy channels and epochs were identified by 

calculating their normalised variance and then manually rejected or retained by visual confirmation. 

Independent component analysis (ICA) based on the Infomax ICA algorithm (Bell and Sejnowski, 

1995) was run on the clean data excluding bad channels using the ‘runica’ function in EEGLAB. ICA 

components were visually inspected and bad components rejected. Such components were 

identified if matching the description of either (a) high (neuronally infeasible) amplitude signals with 

characteristic topographic (frontal) distributions matching that of blinks or horizontal eye 

movements, or (b) topographies characteristic of single electrode noise but that were not frequently 

occurring enough to be considered as bad channels. The median number of components rejected 
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was 8 (range 4 to 11), commonly consisting of 3-4 eye movement components and 5-6 channel noise 

components. After ICA correction, bad channels previously identified by visual inspection were then 

replaced by spherical spline interpolation of neighbouring electrodes.  Data were then re-referenced 

to the average of 59 channels (excluding reference and ocular channels). ERPs were calculated for 

each subject and condition by averaging epochs. 

2.8 EEG STATISTICAL ANALYSIS 
Here we summarise our approach to the statistical analysis of the EEG data and refer to a more 

detailed description of the steps taken in the supplementary materials. Our analyses focussed on 

identifying within-subject effects and then characterising the groups in terms of these effects. The 

three within-subjects effects of interest were as follows. Contrast 1: the aversive cue valuation effect 

(High cue (conditions 3 and 4) > Low cue (conditions 1 and 2)); Contrast 2: the main effect of laser 

stimulus intensity (Medium (conditions 2 and 4) > Low (conditions 1 and 3)); Contrast 3: the prior 

expectancy effect on post-laser stimulus nociceptive processing of medium intensity stimuli only 

(Prior High expectation (condition 4) > Low expectation (condition 2)). For each effect, and then in 

further comparing effects between groups, three EEG statistical analysis approaches were used: (1) 

mass univariate analysis (MUA) of the sensor data, (2) MUA of source data, and (3) multivariate 

pattern analysis (MVPA) of sensor data.  

The univariate and multivariate analyses had different but complementary goals. MUA is sensitive to 

mean differences in neural activity within localised regions; hence it can be used to test for 

interactions in amplitude of evoked responses, in specific spatiotemporal regions, between groups 

and conditions from mixed designs. Hence we used MUA to analyse the localisation (in sensor and 

source space) of amplitude differences for the effects of interest. In contrast, MVPA ignores average 

univariate effects to focus on neural patterns. One advantage of applying MVPA to EEG (as opposed 

to fMRI) data is the ability to utilise high-resolution temporal information. MVPA is sensitive to 

distributed coding of neural information (Jimura and Poldrack, 2012) across space and time, 
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providing spatiotemporal patterns that classify groups and conditions. We depart from commonly 

used methods that consider time points as independent of each other (e.g. applying searchlight 

analysis over time (King and Dehaene, 2014)) by assuming that brain representations are coded 

across spatial and temporal dimensions in an integrated fashion. This spatiotemporal approach to 

MVPA has been successfully applied recently to the classification of patients with schizophrenia 

(Taylor et al., 2017) and provides algorithmic and statistical efficiency. Furthermore, group-level 

MVPA was preferred here over subject-level MVPA for within-subjects contrasts, as it has been 

recently shown to provide more consistent and interpretable results across subjects (Gilron et al., 

2017). 

The details of both the MUA and MVPA are in supplementary materials. Briefly, MUA sensor 

analyses were based on the sensor-by-time approach using the Statistical Parametric Mapping 

software (SPM12, www.fil.ion.ucl.ac.uk/spm) (Litvak and Friston, 2008). General Linear Models 

(GLMs) were estimated at the group level to produce three F-contrasts of interest: (1) the main 

within-subjects effect of interest (aversive valuation, pain intensity or prior expectancy effect), (2) 

the main effect of Group (between-subjects factor of interest), (2) the interaction of these between 

and within-subjects factors. Source analysis (in SPM12) then focussed on time windows that showed 

statistically significant effects in the sensor analysis. Sensor and source results are reported based on 

cluster-level significance. 

MVPA analyses (see supplementary materials) involved learning classifiers (specifically, a Gaussian 

process classifier (GPC) (Rasmussen and Williams, 2004)) on sensor images at the 2nd (group) level 

using the Pattern Recognition for Neuroimaging Toolbox (PRoNTo) (Schrouff et al., 2013b). This 

identifies patterns differentiating levels of both within-subject factors of interest (cue type and prior 

expectation) and between groups. Performance of models were tested using a leave-one-subject-

out-per-group cross-validation scheme, while statistical significance of classification accuracy was 

assessed using permutation tests with 10,000 sets of randomised target labels. Further analyses 
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were conducted on weight maps resulting from MVPA classification using the approach of a 

posteriori weight summarization (Schrouff et al., 2013a). We also transformed the classifier weights 

back into activation patterns, providing an interpretable time-course, as done previously (Haufe et 

al., 2014). Lastly, we investigated the possibility of shared representations contributing to both 

group and condition classifications (i.e. the representational similarity (Kriegeskorte, 2008)) via 

regression of weight matrices outputted from the different classifications, with robust statistics 

calculated via bootstrapping. 
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3 RESULTS 

In this study we focus on addressing two key issues. Firstly, is pain catastrophizing characterised by 

magnified aversive value encoding? Secondly, do pain catastrophizers show evidence of more 

persistent pain expectancy (the ‘prior expectancy effect’ (Almarzouki et al., 2017)), which would 

follow if pain catastrophizing is characterised by perseverative processing of pain cues (I.e., 

rumination)? In addition to analysing expectancy effects on pain behaviourally, EEG analyses detail 

the spatiotemporal location and pattern of within-subject effects of cue valuation (visual evoked 

potential (VEP) responses to cues predicting high vs. low pain) and the effects of prior pain 

expectancy on the laser-evoked potential (LEP). We then proceed to compare these within-subject 

effects to group effects (high vs. low PC groups).  

3.1 PARTICIPANTS 

Analyses were conducted on data from 16 high pain catatrophisers (“high PC”) and 18 low pain 

catatrophisers (“low PC”) (see supplementary results for screening, recruitment and retention 

numbers). The high PC group had a mean (±SD) total Pain Catastrophizing Scale (PCS) score of 33.6 

(±3.8) compared to the low PC group with a mean score of 4.6 (±3.1). There was no statistically 

significant age difference between the two groups and groups were exactly gender balanced: high 

PC group (8 female, 8 male; Age M = 26.6, SD = 10.8); low PC group (9 female, 9 male; Age M = 22.6, 

SD = 4.7). All participants reported not being on any regular medications. The characteristics of each 

participant are provided in more detail in supplementary table 1. There were also group differences 

in some extraneous psychological variables (see supplementary table 2); of particular relevance is a 

significant difference in state anxiety; high PC group: 38.6 (±8.6), low PC group 29.7 (±8.8), p < .002 

(uncorrected), Cohen’s d = 1.02. Group differences were also present with medium effect sizes, but 

were not statistically significant, for fear of medical pain and for trait anxiety.  
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3.2 GROUP CHARACTERISTICS: BEHAVIOURAL RESULTS 

The behavioural analyses tested for group differences in dependent variables related to pain 

perception (pain threshold and pain ratings). To summarise, the high (vs. low) PC group were 

expecting to be more distressed by the laser pain stimuli and had a lower pain threshold, but they 

did not show evidence of a larger “prior pain expectancy” effect (supplementary tables 1, 4 and 5). 

More precisely, the high PC group reported significantly greater expectations of emotional distress 

from the laser stimuli (M=9.7, SD=4.3) compared to the low PC group (M=4.4, SD=4.5; t = 3.48, p 

< .001, Cohen’s d = 1.03), consistent with the view that catastrophic cognitions alter pain-related 

expectations. Furthermore, the mean laser energy used to reach pain threshold was lower in the 

high PC group (M=29.6, SD=7.2) compared to the low PC group (M=34.1, SD=5.7) with a large effect 

size (Cohen’s d = 0.67) but in an independent samples t-test the difference was only marginally 

significant at an uncorrected p value of 0.051. Both groups were found to score roughly equally for 

all “manipulation check” variables, such that there was no evidence of a difference in the extent to 

which the two groups reported attending to anticipation cues, believing in the accuracy of the cues 

or being influenced by the cues.  

These results are consistent with an analysis of pain ratings in response to laser stimuli during the 

experiment and the effect of anticipation cues on these ratings. Specifically, pain ratings did not 

differ overall between groups, which is as expected given that the laser energy used for each 

participant was adjusted to their individual pain perception. Regarding prior expectancy effects on 

pain (i.e. main effect of presence vs. absence of the first “high” expectancy cue), although there was 

a statistically significant within-participant cue effect on pain ratings (F(1,32) = 37.7, p < .001, ηp
2 = 

0.54, supplementary table 5), there was no interaction between group and this cue effect (p=0.938), 

indicating that the prior pain expectancy effect does not differ between groups. Comparing the 

effect size of the prior expectancy effect in each group separately, the effects are similar: ηp
2 = 0.49 

in the high PC group and ηp
2 = 0.60 in the low PC group.  
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Further ANOVA results show that changes in laser intensity reliably modulated pain perception 

(F(1,32) = 161.7, p <.001, ηp
2 = 0.83). There was no main effect of block on pain perception and block 

did not interact with expectancy, but did interact with intensity (F(1,32) = 8.69, p = .006, ηp
2 = 0.21), 

with lower intensity ratings in block 2, although this effect was not of interest to the analysis. Group 

did not interact with these within-subject factors.  

In addition to the hypothesis-driven analyses so far described, further exploratory cross-correlation 

statistics (Spearman’s rank, 2-tailed) across some relevant variables recorded are reported in 

supplementary table 3. These are reported across all participants (n=34, or 33 in cases of missing 

data), but not within groups as these would not be robust considering the small sample size. These 

did not reveal any relationships that were in addition to those already reflected in the t-test statistics 

comparing the PC groups, except for expected correlations between subscales of the same 

measurement, e.g. PCS subscales). 

