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Abstract 
 
The Gleason grading system remains the most powerful prognostic predictor for patients with 
prostate cancer since the 1960’s. Its application requires highly-trained pathologists, is tedious 
and yet suffers from limited inter-pathologist reproducibility, especially for the intermediate 
Gleason score 7. Automated annotation procedures constitute a viable solution to remedy these 
limitations.  
In this study, we present a deep learning approach for automated Gleason grading of prostate 
cancer tissue microarrays with Hematoxylin and Eosin (H&E) staining. Our system was trained 
using detailed Gleason annotations on a discovery cohort of 641 patients and was then 
evaluated on an independent test cohort of 245 patients annotated by two pathologists. On the 
test cohort, the inter-annotator agreements between the model and each pathologist, quantified 
via Cohen’s quadratic kappa statistic, were 0.75 and 0.71 respectively, comparable with the 
inter-pathologist agreement (kappa=0.71). Furthermore, the model’s Gleason score 
assignments achieved pathology expert-level stratification of patients into prognostically distinct 
groups, on the basis of disease-specific survival data available for the test cohort. 

Overall, our study shows promising results regarding the applicability of deep learning-based 
solutions towards more objective and reproducible prostate cancer grading, especially for cases 
with heterogeneous Gleason patterns.  
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Introduction 
Prostate cancer is the second leading cause of cancer death in men1. Prostatic carcinomas are 
graded according to the Gleason scoring system which was first established by Donald Gleason 
in 19662. The Gleason scoring system is acknowledged by the World Health Organization 
(WHO) and has been modified and revised in 2005 and 2014 by the International Society of 
Urological Pathology (ISUP)3. Despite several changes in clinical diagnosis of prostate cancer, 
the histological Gleason scoring system is still the most powerful prognostic tool4. The 
assessment is based exclusively on the architectural pattern of the tumour, i.e. the Gleason 
patterns. Different histological patterns are assigned numbers from 1 (well differentiated) to 5 
(poorly differentiated). Gleason pattern 3 describes well-formed, separated glands, variable in 
size. Gleason pattern 4 includes fused glands, cribriform and glomeruloid structures and poorly 
formed glands. Gleason pattern 5 involves poorly differentiated individual cells, sheets of 
tumour, solid nests, cords and linear arrays as well as comedonecrosis. The final Gleason score 
is reported as the sum of the two most predominant patterns present in the histological 
specimen, and in current clinical practice the lowest Gleason score assigned is Gleason 6 
(3+3)5. 
Immunohistochemistry is routinely generated in clinical laboratories with good reproducibility. 
However, the final Gleason score annotation of the stained tissue slides is dependent on the 
evaluation of the respective pathologist, who thus constitutes an important factor for  
stratification and therapeutic decisions. The histological assessment of human tissue—based on 
visual, microscopy-based evaluation of non-trivial cellular and morphological patterns—is time-
consuming and often suffers from limited reproducibility6. For prostate cancer in particular, 
intermediate-risk Gleason patterns 3 and 4 can be very difficult to assign unambiguously. 
Automated computational approaches operating on digital pathology images bear the potential 
to overcome the above-mentioned limitations, deliver reproducible results and achieve high 
throughput by multiplexing of computational resources7.  Earlier computational approaches 
developed for this purpose build on explicit, a priori defined image features and employ 
conventional regression or classification techniques to perform feature selection and association 
with clinical parameters8–10.  

In recent years, deep learning has emerged as a disruptive alternative to the aforementioned 
feature engineering-based techniques. Deep learning systems rely on multi-layered neural 
networks that are able to extract increasingly complex, task-related features directly from the 
data. Recent developments in neural network architecture design and training have enabled 
researchers to solve previously intractable learning tasks in the field of computer vision11. As a 
result, deep learning-based approaches have become very successful in addressing a wide 
range of biomedical image analysis tasks12-15. 