3.3 IS PAIN CATASTROPHIZING CHARACTERISED BY MAGNIFIED AVERSIVE VALUE ENCODING? 

To answer this question, we first investigated neural activity related to the encoding of aversive 

value from the visual cues using Contrast 1 of High cue > Low cue (figure 1C), independently of 

group. The results (figure 2) identified specific post-cue latencies and cortical sources that maximally 

differed between conditions (univariate analyses), in addition to spatiotemporal ERP patterns 

predicting the cue type (MVPA analyses). MVPA is particularly sensitive to distributed coding across 

space and time and is therefore useful for identifying spatiotemporal patterns classifying conditions. 

We then proceeded to investigate group differences (figure 3) to address whether these differences 

were related to within-subject aversive valuation effects. In summary of the results, within-subject 

aversive valuation effects were partially distinct, but also partially overlapping in space and time 

with group effects; furthermore, multivariate spatiotemporal patterns classifying cue conditions 

were able to predict group differences to a moderate degree (figure 4). 
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In particular, univariate EEG sensor analysis on the within-subjects aversive valuation effect (figure 

2A) identified spatiotemporal statistical clusters arising from increased positive and negative 

polarities co-occurring at similar latencies (N.B. greater neural activity / processing resources are 

indicated by absolute activity and not whether it is positive or negative; these polarities merely 

indicate opposite ends of an underlying source dipole). This occurred in two distinct latency ranges: 

an early latency range from 116ms to 152ms and a late latency range from 362ms to 1312ms post-

cue (supplementary table 6). Source analysis over these time ranges revealed early latency sources 

in inferior temporal lobes, consistent with activation of the ventral visual pathway, while late latency 

sources localised to a broader range of regions including occipital, parietal, frontal, temporal and 

cingulate cortices (summarised in figure 2B and detailed in supplementary table 7).  

 

 

Figure 2: Aversive value encoding during cue processing (Contrast 1, N=34).  

A. Univariate sensor analysis found four statistical spatiotemporal clusters that differed in the contrast of High>Low 

cue. Clusters ss1 and ss2 are positive and negative polarities of the same ERP components during the early 

latency time window at 116ms to 152ms. Clusters ss3 and ss4 are positive and negative components during the 

late latency period of 362ms to 1312ms. Left: SPM glass brain statistical maps; these are the Maximum Intensity 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2018. ; https://doi.org/10.1101/279992doi: bioRxiv preprint 

https://doi.org/10.1101/279992
http://creativecommons.org/licenses/by-nd/4.0/


20 
 

Projections (MIPs) for each cluster across all time points, thresholded to include only statistically-significant 

voxels; the view is the same as for EEG topographic maps, i.e. top is anterior scalp. Middle: grand average 

waveforms and 95% CIs; waveforms were generated by multiplying the (thresholded) SPM cluster’s MIP with the 

raw topographic image for each subject and condition, averaging over the remaining voxels for each time point 

separately; grey indicates cluster extent, black vertical line indicates latency with largest F statistic, dashed 

vertical line is cue onset. Right: grand average topographies for each condition. 

B. Statistical analysis of the High>Low cue contrast in source-space found greater early activation of the ventral 

visual pathway (top: inferior temporal lobe) and late activation of visual, somatosensory and multimodal brain 

regions represented here in separate colours (for simplification, similar bilateral regions are coloured the same). 

C. Multivariate pattern analysis (MVPA) weights (top) and their projections (bottom). Maximal separation occurs 

between the two cue conditions at 485ms, at which time the topographic map (bottom) shows a posterior scalp 

distribution of activity that separates the two cues. In both time-course scatter plot, each point is a summarised 

weight or projection value (namely, the mean absolute value over the scalp and within a 10ms window). Y axis 

values are normalised to the % contribution, i.e. each data point is a percentage of the sum of all data points over 

time.  

D. Receiver Operating Characteristic (ROC) and MVPA statistics. The ROC illustrates the model sensitivity and 

specificity by plotting the true positive rate (sensitivity) as a function of false positive rate (1 - model specificity). 

The area under the curve (AUC) measures how well the model classifies the cue conditions (greater area means 

better classification). 

 

Continuing our analysis of the within-subject aversive valuation effect, we used MVPA to train a 

classifier on the High vs. Low cue conditions, which provided a 69.12% balanced accuracy in 

classifying the two conditions (p = 0.001). We investigated the latencies of neural activity 

contributing to this classification, firstly with regard to raw MVPA weights (figure 2C), which provide 

information about spatiotemporal regions contributing the most to classification. In this analysis, 

there were moderately strong weight contributions (> 1 SD from the mean) across the full time 

range, with the strongest weight contribution at 455ms post-cue (> 2 SDs from the mean). However, 

because larger raw weights do not directly imply more class-specific information than lower weights, 

we transformed the classifier weights back into activation patterns (Haufe et al., 2014), providing an 
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interpretable time-course (figure 2C, bottom). This shows latencies with the largest condition 

differences described by the classification, and produced a time-course distinct from the original ERP 

with a steady increase up to a maximum at 485ms. The topographic projections of the weights 

across the scalp at 485ms (figure 2C) showed a mid-posterior positivity and frontal negativity, 

reminiscent of (but not identical to) the ERP topography at this latency (figure 2A).  

Having characterised the within-subject aversive valuation effect, we now turn our attention to 

group effects on neural activity in the 1500ms following the initial cue (figure 3). Univariate sensor 

analysis results show a main effect of group (high PC > low PC, across both cue conditions) at a mid-

to-late latency range; two spatiotemporal sensor clusters were identified with the range of 242ms to 

604ms, with greater activity in the high PC group (figure 3A). Topographic maps show that these two 

clusters correspond to concurrently occurring positive and negative polarities. Source analysis on 

this time range (figure 3B) locates the activity to superior and inferior parietal lobe and occipital lobe 

bilaterally, in addition to mid-cingulate cortex. The group effects therefore overlap both temporally 

(in the range 362ms to 502ms) and spatially (in the parietal lobes) with the aversive valuation effect 

(high vs. low cues) 
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Figure 3: Group differences in cue processing (low PC: N=18, high PC: N=16). 

A. Univariate sensor analysis found two statistical clusters in the main effect of group. Clusters ss5 and ss6 are 

positive and negative polarities of the same ERP components during the time window of 242ms to 604ms.  

B. Source analysis found greater activation of occipital, parietal and cingulate cortex during cue processing in the 

contrast of High PC > Low PC group. 

C. Multivariate pattern analysis (MVPA) weights (top) and their projections (bottom) summarised within 10ms 

windows showing that neural activity maximally classifying the groups (at 495ms) occurs with a posterior scalp 

distribution. 

D. Receiver Operating Characteristic (ROC) and MVPA statistics for classification of group membership using the 

high cue condition only. AUC: Area under the ROC curve. 

E. Univariate sensor analysis of the interaction between group and cue type found a statistical cluster during the 

time window of 1334ms to 1440ms, resulting from a group difference in processing High cues but not Low cues. 

F. Source analysis found interaction effects in superior frontal-parietal cortex and cingulate cortex resulting from 

greater processing of High (vs. Low) cues in the High (vs. Low) PC group. 

See figure 2 legend for further details of the plots. 
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Interaction F contrasts from the general linear model revealed a spatiotemporal cluster in the ultra-

late latency range from 1334ms to 1440ms, characterised by greater group differences (high PC > 

low PC group) in the high cue compared to the low cue conditions (figure 3E). This latency window is 

considerably later than that found in the analysis of the main effect of group. Visually, as depicted in 

figure 3E, the interaction appears to arise from a group difference after low cues at mid-latencies 

(roughly, 300-400ms), but no group effect thereafter; whereas, after high cues, a similar group effect 

at mid-latencies persists into the ultra-late time window. (In the next section, we investigate 

whether this suggests more persistent expectancy processes that might carry over to affect 

nociceptive processing). We identified sources of these interaction effects as originating from 

superior parietal lobes, precuneus, superior frontal lobes (supplementary motor area) and mid-

cingulate cortex (figure 3F). 

MVPA results show general agreement with the above univariate results when assessing which 

spatiotemporal characteristics of the EEG data classify the two groups (figure 3C). Additionally, as a 

multivariate method, MVPA takes into account dependencies over time and space, and provides 

spatiotemporal patterns classifying the two groups that we later compare to the patterns classifying 

the two cue conditions. Firstly, two MVPA analyses were conducted to find out if successful group 

classification depends on what EEG data is used – here we look at results using data from high and 

low cue conditions separately. Interestingly, group was decoded from high cue conditions (64.58% 

balanced accuracy, p=0.0010, figure 3D) but not from low cue conditions (37.85% balanced accuracy, 

p=.9964, not shown as a figure). For the successful classification using high cue conditions, relatively 

early latencies (185ms to 245ms post-cue) contributed strongly to the weights (greater than 2 

standard deviations from the mean weight contribution) with the greatest weight (>3SD) at 235ms 

post cue (figure 3C, top). However, as previously discussed, such weights might not be 

physiologically meaningful; for example they may reflect suppression of noise to improve the 

classification. Hence, we analysed the time-course of weight projections contributing to this 

classification (figure 3C, bottom) which showed a very similar temporal profile to the weight 
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projections contributing to classification of the cue conditions (figure 2C), with the largest response 

at 495ms. The topography of the group weight projection at 495ms also showed a similar 

distribution to that classifying the cue conditions. 

The above observations of a close spatiotemporal relationship between weight projections 

classifying groups on the one hand, and those classifying aversive value on the other, points to the 

possibility that neural representations that successfully decode groups can be partially explained by 

representations of aversive value. Indeed, further regression analyses support this view. Three 

regression analyses were conducted on MVPA raw weight matrices (figure 4). Firstly, we found that 

variance in the weight matrix that successfully decoded the groups was not explained by variance in 

the weight matrix decoding the cue conditions when both groups’ EEG data was used in the cue-

condition classification analysis (R2 = 0.0056, p=0.612). However, as an alternative predictor variable, 

when we instead utilised the weight matrix from classifying cue-conditions using only the high PC 

group’s data, there was significant prediction of the variance in the group classification weights (R2 = 

0.2785, p=0.005). In the third regression, the cue-classification weights from the low PC group did 

not predict the group classification weights (R2 = 0.0004, p=0.9). Hence, aversive value encoding as 

expressed specifically in the high PC group, but not in the low PC group, partially explains the pattern 

that decodes group membership. 
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Figure 4: Predicting group classifier weights from cue classifier weights. Group classifier weights (y axis) are plotted 

against cue valuation weights (x axis). Cue classifier weights (x axis) are compared from three classification models: when 

classifying cues from both groups’ data (left) or from each group separately (middle and right). 

 

3.4 IS PAIN CATASTROPHIZING CHARACTERISED BY PRIOR PAIN EXPECTANCY EFFECTS ON 

NOCICEPTION? 

We addressed this second question using the same methodology as in the previous section, except 

analyses were conducted on the post-stimulus Laser-Evoked Potential (LEP). However, as explicated 

in the following paragraphs, these analyses did not yield group differences.  

As a preliminary step, we conducted univariate and multivariate analysis on the LEP to identify 

spatiotemporal representations of pain intensity (Contrast 2, figure 1C); this acted as validation of 

the analysis methods for the study as a whole, by enabling comparison of the latencies and sources 

of LEP components in this study to those found in previous research. These findings are in 

supplementary results and figure 5 A-D and are not referred to further here. In this current section, 

we instead focus on the investigation of the effects of prior pain expectation on LEP responses to 

medium intensity stimuli (Contrast 3 shown in figure 1C) and whether this effect was augmented in 

the high PC group. 
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Figure 5: Effects of laser intensity (contrast 2, N=34) and prior expectation (Contrast 3, N=34) on nociceptive processing. 

A. Univariate sensor analysis found three statistical clusters from increasing laser intensity (medium>low), 

corresponding to components N2 (ss8, 308ms to 310ms) and P2/P3 (ss9, 388ms to 726ms; ss10, 382ms to 

670ms).  

B. Source analysis found widespread cortical modulation in response to increases in pain intensity. 

C. Multivariate pattern analysis (MVPA) weights (top) and their projections (bottom) found that intensity was 

classified with the greatest contribution from neural activity during early latencies (N2 time window) and a 

fronto-central scalp distribution. 

D. Receiver Operating Characteristic (ROC) and MVPA statistics. AUC: Area under the ROC curve. 

E. Univariate sensor analysis found a single cluster from the prior pain expectancy effect, corresponding to 

component P2 (ss11, 416ms to 478ms).  

F. Source analysis found that prior pain expectancy increases post-laser stimulus activation of the inferior parietal 

lobes. 
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G. Multivariate pattern analysis (MVPA) weights (top) and their projections (bottom) found that classification of the 

expectancy conditions involved neural activity patterns at both early latencies (N2 time window) and late 

latencies (P2/P3). 

H. Receiver Operating Characteristic (ROC) and MVPA statistics. AUC: Area under the ROC curve. 

See figure 2 legend for further details of the plots. 

 

Univariate sensor analyses found neural activity related to the presentation of a prior high pain cue 

to be maximal at a latency of 434ms post-stimulus (cluster range: 416 to 478ms), consistent with the 

commonly observed P2 peak (figure 5E). At this latency, the P2 was maximal at electrode FCz. Source 

analysis revealed a contribution of bilateral inferior parietal cortex to this effect (figure 5F). 

Classification of the two conditions using MVPA provided 73.53% classification accuracy (p = 0.001). 

The latencies most greatly contributing to the weights (> 2 standard deviations from the mean) were 

far broader than that of the P2 peak, covering the full latency range of the window analysed. 

However, weight projections (figure 5G, bottom) identified more defined temporal regions at the 

latency of the N2 peak (maximal at 315ms) and at a later latency between the P2 and P3 peaks 

(605ms to 715ms). Topographic projections at 315ms were consistent with the commonly observed 

N2 peak of the LEP. The discrepancy between these latencies and those identified from the 

univariate results (i.e. P2 peak) highlights that univariate and multivariate analyses are sensitive to 

different signals: absolute mean activity within spatiotemporally restricted areas vs. relative patterns 

of activity over distributed regions respectively.  

Despite significant univariate and multivariate EEG sensor differences between conditions, there was 

no evidence of a main effect of group or interaction between group and condition using mass 

univariate statistics. Likewise, MVPA was not able to obtain a statistically significant classification of 

the groups, either for spatiotemporal sensor data from the prior pain expectation condition (50%, 

p=0.9), nor using data from the low expectation condition (47.06%, p=0.9).   
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4 DISCUSSION 

In this paper we sought to address the general problem of a lack of viable biomarkers of the 

neurocognitive mechanisms influencing physical health outcomes. We specifically sought to identify 

neural representations of pain catastrophizing (PC) in healthy individuals using an experimental pain 

model. We found evidence in favour of a “magnification” hypothesis, namely augmented neural 

processing of cues predicting aversive (vs. non-aversive) outcomes, suggestive of magnified aversive 

valuation processes, which persisted for up to 1.5s after the aversive cue. MVPA provided 

moderately successful classification of high (relative to low) PC when applied specifically to 

processing of high aversive value cues, but not to the processing of low aversive cues, suggesting 

that neural representations of highly aversive cues best characterise pain catastrophizers. Indeed, 

this was further suggested by analyses showing that MVPA patterns from group classification were 

partially predicted by those patterns classifying aversive value in high pain catastrophizers 

specifically, suggesting an overlap in neural representations of aversive valuation and PC. This 

provides evidence supporting aversive valuation processes in the brain as potential biomarkers of 

cognitive/emotional processes related to PC.  

On the other hand, we did not find evidence that expectancy effects on nociception and pain were 

more persistent in the high vs. low PC group after initially negative expectations were updated by 

contrary information indicating no threat of pain. We previously found that pain perception in 

healthy individuals undergoing a similar procedure were still influenced by expectations from the 

initial highly aversive cue, despite the presentation of a second cue to update expectation (the so-

called ‘prior expectancy effect’ (Almarzouki et al., 2017)). However, in this study, although neural 

activity directly after aversive cues (prior to the second update cues) appeared to be more persistent 

over the 1.5s analysed in the high vs. low PC group, pointing to greater pain expectancy, none of the 

analyses (behavioural, univariate EEG or multivariate EEG) provided evidence that prior pain 

expectancy had a greater influence on pain and nociception in the high PC group. Overall, these 
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findings suggest that anticipatory processes may be the most fruitful area for future investigation of 

biomarkers of PC mechanisms. In what follows, we discuss the nature of the biomarkers identified in 

this study and make comprehensive suggestions for future research. 

By combining univariate and multivariate analysis approaches to the EEG data, we were able to both 

identify biomarkers (spatiotemporal patterns) classifying PC groups as well as gain insight into the 

timing and spatial localisation in the brain of these biomarkers. Identification of the latencies of cue-

evoked responses that best differentiate high and low catastrophizers has two main benefits. Firstly, 

it provides links to previous research that has discovered specific task or other context-dependent 

modulation of neural activity at these latencies. This enables interpretation (although initially 

speculative) of the possible cognitive and neural mechanisms underlying group differences. 

Secondly, this facilitates the design of more nuanced experimental designs/tasks and EEG recording 

parameters that might better pinpoint the mechanisms of interest.  

Specifically, we found that the topographies and timing of neural representations associated with PC 

(i.e. derived from transformed weight matrices from the MVPA analyses) are consistent with the 

commonly observed P3b (“endogenous” P3) and late-positivity waves of the visual-evoked potential, 

peaking in mid-posterior scalp regions at around 450-500ms post-cue. This positivity is commonly 

evoked by task-relevant stimuli and represents activity in multimodal networks thought to be 

involved with maintaining and updating representations of the task (Polich, 2009). Our source 

analysis found both aversive valuation and PC effects at this latency to originate from superior 

parietal and cingulate cortex. These regions may reflect one or a number of augmented cognitive 

processes in individuals with high PC. For example, a current neurobiological model of attention 

posits a dorsal frontoparietal network (including superior parietal lobule and dorsolateral prefrontal 

cortex (DLPFC)) as mediating top-down attention (Corbetta et al., 2008, 2002), a network that can be 

recruited via midcingulate cortex when signalling the need for greater cognitive control 

(Ridderinkhof et al., 2004). This is interesting in light of the observation that it is a distinct ventral 
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frontoparietal network that primarily responds to salient stimuli such as pain (Downar et al., 2003) 

or its anticipation (Wiech et al., 2010). Greater dorsal frontoparietal responses in individuals with 

high PC therefore may therefore not necessarily indicate magnification of the salience of aversive 

stimuli, but rather a gain on the recruitment of subsequent cognitive control mechanisms. However, 

our analyses are not able to delineate how or whether these precise mechanisms contribute to PC. 

Important questions for the future are whether this source activity reflects greater excitatory or 

inhibitory activity in cortical neurons and whether increases in activity reflect changes in bottom-up 

or top-down streams of information processing. 