Recent studies (e.g. 16–19) have shown that deep learning systems can accurately detect 
malignancies in histopathological images. Prior work on the analysis of prostate cancer digital 
pathology images includes detection of cancerous tissue18, prediction of SPOP mutation 
status20 and of cancer recurrence21, as well as tissue heterogeneity characterization via 
unsupervised learning22. A first deep learning-based approach to Gleason score prediction is 
the study of Källén et al.23. However, the assessment of their method was limited to tissue slides 
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with homogeneous Gleason grading, despite the fact that, typically, tissue slides contain 
heterogeneous Gleason pattern regions. In a more recent work, Zhou et al. focused on 
intermediate Gleason scores24. Their algorithm was tested on whole slide images from The 
Cancer Genome Atlas (TCGA)25 achieving an overall accuracy of 75% in differentiating Gleason 
3+4 from Gleason 4+3 slides. Finally, del Toro et al. also used prostate cancer whole slide 
images from TCGA and trained a binary classifier to discriminate low (7 or lower) versus high (8 
or higher) Gleason score images26. The above studies suggest that automated Gleason grading 
via deep learning is a feasible task, but were all evaluated in a limited setting—either on images 
with homogeneous Gleason patterns or as a binary classification problem on a limited set of 
Gleason scores. 

 

Results 
In this study, we focus on a well annotated dataset of prostate cancer tissue microarrays27 and 
demonstrate that a convolutional neural network can be successfully trained as a Gleason score 
annotator. As opposed to previous studies, we both train and evaluate our model on the basis of 
detailed manual expert Gleason annotations of image subregions within each TMA spot image. 
Given the relatively small size of our training dataset (641 patients), we find transfer learning, 
strong regularization and balanced mini-batches to be crucial for successfully training the 
classifier. We then evaluate the model’s predictive performance on a separate test cohort of 245 
patients, independently annotated by two specifically trained uropathologists (K.S.F., J.H.R.). 
This design allows us to quantify the inter-pathologist variability on this particular test cohort and 
compare it with the neural network performance. Additionally, we have benchmarked the deep 
learning approach against the two pathologists on a survival analysis task. This task allowed an 
objective comparison since survival data constitutes a precisely measurable ground truth as 
opposed to Gleason annotations which can be subjective. We show that the Gleason score 
groups assigned by the neural network achieve pathologist-level risk stratification of the prostate 
cancer patients in our test cohort. 

 

Tissue microarray resource with Gleason score annotated subregions  

Our dataset comprises five tissue microarrays (TMAs), each containing 200-300 spots. Spots 
containing artefacts or non-prostate tissue (e.g. lymph node metastasis) were excluded from the 
study. The prostate TMA spots were annotated by a first pathologist (K.S.F.) by carefully 
delineating cancerous regions and assigning a Gleason pattern of 3, 4 or 5 to each region. 
Examples of annotated regions are depicted in Figure 1a. TMA spots without any cancerous 
region were marked as benign. The distribution of Gleason scores across different tissue 
microarrays is summarized in Table 1. TMA 80 contains the highest number of cases and was 
chosen as the test cohort. TMA 76 was chosen as the validation cohort because it contains the 
most balanced distribution of Gleason scores. The other three TMAs were used as training 
cohort. The TMA spots in the test cohort were independently annotated by a second pathologist 
(J.H.R.) to allow for quantification of inter-pathologist variability. 
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In addition to Gleason score annotations, clinical data including survival information was 
available for three of the TMAs27. Prostate cancer is known to have a favorable prognosis 
compared to other types of cancer, and therefore relatively few death events are present in the 
dataset. Restricted to TMA spots considered in this study, TMA 80 has the highest number of 
death events (n = 30), followed by TMA 111 (n = 7) and TMA 76 (n = 0). 

 

 

Table 1: Dataset Gleason annotation summary. Tissue Microarrays 111, 199, 204 were used as 
training set, TMA 76 as validation set and TMA 80 as test set. 

 

 Benign 6  (3+3) 7 (3+4, 
4+3) 

8 (4+4, 
5+3, 3+5) 

9 (4+5,         
5+4) 10 (5+5) Total 

TMA 76 42 35 25 15 2 14 133 

TMA 80 12 88 38 91 3 13 245 

TMA 111 0 95 39 69 16 8 227 

TMA 199 61 69 17 26 2 1 176 

TMA 204 0 1 2 25 8 69 105 
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Figure 1: Overall annotation procedure. (a) Examples of TMA spot Gleason annotations 
provided by the pathologists (blue: Gleason pattern 3 region, yellow: Gleason pattern 4 region, 
red: Gleason pattern 5 region). (b) During the training phase (top row), a deep neural network 
was trained as a patch-level classifier. We used the MobileNet architecture, whose main 
building blocks are “depthwise separable” convolutions: a special type of convolution block with 
considerably fewer parameters than normal convolutions. Convolution blocks are used to 
extract increasingly complex features from the input image. Following the convolution blocks, a 
global average pooling layer computes the spatial average of each feature map at the last 
convolution layer, effectively summarizing the locally-detected patterns across the entire image. 
Finally, the output layer produced the final classification decision for each input image patch by 
computing a probability distribution over the four Gleason classes considered in this study. 
During the evaluation phase (bottom row), the trained patch-level convolutional neural network 
was applied to entire TMA spot images in a sliding window fashion and generated pixel-level 
probability maps for each class. A Gleason score was assigned to a TMA spot as the sum of the 
primary and secondary Gleason patterns detected (above a threshold) in the corresponding 
output pixel-level maps.  
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Automated Gleason score annotation via deep learning 

Small image regions (image “patches”) were extracted from benign tissue and the cancer 
annotated regions and used to train a patch-based classifier (Fig. 1b). Once trained, the patch-
level classifier can be easily converted to a pixel-level annotator (details in Methods) and, 
therefore, can be used to assign Gleason scores to entire TMA spot images (Fig. 1b). To 
choose a suitable classifier, we explored different convolutional neural network architectures 
which have shown excellent performance on the ImageNet competition28, namely VGG-1629, 
Inception-V330, ResNet-5031, DenseNet-12132 and MobileNet33. As expected, given the limited 
size of our dataset, fine-tuning the networks pretrained on ImageNet achieved better 
performance on the validation set than training from scratch (Supplementary Fig. S1). Details 
about the patch generation procedure and model training can be found in Methods. 

In our benchmark, the best performing network architecture was MobileNet (using width 
multiplier 𝛼 = 0.5). MobileNets are designed as small models able to be trained on mobile 
devices and, in this application, where dataset size is limited and feature space is restricted in 
comparison to natural images, it turned out that the relatively low number of parameters helped 
to avoid severe overfitting without causing a drop in performance. In the validation cohort, 
MobileNet achieved a macro-average recall of 70% for classifying patches as benign, Gleason 
3, Gleason 4 or Gleason 5. Specifically for each class, the recall values were: benign 63%, 
Gleason 3 72%, Gleason 4 58%, Gleason 5 88%. The full confusion matrix is shown in 
Supplementary Figure S2. In this cohort, the value of Cohen’s quadratic kappa34 for patch-
level classification was 0.67. 