The results highlight the utility of EEG for identifying temporally-defined neural patterns that could 

be the focus of further biomarker studies. However, despite the use of cross-validation to provide 

greater predictive validity to the results, there are clear limits on our ability to generalise the results 

of this study. Most importantly, the biomarkers were identified in (relatively young) healthy 

volunteers and so may not generalise to chronic pain patients. Furthermore, participants may not 

even be typical of the healthy population: respondents to the initial screening procedure were self-

selected, with unknown factors underlying this; furthermore, approximately one third of screened 

participants were excluded from further participation due to being neither high nor low pain 

catastrophizers. There are also limitations on our ability to claim that differences in neural markers 

of cue/anticipation processing between groups are specific to the PC construct, as we were not able 

to measure and control for all extraneous variables. Of those we did measure, it would not be 

possible to distinguish states of PC in this study from states of anxiety (for which we also observed a 

group difference), given that the painful context of the experiment would be expected to induce 

anxiety in the high PC group. Furthermore, this type of study is not able to draw causal inferences 

between PC, consequent states such as anxiety, and the EEG outcomes; hence, we suggest that we 

have not identified specific markers of PC as such, but rather biomarkers of cognitive/emotional 

states related to PC. 
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We therefore view the results of the current study as providing an initial indication of neural targets, 

the robustness of which can be tested later as predictors of PC in chronic pain patients under a 

variety of contexts. These contexts might include alternative experimental designs that improve 

classification accuracy. Our design utilised very brief nociceptive stimulation of 100ms, which 

previous work has shown provides insights into the neural correlates of pain perception (Lee et al., 

2009) and it’s modulation by expectation (Brown et al., 2008b). The brevity of the laser stimuli 

served two of our purposes well, which were to provide a relatively easy to tolerate stimulus that 

would be suitable for use in individuals who catastrophize about pain, allowing multiple trials of 

stimulation required to generate robust ERPs (Luck, 2005). However, despite these practical 

advantages, the use of brief nociceptive stimuli might not be an optimal method for inducing 

catastrophic cognitions. Support for our approach includes the moderate success we had in 

classifying high vs low PC groups using the neural pattern data and the fact that high PC participants 

rated themselves as expecting to be much more distressed by the laser stimuli than the low PC 

participants. However, future work could investigate whether pain catastrophizing is better classified 

by neural representations during more enduring and unpleasant tonic pain stimuli that provide a 

more realistic model of chronic pain. Future work could also investigate whether simpler expectation 

paradigms (i.e. those with single cues rather than changing cues) produce expectancy effects on 

nociception and pain that better differentiate high and low pain catastrophizers. This would help 

address one confound of our experimental design: the additional cues in conditions 3 and 4 

compared to conditions 1 and 2 (see figure 1), mean that the “prior expectancy effect” contrast 

(contrast 3; results in figure 5E-H) may be contaminated by differences in perceived uncertainty or 

surprise. The current design does not facilitate differentiation of these uncertainty/surprise 

elements from the expectancy contrast, because of its focus on the outcomes of aversive learning 

rather than on the trial-by-trial learning process itself. On the other hand, certain types of more 

complex designs in combination with model-based inference of trial-by-trial hidden states (e.g. 

learning processes such as prediction errors and aversive value updating), which have previously 
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been used to identify neural correlates of these hidden states (Seymour et al., 2004), may help to 

identify neural correlates of the learning processes themselves, namely trial-to-trial updating of 

expectation as distinct from uncertainty and surprise components. Such designs may also enable 

identification of anticipatory responses that are more specific to PC and to differentiate these from 

processes more specific to related cognitive/emotional states such as pain-related fear or 

generalised anxiety. 

There are a number of further potential options for improving the identification of biomarkers of 

perseverative cognitions. Firstly, term “rumination” (Ottaviani et al., 2016) commonly refers to 

persistent, perseverative cognitions over longer timescales that we assessed here. Further research 

could aim to assess such persistent cognitions as well more naturalistically measure the dynamics of 

changes in pain expectancy (for example, during the course of a fluctuating tonic pain stimulus that 

mimics chronic pain symptoms). Secondly, regarding optimal neurophysiological measurements, 

neural representations of enduring cognitions may be better assessed by analysis of baseline or 

resting-state neural activity rather than using ERPs. Thirdly, a challenge for future studies is how to 

measure or influence rumination orthogonally to related cognitions such as magnification. The 

results of any such investigation will be highly dependent on how these variables are 

operationalised. Cross-sectional or longitudinal designs using questionnaire measures of trait 

rumination would require very large sample sizes to disentangle within or between-subject variance 

in rumination from that of related cognitive factors. For example, in our study, rumination was 

measured via one subscale of the PCS questionnaire, but the small sample size prohibited identifying 

variance specific to rumination and magnification. Alternatively, cognitive-behavioural interventions 

could be targeted to rumination, but such efforts are likely to produce knock-on effects to other 

cognitive variables.  

Independently of issues of generalisation and optimal experimental design, the MVPA analyses 

presented here rely on certain assumptions and simplifications. Firstly, the study design leant itself 
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to the use of binary classification; however, this approach assumes that PC is a unitary construct and 

that individuals in the high PC group differ from those in the low PC group according to 

homogeneous cognitive factors and corresponding neural representations; this is likely to be an 

over-simplification. Secondly, our analysis involved comparisons of weight matrices, but the 

interpretation of these values is complex, as weight values can vary either in relation to the signal of 

interest or in relation to their function in suppressing noise to improve prediction (Haufe et al., 

2014). Hence raw weights do not have a simple neurophysiological interpretation. We therefore 

complimented raw weight information with a transformation of these weights as previously 

described (Haufe et al., 2014; Wardle et al., 2016) in order to enable interpretation of which 

physiological events contribute to the classification. However, other methods also exist for spatial 

and temporal localisation of neural signals contributing to multivariate classification (e.g. searchlight 

mapping (Etzel et al., 2013), sparse algorithms (Kampa et al., 2014), multiple kernel learning 

methods (Schrouff et al., 2018), etc.) and these methods merit exploration to assess consistency 

with our findings. Lastly, MVPA (like univariate analysis) benefits from the larger statistical power 

afforded by large sample sizes; the relative small sample size in this study was a limitation meaning 

that we had the power to detect only large effects. 

5 CONCLUSION 

The results of this study are consistent with the hypothesis that pain catastrophizing is characterised 

by magnification of aversive value encoding in cingulate and parietal cortices, possibly reflecting the 

initiation of cognitive control mechanisms. Our results provide an initial indication of neural targets 

that can be further tested as predictors of chronic pain and disability. Specifically, the results point 

to the importance of measuring anticipatory neural processes, as in our study these best 

differentiated high and low catastrophizing groups. This indicates that nociceptive responses may 

not provide sufficient information regarding mechanisms of interest to pain catastrophizing. We 
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have highlighted the utility of EEG for identifying temporally-defined neural patterns that have 

potential as biomarkers of maladaptive cognition and we have pointed to the need for further 

research identifying optimal methodologies for biomarker development.  

6 ACKNOWLEDGEMENTS 

The authors declare no conflicts of interest. This research was funded by a PhD scholarship awarded 

to Abeer F. Almarzouki from the Government of Saudi Arabia. 

 

  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2018. ; https://doi.org/10.1101/279992doi: bioRxiv preprint 

https://doi.org/10.1101/279992
http://creativecommons.org/licenses/by-nd/4.0/


35 
 

7 SUPPLEMENTARY METHODS 

7.1 LATENCY WINDOWS USED FOR EEG ANALYSIS 

For both univariate and multivariate analyses of EEG data, analysis of cue processing was restricted 

to the first 1500ms following the first cue rather than utilising the whole window up until the laser 

stimulus. This served two purposes: (1) for MVPA, reducing the feature space as far as possible to 

minimise over-fitting, (2) removing ERP signals at around the time of 2000ms after each cue, at 

which time the offset of the visual cues occurred, which generated small additional visual-evoked 

responses that were not of interest in the analysis. The first 1500ms post-cue is likely sufficient to 

include both conventional visual evoked responses to the cues and subsequent anticipatory 

responses prior to the laser stimuli, which can be assumed to change as a matter of degree rather 

than kind from that point on. This is suggested by our previous work showing mid-range anticipatory 

responses having the same character as that of late-range (immediately pre-laser) responses (Brown 

et al., 2008a). 

7.2 EEG SENSOR DATA: MASS UNIVARIATE ANALYSIS (MUA) 
Sensor analyses were conducted by converting sensor-by-time EEG data to three-dimensional 

images using the Statistical Parametric Mapping software (SPM12, www.fil.ion.ucl.ac.uk/spm) (Litvak 

and Friston, 2008), and subjecting these to mass univariate analysis (in SPM12) with correction for 

multiple comparisons using random field theory. This is the standard approach to EEG analysis 

implemented in SPM12 (Litvak et al., 2011). This analysis deals with the multiple comparisons 

problem (in this case, statistical inference over many peri-stimulus time points and many electrodes) 

in a way that does not require narrowing down the search space by making assumptions as to the 

precise timing or topographic location of physiologically important events. More precisely, random 

field theory (RFT) is used to make inferences over space and time while adjusting p-values in a way 

that takes into account the non-independence of neighbouring sensors and time-points (Litvak et al., 
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2011). Applying to smooth data, the RFT adjustment is more sensitive than a Bonferroni correction. 

Hence, after data conversion from EEGLAB to SPM format, for each participant, experiment and 

digit, SPM EEG sensor data were transformed to 3-D Scalp [x, y] × Time [z] images and smoothed in 

the spatial dimension to 12mm full-width half-maximum (FWHM).   

General Linear Models (GLMs) were estimated at the group level consisting of the between-subject 

factors Subject and Group (High PC, Low PC), the within-subject effect of interest (either aversive 

valuation effect, pain intensity effect or prior expectancy effect in different models) and a further 

within-subject factor of Block. The Block variable was a nuisance variable included to account for 

data variability related to the different tasks in blocks 1 and 2. More specifically, the GLM model of 

the cue valuation effect (High cue > Low cue) included EEG data from the time window of 0ms to 

1500ms after High cues (conditions 3 and 4) and contrasted to the same time window after Low cues 

(conditions 1 and 2; see figure 1). The pain intensity and prior expectancy effects on nociceptive 

processing were both modelled using the time window of 0ms to 1500ms post-laser stimulus. In 

both cases, EEG sensor images were first baseline corrected to the 500ms preceding the window-of-

interest (relatively long 500ms baselines were used so that resulting ERP estimates were less 

susceptible to transient baseline noise). For each GLM, three F-contrasts were relevant: (1) the main 

within-subjects effect of interest (aversive valuation, pain intensity or prior expectancy effect), (2) 

the main effect of Group (between-subjects factor of interest), (2) the interaction of these between 

and within-subjects factors.  

For any statistical models in which there was an imbalance in the number of trials between 

conditions in the design (for example, in contrast 2 between medium and low intensity laser stimuli), 

trials were randomly sampled (once only per subject/condition) from the condition with the larger 

number of trials to match the number in the conditions with the smaller number. This balancing was 

also critically important for subsequent MVPA analyses to ensure validity of the results. 
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A final consideration is as to whether to control for extraneous variables such as trait anxiety (which 

may confound the results owing to overlap with the construct of PC) in the statistical analyses. This 

was not done for the following reasons. Firstly, regression with multiple predictors requires larger 

sample sizes than regression with single predictors, which the study was not designed to 

accommodate; results would therefore be at greater risk type II error rates. Secondly, the use of 

multiple regression to establish incremental validity is associated with extremely high type I error 

rates (see Westfall and Yarkoni, 2016 for a detailed discussion). This means that conclusions in the 

literature that one construct contributes incrementally to an outcome, or that two constructs are 

theoretically distinct, are often unwarranted, although this depends on the reliability of the 

measurement. In particular, addressing questions of incremental validity is especially problematic 

when the nuisance covariate (e.g. trait anxiety scores on the STAI) is a noisy proxy for the underlying 

latent variable (e.g. trait anxiety), which is commonly a problem for self-report measures such as 

questionnaires.  