We then evaluated the model’s predictions at the patch level in the test cohort (Fig. 2). The 
results of comparing the model’s annotations with annotations from the first pathologist (who 
has also annotated the training cohort) showed that, although there is no perfect agreement, 
most mis-classifications were found within neighbouring Gleason patterns (Fig. 2a). For 
instance, 31% of patches annotated as Gleason 5 were predicted as Gleason 4, but only 5% 
were predicted as lower Gleason patterns. For this comparison, Cohen’s quadratic kappa was 
0.55 and macro-average recall was 0.58. Comparing the model’s annotations with annotations 
from the second pathologist, we observe a similar agreement pattern, resulting in a kappa value 
of 0.49 and macro-average recall of 0.53 (Fig. 2b). Finally, we quantified the inter-pathologist 
agreement on the test cohort (kappa = 0.67, macro-average recall = 0.71 considering the first 
pathologist’s annotations as ground truth), which is at higher but still comparable levels as the 
agreement between model and pathologist annotations (Fig. 2c). The degree of overlap 
between model and pathologist annotations was also visually depicted via Venn diagrams in 
Figure 2d. 
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Figure 2: Model evaluation on test cohort (image patch level) and inter-pathologist variability. 
All confusion matrices were normalized per row (ground truth label) reflecting the recall metric 
for each class. (a) Patch-based model annotations compared with annotations by 1st 
pathologist. (b) Patch-based model annotations compared with annotations by 2nd pathologist. 
(c) Annotations by 2nd pathologist compared with annotations by 1st pathologist. (d) Venn 
diagrams illustrating the overlap in patch-level Gleason annotations produced by the deep 
learning model and the two pathologists. 

 

 

As a next step, we evaluated the model’s predictions at the TMA spot level. To this end, we 
generated pixel-level probability maps for each class by applying the trained neural network in a 
sliding window fashion (Fig. 3, for details see Methods). These pixel-level maps enable visual 
comparison with human annotations and can be easily evaluated by pathology experts. For 
instance, the TMA spot in Figure 3a was a clear Gleason 6 (3+3) case according to both 
pathologists and model annotations. We also observed that the model annotated the upper 
region of this TMA spot as benign, in accordance with the pathologists, except for a small part 
that was annotated as Gleason pattern 3. Interestingly, retrospective assessment of this part by 
the pathologists confirmed the presence of a small focus of atypical glands. The TMA spot in 
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Figure 3b was annotated as Gleason 8 (4+4) by the two pathologists and the model. Here we 
observed some annotation errors made by the model in regions close to tissue borders, often 
affected by tissue preparation artefacts. Such small mis-labeled regions do not influence the 
final Gleason score assignment for entire TMAs, as we only take into account detected patterns 
that exceed a predefined threshold (details in Methods). As a further example, the TMA spot 
presented in Figure 3c was annotated as Gleason 8 (4+4) by the first pathologist and as 
Gleason 6 (3+3) by the second. The model annotations split the TMA spot image into distinct 
Gleason pattern 3 and Gleason pattern 4 regions, resulting in a Gleason score 7 (4+3) final 
assignment. Similarly for the TMA spot presented in Figure 3d, which was annotated as 
Gleason 8 (4+4) by the first pathologist and as Gleason 10 (5+5) by the second. The model 
annotations split the TMA spot image into distinct Gleason pattern 4 and Gleason pattern 5 
regions, resulting in a Gleason score 9 (5+4) final assignment. 

 

 

Figure 3: Representative examples of model predictions as pixel-level probability maps and 
visual comparison with pathologist annotations. Each subfigure (a-d) corresponds to a different 
TMA spot. Within each subfigure (a-d), the subplots in the right-most column show the Gleason 
patterns assigned by the two pathologists (blue: Gleason 3 region, yellow: Gleason 4 region, 
red: Gleason 5 region). The other four subplots show the model’s Gleason annotations. 
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Summarizing the pixel-level Gleason annotation maps produced by either the pathologists or 
the model (detailed description in Methods), a Gleason score in the range 6 - 10 was assigned 
to each TMA spot, as the sum of the two most predominant Gleason patterns. If no cancer was 
detected, the TMA spot was classified as benign. For this task, the inter-annotator agreement 
between the model and each pathologist reached kappa = 0.75 for the first pathologist and 
kappa = 0.71 for the second (Fig. 4). These values are at the same level as inter-pathologist 
agreement (kappa = 0.71). 

 

 

 

Figure 4: Model evaluation on test cohort (TMA spot level) and inter-pathologist variability. 
Each TMA spot is annotated with detected Gleason patterns (Gleason 3, 4 or 5) by the model 
and two pathologists. Then, a final Gleason score is assigned as the sum of the two most 
predominant Gleason patterns. If no cancer is detected, the TMA spot is classified as benign. 
We show confusion matrices for the comparison of Gleason score assignments by (a) the model 
and the first  pathologist, (b) the model and the second pathologist, (c) the two pathologists. 

 

Model interpretation identifies specific morphological patterns as determinants of 
automated annotation performance 

Complex machine learning models, such as deep neural networks, are often criticized by 
clinicians as non-interpretable black boxes. To provide insight and gain trust in the model 
predictions, we visually studied image patches that the model predicts correctly and with high 
confidence (Fig. 5). Furthermore, we evaluated morphological patterns utilized by the model for 
assigning Gleason scores and compared these patterns to the ones expected by a pathology 
expert. We observed clear differences in the gland architecture among patches annotated with 
different Gleason grades by the model. Prostate glands in benign patches contained a well-
formed outer layer of basal cells and showed no evidence of cytological atypia. In Gleason 3 
patches, glands were variable in size but still round-shaped and well-formed. In Gleason 4 
patches, we observed merged glands, small in size and irregularly shaped, as well as implied 
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cribriform pattern. Finally, in Gleason 5 patches we found mostly the absence of gland formation 
and solid sheets of tumour. 

To evaluate morphological patterns utilized by the annotation model, we employed the 
technique of class activation mapping (CAM)35 and highlighted class-specific discriminative 
parts of the confidently-predicted image patches. According to CAM analysis, the model is 
indeed focusing on the epithelium and ignoring stroma regions (Fig. 5). Especially for predicting 
the Gleason 3 pattern, we observed that the model focuses on gland junctions making sure that 
the glands are not fused, which would lead to a Gleason 4 pattern annotation. 

 

 

 

Figure 5: Model interpretation via class activation mapping35. For each class, we show two 
examples of image patches that were confidently and correctly classified by the deep learning 
model. In addition, the regions where the model is focusing on in order to make predictions are 
highlighted. In each example, the first column shows the image patch. In the second column, a 
heatmap generated by the class activation mapping technique is overlaid, highlighting the most 
important regions for the model predictions. In the third column, only the highlighted part of the 
image is shown. 
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Automated Gleason score annotation yields pathology expert-level survival stratification 

As a final step, for the test cohort, we studied survival stratification on the basis of the model 
annotations and those obtained by pathology experts. Patients were split into three risk groups 
on the basis of corresponding Gleason score assignments: low risk (Gleason ≤ 6), intermediate 
risk (Gleason 7), high risk (Gleason ≥ 8). Kaplan-Meier estimators of disease-specific survival 
showed differences for the individual risk groups considered (Fig. 6a). Results about overall 
survival and biochemical recurrence-free survival followed similar trends (Supplementary Fig. 
S3). We observed that the stratification achieved by the model for separating the low-risk and 
intermediate-risk groups was more significant (Benjamini Hochberg-corrected36 two-sample 
logrank p-value = 0.098) than the one achieved by either pathologist (BH-corrected two-sample 
logrank p-values = 0.79 and 0.292). The model automatically annotated Gleason 3 and 4 
pattern regions and, eventually, assigned the heterogeneous Gleason score 7 in more cases 
than either pathologist. It is worth noting the inter-pathologist variability regarding Gleason score 
7: for this intermediate-risk group, the two pathologists agreed on 19 cases and disagreed on 50 
cases (Fig. 6b). In addition, we observed that 59% of the cases annotated as Gleason 7 by the 
first pathologist and, coincidentally, 59% of the cases annotated as Gleason 7 by the second 
pathologist were also annotated as Gleason 7 by the model. For the cases assigned to the low-
risk group (Gleason ≤ 6) by the model, no disease-specific death event occurred. In contrast, 
for the cases labeled as low-risk by the first pathologist and second pathologist, 3 and 2 
disease-specific death events occurred, respectively. These results demonstrate that the 
automated procedure achieved a pathologist-level survival stratification in this cohort of patients 
(see also Supplementary Table S1). 
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Figure 6: Disease-specific survival analysis results. (a) Kaplan-Meier curves for patients who 
were split into three risk groups according to Gleason score annotations by the model and two 
pathologists. The shaded regions indicate 95% confidence bands. P-values for pairwise two-
tailed logrank tests with Benjamini-Hochberg correction are reported. (b) Venn diagrams 
illustrating overlap in model-based and pathologist annotation-based assignment of patients into 
Gleason score groups. 