7.3 EEG SOURCE ANALYSIS 
Further analysis aimed to identify sources of the ERPs during those time windows that showed 

statistically significant effects in the sensor analysis. Canonical sensor locations were coregistered 

with the canonical head model in SPM12. Lead field computation used a boundary element model 

(Litvak et al., 2011). The Bayesian source reconstruction method in SPM12 was used with Multiple 

Spare Priors (Friston et al., 2008) to estimate sources across the temporal window-of-interest (the 

same windows as described above for sensor analysis). Subsequently, source activity was averaged 

in a series of smaller time clusters corresponding to the statistically significant effects from the 

sensor analyses. Using F contrasts, significant differences were identified in source space and 

reported significant at a cluster-level significance of p (FWE) < 0.05 when considering statistical maps 

thresholded at p < 0.001. 
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7.4 EEG SENSOR DATA: MULTIVARIATE PATTERN ANALYSIS (MVPA) 
MVPA involved learning classifiers on sensor images at the 2nd (group) level using the Pattern 

Recognition for Neuroimaging Toolbox (PRoNTo) (Schrouff et al., 2013b). Classifiers are trained to 

identify patterns differentiating between the two levels of each within-subject factor of interest (cue 

type and prior expectation) and between groups at each time window of interest. The feature spaces 

used were the same three-dimensional spatiotemporal sensor images as used for MUA; when 

combined over subjects and conditions, these formed the feature vector for the Group or Condition 

targets that were fed into the classifier.  

Regarding the classification algorithm and normalisation procedures, we used recommendations 

from a recent study of ERP biomarkers in Schizophrenia (Taylor et al., 2017). We used a Gaussian 

process classifier (GPC) (Rasmussen and Williams, 2004). GPC uses Bayesian modelling to estimate 

the likelihood that a test sample belongs to a particular class, by using the covariance structure of 

the data to make predictions and assign a class label. Performance of the classifier is assessed 

against the true target assignments. To avoid the problem of over-fitting and to improve 

generalisation of the results, parameter estimation is regularised and the performance of models 

were tested using a leave-one-subject-out-per-group cross-validation scheme, in which the 

classifiers were trained on data from all subjects bar one from each group, and tested on the 

excluded subjects. Across a number of ‘folds’, subjects were iteratively assigned for testing the 

model until all had been used once. During cross-validation, mean-centering was applied. Statistical 

significance of classification accuracy was assessed using permutation tests, involving retraining each 

model 10,000 times with randomised target labels. 

7.5 MVPA WEIGHT MATRIX ANALYSES 
Analysis was conducted on the spatiotemporal weight matrices outputted from MVPA. Firstly, we 

identified temporal windows that contributed the most to the classification for each model, 

providing a supplement to univariate analysis of the temporal localisation of each effect. Because it 

is not meaningful to threshold the obtained weight map,  we used a posteriori weight summarization 
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(Schrouff et al., 2013a) in which local averages of the weights are obtained. In our case, local 

averages were calculated over the two spatial dimensions of the image (i.e. the scalp map) within 

consecutive non-overlapping 10ms time windows. Furthermore, because larger raw weights do not 

directly imply more class-specific information than lower weights, we used a solution introduced by 

Haufe et al. (Haufe et al., 2014) (previously applied to MEG decoding by Wardle et al. (Wardle et al., 

2016)) which involves transforming the classifier weights back into activation patterns, providing an 

interpretable time-course. This involves multiplication of the weight matrices with the covariance in 

the EEG data used to derive those weights. 

We also sought to identify the existence of shared representations contributing to both group and 

condition classifications. We quantified the degree of representational similarity (Kriegeskorte, 

2008) by regressing vectorised spatiotemporal raw weight matrices from the classification of groups 

(pain catastrophizing effect) on those classifying the cue types (aversive valuation effect). P-values 

were calculated from bootstrap tests in which regressions were run for 1000 permuted 

classifications and their resulting weight matrices (this was kept to 1000 due to the computational 

load of outputting weight matrices using PRoNTo). 

 

8 SUPPLEMENTARY RESULTS 

8.1 PARTICIPANT NUMBERS 

163 participants (53 high PC, 65 low PC and 45 in-between) completed the PCS screening procedure 

and the high and low PC individuals were invited to participate in the EEG experiment. Of these, 36 

high PC and 30 low PC attended the study visit, while the remainder did not accept the invitation. 

Upon repeat assessment using the PCS during the study visit, 13 high PC and 6 low PC no longer fell 

in the upper/lower quartile on the PCS respectively and were excluded (this was expected and 

consistent with previous findings in which the test-retest reliability of the PCS was been found to be 
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0.73 in a chronic pain population (Lamé et al., 2008)). Three further volunteers from the high PC 

group withdrew from the study due to discomfort from the laser stimulation or application of the 

EEG cap, while two participants were excluded from the low PC group because they did not find the 

stimulus painful. A further 3 participants’ data from each group was not included in the final 

analyses due to excessive artefact in the EEG data that could not be removed. One participant in 

each group was excluded from analysis due to failing the manipulation check, having reported not 

attending to the visual cues. 

8.2 SENSOR AND SOURCE ANALYSIS OF LASER INTENSITY CODING 

Initial validation of the univariate sensor and source analysis was conducted on the time range of the 

LEP by investigating the main effect of laser stimulus intensity (Contrast 2, see figure 1C for 

conditions included). The temporal and spatial effects of intensity were consistent with the findings 

of previous research. Intensity increased LEP amplitudes at latencies consistent with the commonly 

observed N2 and P2 peaks (figure 5A) at 308ms to 310ms and 382ms to 726ms respectively 

(supplementary table 6). Source results from the intensity contrast at each of these mid and late 

latencies were very similar (figure 5B and supplementary table 7), showing intensity modulation of 

widespread cortical regions. Importantly, these included commonly activated regions of the “pain 

matrix”, namely the insula, fronto-parietal operculum, primary somatosensory cortex, mid-cingulate 

cortex, plus a broader range of multimodal regions in frontal, parietal and temporal lobes. 

Classification of the two intensity conditions was conducted using MVPA, providing a strong 

classification accuracy at 80.88% (p = 0.0001). The latencies of the raw weights and transformed 

weights most contributing to the classification are consistent with the latencies of the N2, P2 and P3 

components of the LEP, with a greater weighting towards the N2 latency range (maximal raw weight: 

285ms; maximal transformed weight projection: 305ms). 
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9 SUPPLEMENTARY TABLES 

9.1 SUPPLEMENTARY TABLE 1: PARTICIPANT DATA 
SUBJECT ID GROUP GENDER AGE PAIN CATASTROPHIZING SCALE SCORES EXPECTED 

DISTRESS 
/20 

PAIN THRESHOLD MANIPULATION CHECKS /5 

    
Total Rumination Magnification Helplessness  % max laser output Cue: Prediction Cue: Attention Cue: Influence 

1 High PC F 54 39 11 10 20 9 42 3 3 2 

2 High PC F 22 34 12 7 11 5 24 4 4 4 

3 High PC F 51 42 16 8 18 3 32 3 4 4 

4 High PC M 28 34 13 10 18 7 22 4 4 4 

5 High PC M 22 35 14 10 13 11 40 4 5 5 

6 High PC F 28 30 12 7 18 19 30 4 5 1 

7 High PC F 20 33 15 5 16 15 30 3 5 1 

8 High PC F 21 33 11 6 11 9 38 5 6 3 

9 High PC M 21 32 14 5 13 7 34 4 5 2 

10 High PC M 24 32 10 9 16 12 32 3 5 2 

11 High PC F 22 36 16 4 16 6 28 2 5 2 

12 High PC M 23 37 15 10 17 4 26 MD MD MD 

13 High PC F 33 32 9 10 17 14 28 4 4 2 

14 High PC M 19 31 13 5 11 10 14 4 4 2 

15 High PC M 19 26 10 4 14 12 22 4 5 2 

16 High PC M 19 31 8 10 12 12 32 4 3 3 

MEAN 
(GROUP) 

  
26.63 33.56 12.44 7.50 15.06 9.69 29.63 3.67 4.47 2.60 

SD (GROUP) 
  

10.81 3.76 2.48 2.39 2.93 4.32 7.20 0.72 0.83 1.18 
             

17 Low PC F 18 4 3 0 2 7 32 3 4 3 
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18 Low PC F 23 6 2 0 2 2 32 3 4 3 

19 Low PC F 20 2 1 2 0 3 32 3 4 2 

20 Low PC M 22 4 2 2 2 0 32 1 4 2 

21 Low PC M 21 2 1 0 1 3 44 4 4 2 

22 Low PC M 22 3 3 0 0 0 32 3 5 3 

23 Low PC M 22 5 2 0 2 7 30 4 3 2 

24 Low PC M 23 9 2 0 0 2 34 4 5 1 

25 Low PC F 21 1 1 1 0 2 26 4 5 2 

26 Low PC F 20 10 4 2 3 14 34 4 5 3 

27 Low PC F 24 0 4 0 2 2 28 3 4 3 

28 Low PC F 21 6 1 0 1 0 42 4 5 2 

29 Low PC M 20 9 4 2 1 15 38 2 5 2 

30 Low PC M 26 0 0 0 0 0 26 4 5 5 

31 Low PC F 40 3 4 2 1 6 44 4 5 2 

32 Low PC M 20 5 2 0 2 3 34 4 5 2 

33 Low PC M 20 6 4 1 1 4 32 4 5 2 

34 Low PC F 23 8 3 2 4 9 42 4 3 1 

MEAN 
(GROUP) 

  
22.56 4.61 2.39 0.78 1.33 4.39 34.11 3.44 4.44 2.33 

SD (GROUP) 
  

4.73 3.07 1.29 0.94 1.14 4.53 5.68 0.86 0.70 0.91 

SD (POOLED) 
  

8.30 15.05 5.44 3.83 7.28 5.12 6.73 0.79 0.75 1.03 
             

INDEPENDENT SAMPLES T TEST (HIGH PC > LOW PC) 
        

T STATISTIC 
  

1.45 24.71 15.09 11.01 18.40 3.48 -2.03 0.80 0.08 0.73 

P VALUE 
  

0.157 <0.001 <0.001 <0.001 <0.001 0.001 0.051 0.432 0.934 0.469 

EFFECT SIZE (COHEN'S D) 
 

0.49 1.92 1.85 1.76 1.89 1.03 0.67 0.28 0.03 0.26 

 

LEGEND 

PC Pain catastrophizing 
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SD Standard deviation 

M/F Male/Female 

CUE: PREDICTION How accurately did the arrow cues predict the intensity of the pain that 
followed? 