 

 

Discussion 

In this work, we have trained a convolutional neural network as Gleason score annotator and 
used the model’s predictions to assign patients into low, intermediate and high-risk groups, 
achieving pathology expert-level stratification results. The low-risk and intermediate-risk groups 
defined by the model’s predictions were more significantly separated compared to the 
corresponding groups defined by either pathologist’s annotations. To our knowledge, this is the 
first study where deep learning-based predictions are used for survival analysis in a prostate 
cancer cohort. Furthermore, visual inspection of morphological patterns obtained via the class 
activation mapping technique confirmed that the network is capturing class-discriminative 
information on prostate gland architecture for assigning Gleason scores. 
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This work is affected by some limitations, motivating future work. Inspection of the output 
probability maps occasionally reveals misclassifications, particularly at the borders of the tissue 
microarray spots. Most misclassifications at the tissue borders are due to tissue preparation 
artefacts, which are not recognized by the network. To remedy this situation in a clinical 
application, an additional neural network could be trained to detect artefact regions and exclude 
them as a preprocessing step. 

A more serious limitation, that is however not unique to our study, is the subjective nature of the 
Gleason scoring system. Inter-pathologist variability regarding Gleason score annotations is 
non-negligible, as also shown in the current study. Consensus annotations from multiple 
pathology experts would enable more objective training of an automated Gleason annotation 
model. Furthermore, disagreement in Gleason score annotations is expected to be even higher 
among pathologists from different hospitals, adhering to slightly different annotation guidelines 
and habits. Larger scale studies involving multiple medical centers are thus necessary to further 
consolidate and potentially improve our patient stratification results, and build a system that 
could be employed in clinical practice. 

Furthermore, in current clinical practice, patients are stratified according to a novel prostate 
cancer grading system37 which is based on Gleason grading into five Grade Groups 
(corresponding to Gleason ≤ 6, Gleason 3+4, Gleason 4+3, Gleason 8, Gleason 9-10), each 
with distinct prognosis characteristics. However, this more fine-grained stratification is typically 
based on histological assessment of tissue areas larger than the TMA spots used in this study. 
In future work, we will evaluate our approach on whole slide tissue images with accompanying 
survival information .   

Despite the limitations described above, the results of this study demonstrate the potential of the 
use of deep learning technology as assistance to pathologists in grading prostate cancer. Our 
study was performed on H&E stained tissue microarray spots, achieving pathology expert-level 
performance by learning from a remarkably small training cohort of 641 TMA spots. However, 
the approach is not specific to H&E staining and, therefore, similar strategies can be applied to 
more specific stainings for studying the effect of gene expression, tumor microenvironment or 
drug uptake on clinical outcome. Furthermore, in the presence of a larger cohort annotated with 
survival information, a deep neural network could be trained directly on survival endpoints, 
enabling the potential discovery of novel survival-associated morphological patterns and, 
ultimately, guiding towards the definition of a more objective prostate cancer grading scheme.   
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Methods 