CUE: ATTENTION ) During the task, how much did you focus on the direction of the arrows? 

CUE: INFLUENCE When rating the intensity of the pain, how much was your rating based on the 
direction of the preceding arrow cue? 
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9.2 SUPPLEMENTARY TABLE 2: PARTICIPANT DATA (EXTRANEOUS VARIABLES) 
SUBJECT ID GROUP FEAR OF PAIN QUESTIONNAIRE PHQ9 PHQ15 STATE-TRAIT ANXIETY INVENTORY 
  

Minor  
(range 10-50) 

Medical  
(range 10-50) 

Severe 
(range 10-50) 

Depression 
(range 0-27) 

Somatic symptoms 
(range 0-30) 

Trait 
(range 20-80) 

State 
(range 20-80) 

1 High PC 18 19 12 5 6 29 37 

2 High PC 13 17 32 0 0 25 28 

3 High PC 11 20 21 0 4 42 43 

4 High PC 19 29 33 4 0 35 44 

5 High PC 22 30 41 8 12 43 39 

6 High PC 20 19 45 6 5 38 43 

7 High PC 33 37 46 2 4 43 27 

8 High PC 20 28 39 4 4 40 33 

9 High PC 14 14 36 7 
 

35 39 

10 High PC 16 16 28 2 4 43 39 

11 High PC 24 39 32 4 3 32 32 

12 High PC 27 37 48 6 5 52 51 

13 High PC 10 10 20 0 5 34 29 

14 High PC 19 20 39 4 0 35 58 

15 High PC 21 23 19 5 4 39 45 

16 High PC 19 25 38 1 1 28 31 

MEAN (GROUP) 
 

19.13 23.94 33.06 3.63 3.80 37.06 38.63 

SD (GROUP) 
 

5.86 8.69 10.60 2.55 3.03 6.87 8.62 
         

17 Low PC 18 26 37 1 4 34 34 

18 Low PC MD MD MD 3 2 MD MD 

19 Low PC 19 21 33 3 6 39 20 

20 Low PC 16 17 35 10 5 34 35 

21 Low PC 13 16 31 3 4 35 38 
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22 Low PC 14 19 34 0 1 32 28 

23 Low PC 25 26 39 4 4 35 32 

24 Low PC 10 12 10 3 0 31 20 

25 Low PC 14 20 35 8 8 33 30 

26 Low PC 34 29 34 8 6 42 35 

27 Low PC 23 26 40 3 3 33 32 

28 Low PC 12 11 30 6 7 23 20 

29 Low PC 17 16 27 2 8 32 35 

30 Low PC 25 15 12 0 0 27 22 

31 Low PC 12 21 38 4 6 41 35 

32 Low PC 21 17 28 3 10 37 38 

33 Low PC 10 14 34 3 2 29 30 

34 Low PC 17 12 40 0 3 22 20 

MEAN (GROUP) 
 

17.65 18.71 31.59 3.56 4.39 32.88 29.65 

SD (GROUP) 
 

6.37 5.50 8.65 2.83 2.85 5.51 6.70 

SD (POOLED) 
 

6.08 7.59 9.52 2.66 2.90 6.46 8.83 
         

INDEPENDENT SAMPLES T TEST (HIGH PC > LOW PC) 
    

T STATISTIC 
 

0.69 2.05 0.44 0.08 -0.57 1.92 3.33 

P VALUE 
 

0.493 0.051 0.666 0.941 0.572 0.065 0.002 

EFFECT SIZE (COHEN'S D) 0.24 0.69 0.15 0.03 0.20 0.65 1.02 

 

LEGEND 
 

PC Pain catastrophizing 

PHQ Public Health 
Questionnaire 

SD Standard deviation 
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9.3 SUPPLEMENTARY TABLE 3: CROSS-CORRELATION STATISTICS 
 

  PCS 
RUM 

PCS 
MAG 

PCS 
HELP 

POMS FPQ 
MINOR 

FPQ 
MEDICAL 

FPQ 
SEVERE 

PHQ9 PHQ15 STAI 
TRAIT 

STAI 
STATE 

PAIN 
THRESHOLD 

PCS 
TOTAL 

Spearman’s 
Coefficient 

.871** .829** .850** 0.518 0.103 0.284 0.016 0.087 -0.039 0.277 0.408 -0.106 

Sig. (2-tailed) <0.001 <0.001 <0.001 0.002 0.570 0.109 0.930 0.624 0.829 0.119 0.018 0.552 

Bonferr. Sig. 
(2-tailed) 

<0.001 <0.001 <0.001 0.153 51.886 9.957 84.659 56.764 75.477 10.818 1.665 50.247 

PCS RUM Spearman’s 
Coefficient 

 
.784** .836** 0.551 0.208 0.451 0.269 0.096 -0.105 0.411 0.531 -0.256 

Sig. (2-tailed) 
 

<0.001 <0.001 0.001 0.246 0.008 0.130 0.589 0.559 0.018 0.001 0.143 

Bonferr. Sig. 
(2-tailed) 

 
<0.001 <0.001 0.067 22.428 0.767 11.868 53.593 50.912 1.602 0.135 13.053 

PCS MAG Spearman’s 
Coefficient 

  
.825** .607* 0.082 0.269 0.135 0.117 0.080 0.340 0.45 -0.185 

Sig. (2-tailed) 
  

<0.001 <0.001 0.650 0.130 0.454 0.511 0.660 0.053 0.009 0.295 

Bonferr. Sig. 
(2-tailed) 

  
<0.001 0.013 59.157 11.796 41.321 46.501 60.037 4.820 0.782 26.821 

PCS HELP Spearman’s 
Coefficient 

   
.599* 0.237 0.323 0.132 0.117 0.001 0.366 0.565 -0.241 

Sig. (2-tailed) 
   

<0.001 0.183 0.067 0.464 0.508 0.995 0.036 0.001 0.170 

Bonferr. Sig. 
(2-tailed) 

   
0.017 16.683 6.112 42.225 46.241 90.522 3.302 0.055 15.463 

POMS Spearman’s 
Coefficient 

    
0.290 0.233 0.223 0.032 0.172 0.339 0.336 -0.014 

Sig. (2-tailed) 
    

0.102 0.192 0.213 0.859 0.339 0.053 0.056 0.940 

Bonferr. Sig. 
(2-tailed) 

    
9.274 17.465 19.383 78.204 30.804 4.864 5.112 85.503 

FPQ 
MINOR 

Spearman’s 
Coefficient 

     
.707** 0.404 0.253 0.065 0.363 0.211 -0.299 

Sig. (2-tailed) 
     

<0.001 0.020 0.156 0.725 0.038 0.239 0.090 
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Bonferr. Sig. 
(2-tailed) 

     
<0.001 1.788 14.199 65.941 3.450 21.758 8.233 

FPQ 
MEDICAL 

Spearman’s 
Coefficient 

      
0.505 0.294 0.052 0.53 0.315 -0.286 

Sig. (2-tailed) 
      

0.003 0.097 0.779 0.002 0.074 0.107 

Bonferr. Sig. 
(2-tailed) 

      
0.247 8.789 70.903 0.137 6.720 9.707 

FPQ 
SEVERE 

Spearman’s 
Coefficient 

       
0.271 0.042 0.315 0.120 -0.061 

Sig. (2-tailed) 
       

0.127 0.818 0.074 0.508 0.736 

Bonferr. Sig. 
(2-tailed) 

       
11.547 74.399 6.734 46.191 66.946 

PHQ9 Spearman’s 
Coefficient 

        
0.487 0.323 0.42 0.072 

Sig. (2-tailed) 
        

0.004 0.067 0.015 0.684 

Bonferr. Sig. 
(2-tailed) 

        
0.366 6.097 1.359 62.274 

PHQ15 Spearman’s 
Coefficient 

         
0.375 0.183 0.438 

Sig. (2-tailed) 
         

0.034 0.315 0.011 

Bonferr. Sig. 
(2-tailed) 

         
3.132 28.644 0.984 

STAI 
TRAIT 

Spearman’s 
Coefficient 

          
.593* -0.031 

Sig. (2-tailed) 
          

<0.001 0.863 

Bonferr. Sig. 
(2-tailed) 

          
0.025 78.538 

STAI 
STATE 

Spearman’s 
Coefficient 

           
-0.137 

Sig. (2-tailed) 
           

0.448 

Bonferr. Sig. 
(2-tailed) 

           
40.808 

 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2018. ; https://doi.org/10.1101/279992doi: bioRxiv preprint 

https://doi.org/10.1101/279992
http://creativecommons.org/licenses/by-nd/4.0/


48 
 

LEGEND 
 

PCS Pain Catastrophizing Scale 
RUM Rumination subscale 
MAG Magnification subscale 
HELP Helplessness  subscale 
FPQ Fear of Pain Questionnaire 
PHQ Public Health Questionnaire 
STAI State Trait Anxiety Inventory 
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9.4 SUPPLEMENTARY TABLE 4: MEAN PAIN RATINGS PER PARTICIPANT/CONDITION ACROSS TRIALS 
SUBJECT ID GROUP NUMERICAL RATINGS OF PAIN /10 
  

Block 1 Block 2 
 

  
Low laser intensity Medium laser intensity Low laser intensity Medium laser intensity High laser intensity 

  
Low cue Prior high cue Low cue Prior high cue Low cue Prior high cue Low cue Prior high cue High cue 

1 High PC 1.70 1.78 2.95 3.75 1.89 2.15 3.50 3.10 5.63 

2 High PC 2.32 2.59 4.10 4.65 2.38 2.62 3.55 4.15 5.66 

3 High PC 2.05 2.03 3.85 3.85 3.16 3.26 3.90 3.90 5.78 

4 High PC 2.39 2.76 4.25 4.45 2.65 2.87 4.30 4.20 5.22 

5 High PC 1.86 1.41 3.80 4.45 2.16 2.23 3.40 3.35 6.24 

6 High PC 0.95 0.95 1.60 1.65 1.11 1.15 1.80 1.90 4.37 

7 High PC 2.32 2.65 4.65 5.50 2.22 2.51 4.20 4.50 6.56 

8 High PC 2.30 2.38 3.10 3.15 2.30 2.44 3.30 3.65 5.54 

9 High PC 2.95 3.03 4.35 5.00 3.30 3.33 4.20 4.55 6.46 

10 High PC 3.30 2.92 2.75 3.25 3.76 3.72 2.70 2.90 3.68 

11 High PC 2.20 2.73 4.65 4.45 2.62 2.87 3.95 3.65 5.93 

12 High PC 2.80 3.22 4.50 4.40 2.92 2.87 4.75 4.60 6.49 

13 High PC 2.34 2.45 3.81 4.06 2.40 2.52 3.61 3.76 5.65 

14 High PC 2.23 2.11 3.25 3.65 1.78 2.00 4.70 4.20 5.46 

15 High PC 2.77 3.54 4.75 4.75 0.41 0.62 2.15 3.05 5.56 

16 High PC 3.02 2.59 4.85 5.00 3.00 3.00 4.45 4.45 6.17 

MEAN (GROUP) 
 

2.34 2.45 3.83 4.13 2.38 2.51 3.65 3.74 5.65 

SD (GROUP) 
 

0.57 0.67 0.89 0.92 0.83 0.78 0.85 0.74 0.76 
           

17 Low PC 1.98 1.84 4.05 4.60 2.74 2.87 4.25 3.94 6.16 

18 Low PC 1.71 1.65 4.11 4.72 1.43 1.44 4.55 4.50 5.95 

19 Low PC 2.98 2.92 5.20 5.65 3.00 2.90 4.25 4.85 5.66 

20 Low PC 3.02 3.32 5.15 5.35 2.65 2.69 4.65 4.55 6.17 
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21 Low PC 1.93 2.49 3.20 3.60 2.30 2.49 2.75 3.35 5.05 

22 Low PC 1.82 2.16 4.25 3.85 2.14 2.33 3.50 4.05 5.59 

23 Low PC 2.23 1.73 3.70 3.55 2.43 2.38 3.35 3.65 5.93 

24 Low PC 1.89 2.24 3.55 3.60 2.38 2.26 2.90 3.00 5.76 

25 Low PC 3.39 3.49 4.65 4.70 3.35 3.56 4.45 4.35 6.20 

26 Low PC 3.59 3.97 4.25 4.25 3.00 2.97 3.10 3.20 5.41 

27 Low PC 2.91 3.11 4.65 3.95 2.27 2.46 3.35 4.05 6.22 

28 Low PC 2.36 2.19 2.70 3.75 2.95 3.21 3.10 3.80 5.44 

29 Low PC 1.15 1.05 1.90 2.15 1.05 1.38 2.15 2.10 3.33 

30 Low PC 2.02 2.19 3.70 3.65 1.62 2.03 3.35 3.15 6.44 

31 Low PC 2.14 2.43 2.85 3.65 3.16 2.85 3.40 3.10 5.34 

32 Low PC 1.98 1.97 3.45 3.90 2.22 2.28 3.55 3.80 6.63 

33 Low PC 3.32 3.38 3.95 4.20 2.43 3.21 4.80 4.95 5.49 

34 Low PC 1.77 2.11 2.90 3.00 2.32 2.21 2.90 3.45 4.98 

MEAN (GROUP) 
 

2.34 2.46 3.79 4.01 2.41 2.53 3.58 3.77 5.65 

SD (GROUP) 
 

0.69 0.76 0.87 0.82 0.60 0.58 0.75 0.73 0.74 

SD (POOLED) 
 

0.62 0.71 0.87 0.86 0.71 0.67 0.79 0.72 0.74 
           

INDEPENDENT SAMPLES T TEST (HIGH PC > LOW PC) 
      

T STATISTIC 
 

0.00 -0.05 0.12 0.40 -0.14 -0.08 0.29 -0.10 -0.01 

P VALUE 
 

0.999 0.963 0.906 0.692 0.889 0.936 0.776 0.923 0.991 

EFFECT SIZE (COHEN'S D) 0.00 0.02 0.04 0.14 0.05 0.03 0.10 0.03 0.00 
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9.5 SUPPLEMENTARY TABLE 3: MIXED ANOVA FOR PAIN RATINGS 
SOURCE F P PARTIAL ETA SQUARED 

BLOCK 1.10 0.302 0.03 

BLOCK * GROUP 0.04 0.846 0.00 

INTENSITY 161.70 <0.001 0.83 

INTENSITY * GROUP 0.10 0.754 0.00 

CUE 37.67 <0.001 0.54 

CUE * GROUP 0.01 0.938 0.00 

BLOCK * INTENSITY 8.69 0.006 0.21 

BLOCK * INTENSITY * GROUP 0.02 0.890 0.00 

BLOCK * CUE 1.07 0.308 0.03 

BLOCK * CUE * GROUP 0.66 0.422 0.02 

INTENSITY * CUE 2.40 0.131 0.07 

INTENSITY * CUE * GROUP 0.01 0.910 0.00 

BLOCK * INTENSITY * CUE 1.13 0.296 0.03 

BLOCK * INTENSITY * CUE * GROUP 0.74 0.396 0.02 

GROUP 0.01 0.930 0.00 
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9.6 SUPPLEMENTARY TABLE 4: EEG SENSOR STATISTICS 
 

CONTRAST CLUSTER CODE TEMPORAL EXTENT (MS) P(FWE-CORR) CLUSTER SIZE (VOXELS) SPATIAL COORDINATES (MM) 
  

Min Max 
  

x y 

VISUAL CUE PROCESSING 
      

CUE ss1 116 152 0.003 3303 9 56 

CUE ss2 150 150 <0.001 4629 -17 -62 

CUE ss3 362 1312 <0.001 127902 4 -62 

CUE ss4 384 1112 <0.001 94700 -68 18 

GROUP ss5 256 604 <0.001 28786 -21 -41 

GROUP ss6 242 502 <0.001 8616 -68 18 

GROUP*CUE ss7 1334 1440 0.001 3936 30 -36 

NOCICEPTIVE PROCESSING 
      

INTENSITY ss8 308 310 <0.001 8572 -17 2 

INTENSITY ss9 388 726 <0.001 55016 -4 -25 

INTENSITY ss10 382 670 <0.001 16672 -68 -41 

EXPECTATION ss11 416 478 0.002 2802 21 -3 
        

FWE: Family-wise error rate 
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9.7 SUPPLEMENTARY TABLE 5: EEG SOURCE STATISTICS 
CONTRAST SOURCE 

CLUSTER 
CODE 

CORRESPONDING 
SENSOR 
CLUSTER(S) 

TEMPORAL 
WINDOW 
(MS) 

P(FWE-
CORR) 

CLUSTER 
SIZE 
(VOXELS) 

SPATIAL MNI 
COORDINATES (MM) 

AAL REGIONS 

   
Min Max 

  
x y z 

 

VISUAL CUE PROCESSING 

CUE sc1 ss1/2 116 152 <0.001 2190 36 -42 -20 Fusiform_L, Temporal_Mid_L, Temporal_Pole_Mid_L, Temporal_Inf_L 

CUE sc2 ss1/2 116 152 <0.001 1426 -34 -2 -44 ParaHippocampal_R, Fusiform_R, Temporal_Mid_R, Temporal_Inf_R, 
Cerebelum_Crus1_R, Cerebelum_6_R 

CUE sc3 ss3/4 362 1312 <0.001 5739 -18 -84 38 Precentral_R, Cuneus_R, Occipital_Sup_R, Occipital_Mid_R, Occipital_Inf_R, 
Fusiform_R, Postcentral_R, Parietal_Sup_R, Parietal_Inf_R, SupraMarginal_R, 
Angular_R, Precuneus_L, Precuneus_R, Paracentral_Lobule_R, Temporal_Sup_R, 
Temporal_Mid_R, Temporal_Inf_R 

CUE sc4 ss3/4 362 1312 0.008 381 30 -60 -8 Lingual_L, Fusiform_L, Cerebelum_Crus1_L, Cerebelum_6_L 

CUE sc5 ss3/4 362 1312 <0.001 4209 -34 0 -16 Frontal_Mid_2_R, Frontal_Inf_Tri_R, Frontal_Inf_Orb_2_R, Olfactory_R, OFCant_R, 
OFCpost_R, OFClat_R, Insula_R, ParaHippocampal_R, Amygdala_R, Fusiform_R, 
Putamen_R, Temporal_Sup_R, Temporal_Pole_Sup_R, Temporal_Mid_R, 
Temporal_Pole_Mid_R, Temporal_Inf_R 

CUE sc6 ss3/4 362 1312 <0.001 3659 2 -4 26 Frontal_Sup_2_L, Frontal_Mid_2_L, Supp_Motor_Area_L, Frontal_Sup_Medial_L, 
Cingulate_Ant_L, Cingulate_Ant_R, Cingulate_Mid_L, Cingulate_Mid_R, 
Cingulate_Post_L, Cingulate_Post_R, Precuneus_R, Thalamus_L, Thalamus_R 

CUE sc7 ss3/4 362 1312 <0.001 5189 46 -70 22 Precentral_L, Occipital_Mid_L, Postcentral_L, Parietal_Sup_L, Parietal_Inf_L, 
SupraMarginal_L, Angular_L, Precuneus_L, Paracentral_Lobule_L, Temporal_Sup_L, 
Temporal_Mid_L 

CUE sc8 ss3/4 362 1312 <0.001 650 24 56 24 Frontal_Sup_2_L, Frontal_Mid_2_L, Frontal_Inf_Tri_L, Frontal_Sup_Medial_L 

CUE sc9 ss3/4 362 1312 0.006 404 -20 -62 -12 Lingual_R, Fusiform_R, Temporal_Inf_R, Cerebelum_6_R 

CUE sc10 ss3/4 362 1312 0.035 260 -18 50 28 Frontal_Sup_2_R, Frontal_Sup_Medial_R 

CUE sc11 ss3/4 362 1312 0.001 537 10 -78 28 Calcarine_L, Cuneus_L, Occipital_Sup_L, Occipital_Mid_L, Occipital_Inf_L, 
Precuneus_L 

CUE sc12 ss3/4 362 1312 <0.001 1588 -8 16 44 Frontal_Sup_2_R, Supp_Motor_Area_R, Frontal_Sup_Medial_R, Cingulate_Mid_R 

GROUP sc13 ss5/6 242 604 <0.001 1121 -6 -68 52 Cuneus_R, Occipital_Sup_R, Postcentral_R, Parietal_Sup_R, Precuneus_L, 
Precuneus_R, Paracentral_Lobule_R 

GROUP sc14 ss5/6 242 604 <0.001 1175 10 -70 50 Occipital_Sup_L, Postcentral_L, Parietal_Sup_L, Parietal_Inf_L, Precuneus_L 

GROUP sc15 ss5/6 242 604 0.002 512 -34 -56 42 Occipital_Mid_R, Parietal_Inf_R, Angular_R, Temporal_Mid_R 

GROUP sc16 ss5/6 242 604 0.018 311 34 -86 24 Occipital_Mid_L, Angular_L, Temporal_Mid_L 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2018. ; https://doi.org/10.1101/279992doi: bioRxiv preprint 

https://doi.org/10.1101/279992
http://creativecommons.org/licenses/by-nd/4.0/


54 
 

GROUP sc17 ss5/6 242 604 0.016 321 -30 -80 14 Calcarine_R, Cuneus_R, Occipital_Sup_R, Occipital_Mid_R 

GROUP sc18 ss5/6 242 604 <0.001 921 4 -8 22 Cingulate_Ant_R, Cingulate_Mid_R, Cingulate_Post_L, Cingulate_Post_R, 
Precuneus_R, Thalamus_R 

GROUP * CUE sc19 ss7 1334 1440 <0.001 1025 30 -50 66 Postcentral_L, Parietal_Sup_L, Parietal_Inf_L, Precuneus_L 

GROUP * CUE sc20 ss7 1334 1440 <0.001 767 -16 -54 50 Cuneus_R, Postcentral_R, Parietal_Sup_R, Precuneus_L, Precuneus_R, 
Paracentral_Lobule_R 

GROUP * CUE sc21 ss7 1334 1440 <0.001 748 4 12 54 Frontal_Sup_2_L, Frontal_Mid_2_L, Supp_Motor_Area_L, Frontal_Sup_Medial_L, 
Cingulate_Mid_L 

GROUP * CUE sc22 ss7 1334 1440 0.006 470 -8 10 38 Frontal_Sup_2_R, Supp_Motor_Area_R, Frontal_Sup_Medial_R, Cingulate_Mid_R 

NOCICEPTIVE PROCESSING 

INTENSITY sc23 ss8 308 310 <0.001 36733 -38 -60 20 Precentral_L, Precentral_R, Frontal_Sup_2_L, Frontal_Sup_2_R, Frontal_Mid_2_L, 
Frontal_Mid_2_R, Frontal_Inf_Oper_L, Frontal_Inf_Oper_R, Frontal_Inf_Tri_L, 
Frontal_Inf_Tri_R, Frontal_Inf_Orb_2_R, Rolandic_Oper_L, Supp_Motor_Area_L, 
Supp_Motor_Area_R, Olfactory_L, Olfactory_R, Frontal_Sup_Medial_L, 
Frontal_Sup_Medial_R, Frontal_Med_Orb_L, Frontal_Med_Orb_R, Rectus_L, 
Rectus_R, OFCmed_L, OFCmed_R, OFCant_L, OFCant_R, Insula_L, Cingulate_Ant_L, 
Cingulate_Ant_R, Cingulate_Mid_L, Cingulate_Mid_R, Calcarine_R, Cuneus_R, 
Lingual_R, Occipital_Sup_R, Occipital_Mid_L, Occipital_Mid_R, Occipital_Inf_L, 
Occipital_Inf_R, Fusiform_L, Fusiform_R, Postcentral_L, Postcentral_R, 
Parietal_Sup_L, Parietal_Sup_R, Parietal_Inf_L, Parietal_Inf_R, SupraMarginal_L, 
SupraMarginal_R, Angular_L, Angular_R, Precuneus_L, Precuneus_R, 
Paracentral_Lobule_L, Paracentral_Lobule_R, Caudate_L, Heschl_L, 
Temporal_Sup_L, Temporal_Sup_R, Temporal_Pole_Sup_L, Temporal_Mid_L, 
Temporal_Mid_R, Temporal_Pole_Mid_L, Temporal_Inf_L, Temporal_Inf_R, 
Cerebelum_Crus1_L, Cerebelum_Crus1_R, Cerebelum_6_L, Cerebelum_6_R 

INTENSITY sc24 ss8 308 310 <0.001 6140 -32 -22 10 Frontal_Inf_Oper_R, Frontal_Inf_Tri_R, Frontal_Inf_Orb_2_R, Rolandic_Oper_R, 
Insula_R, ParaHippocampal_R, Amygdala_R, Occipital_Inf_R, Fusiform_R, 
Putamen_R, Heschl_R, Temporal_Sup_R, Temporal_Pole_Sup_R, Temporal_Mid_R, 
Temporal_Pole_Mid_R, Temporal_Inf_R, Cerebelum_Crus1_R, Cerebelum_6_R 

INTENSITY sc25 ss8 308 310 <0.001 2050 14 -102 12 Calcarine_L, Cuneus_L, Lingual_L, Occipital_Sup_L, Occipital_Mid_L, Occipital_Inf_L, 
Fusiform_L, Cerebelum_6_L 

INTENSITY sc26 ss8 308 310 <0.001 1710 0 -2 28 Cingulate_Ant_L, Cingulate_Ant_R, Cingulate_Mid_L, Cingulate_Mid_R, 
Cingulate_Post_L, Cingulate_Post_R, Precuneus_R, Thalamus_L, Thalamus_R 

INTENSITY sc27 ss9/10 382 726 <0.001 5903 -48 -18 -22 Frontal_Inf_Oper_R, Frontal_Inf_Tri_R, Rolandic_Oper_R, Insula_R, 
ParaHippocampal_R, Occipital_Inf_R, Fusiform_R, Putamen_R, Heschl_R, 
Temporal_Sup_R, Temporal_Pole_Sup_R, Temporal_Mid_R, Temporal_Pole_Mid_R, 
Temporal_Inf_R, Cerebelum_Crus1_R, Cerebelum_6_R 

INTENSITY sc28 ss9/10 382 726 <0.001 7228 38 -42 -22 Precentral_L, Frontal_Inf_Oper_L, Rolandic_Oper_L, Insula_L, Occipital_Inf_L, 
Fusiform_L, Postcentral_L, Parietal_Sup_L, Parietal_Inf_L, SupraMarginal_L, 
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Angular_L, Heschl_L, Temporal_Sup_L, Temporal_Pole_Sup_L, Temporal_Mid_L, 
Temporal_Pole_Mid_L, Temporal_Inf_L, Cerebelum_Crus1_L, Cerebelum_6_L 

INTENSITY sc29 ss9/10 382 726 <0.001 2617 -40 -56 42 Occipital_Sup_R, Occipital_Mid_R, Postcentral_R, Parietal_Sup_R, Parietal_Inf_R, 
SupraMarginal_R, Angular_R, Temporal_Mid_R 

INTENSITY sc30 ss9/10 382 726 0.002 833 50 -66 20 Occipital_Mid_L, Parietal_Inf_L, Angular_L, Temporal_Mid_L 

INTENSITY sc31 ss9/10 382 726 <0.001 2351 24 48 18 Frontal_Sup_2_L, Frontal_Mid_2_L, Frontal_Inf_Tri_L, Frontal_Sup_Medial_L, 
Frontal_Med_Orb_L, OFCant_L, Cingulate_Ant_L 

INTENSITY sc32 ss9/10 382 726 <0.001 3475 8 -16 58 Precentral_L, Frontal_Sup_2_L, Frontal_Mid_2_L, Supp_Motor_Area_L, 
Frontal_Sup_Medial_L, Cingulate_Mid_L, Postcentral_L, Parietal_Sup_L, 
Precuneus_L, Paracentral_Lobule_L 

INTENSITY sc33 ss9/10 382 726 <0.001 3838 -22 -8 58 Precentral_R, Frontal_Sup_2_R, Supp_Motor_Area_R, Frontal_Sup_Medial_R, 
Cingulate_Mid_R, Postcentral_R, Parietal_Sup_R, Precuneus_R, 
Paracentral_Lobule_R 

INTENSITY sc34 ss9/10 382 726 <0.001 1650 -22 42 20 Frontal_Sup_2_R, Frontal_Mid_2_R, Frontal_Inf_Tri_R, Frontal_Sup_Medial_R, 
Frontal_Med_Orb_R, OFCant_R, Cingulate_Ant_R 

INTENSITY sc35 ss9/10 382 726 <0.001 1221 0 -4 30 Cingulate_Ant_L, Cingulate_Ant_R, Cingulate_Mid_R, Cingulate_Post_L, 
Cingulate_Post_R, Precuneus_R, Thalamus_R 

EXPECTATION sc36 ss11 416 478 0.001 910 36 -28 34 Postcentral_L, Parietal_Sup_L, Parietal_Inf_L, Angular_L 

EXPECTATION sc37 ss11 416 478 <0.001 1172 -34 -30 38 Postcentral_R, Parietal_Sup_R, Parietal_Inf_R, SupraMarginal_R, Angular_R 
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