 
Tissue Microarray Gleason annotation 

Tissue microarrays were digitized at 40x resolution (0.23 microns per pixel) at the University 
Hospital Zurich (NanoZoomer-XR Digital slide scanner, Hamamatsu). Tumour stage and 
Gleason scores were assigned according to the International Union Against Cancer (UICC) and 
WHO/ISUP criteria. Cancerous regions were delineated and labeled with corresponding 
Gleason grades using the TMARKER38 software. In addition, TMA spots containing only benign 
prostate tissue were marked as “benign” by the two pathologists. Use of image and clinico-
pathological data of each cohort was approved by the Zurich Cantonal Ethics Committee (KEH-
ZH-No. 2014-0604, 2007-0025, 2008-0040, 2014-0007). Clinico-pathological data have already 
been published in part by Zhong et al.27.  

 

Automated tissue detection 

Tissue regions were automatically detected in each TMA spot by the following pipeline. 
Gaussian filtering was initially performed to remove noise, followed by Otsu thresholding that 
separated tissue from background. The tissue mask was further refined via morphological 
operations (dilation to fill in little holes in the tissue, followed by erosion to restore borders). 
Detected tissue regions were subsequently used to extract tissue patches and compute pixel-
level probability maps. 

 

Patch creation 

The original image resolution of individual TMA spots was 3100 x 3100 pixels. For model 
training, small image regions of size 750 x 750 were sampled from each TMA spot, using a step 
of 375 pixels. We also experimented with smaller image patches of size 300 x 300, but achieved 
inferior results on the validation set. Each patch was labeled according to the annotation in its 
central 250 x 250 region. Patches containing no or multiple annotations in the central region 
were discarded. 

 
Training details and model selection 

We first conducted a model selection experiment, during which we evaluated training neural 
networks from scratch or fine-tuning them starting from ImageNet-learned parameters. The 
model variants considered were VGG-16, Inception V3, ResNet-50, MobileNet and DenseNet-
121.  

We only used the convolutional part of each model’s architecture, removing all fully-connected 
layers. On top of the last convolutional layer, we added a global average pooling layer, followed 
by the final classification layer that uses softmax non-linearity. For training from scratch, we 
used the Adam39 optimization technique with initial learning rate of 0.001. For fine-tuning the 
networks, we used SGD with learning rate 0.0001 and Nesterov momentum 0.9. DenseNet and 
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MobileNet were trained with dropout of 0.2. In all cases, the categorical cross-entropy loss was 
used as minimization objective function.  

Image patches were initially resized to 250 x 250. Data augmentation was applied during 
training to combat overfitting. We performed random cropping of 224 x 224 regions followed by 
random rotations, flipping and color jittering. Training with balanced mini-batches was crucial for 
achieving good validation performance across all classes. We used mini-batches of size 32 and, 
at each iteration, an equal number of examples from each class was randomly selected. All 
networks were trained for 50’000 iterations. 

We used three tissue microarrays for model training (TMAs 111, 199, 204) and one for 
validation (TMA 76). The results of this experiment are depicted in Supplementary Figure S1. 
We observed that the networks trained from scratch converged in the first 20’000 iterations. 
Fine-tuned networks converged earlier and remained at lower validation loss levels than their 
randomly-initialized counterparts. We also noticed that several model variants converged to a 
validation accuracy close to 65% but at the same time exhibited increasing validation loss 
curves. This contrasting behaviour was more pronounced in the networks trained from scratch 
and can be explained by the following argument: networks trained from scratch (or lacking 
appropriate  regularization) perfectly overfit to the training set and, thus, become very confident 
in all their predictions, producing higher cross-entropy loss in case of misclassifications. On the 
contrary, fine-tuned networks that are additionally regularized by dropout, such as MobileNet 
and DenseNet, do not reach 100% accuracy in the training set and do not exhibit an explosion 
in the validation cross-entropy loss scores. The best validation loss trajectory was achieved by 
the MobileNet network (using width multiplier 𝛼 =   0.5) and, therefore, MobileNet was selected 
for further evaluation on the test cohort. 

 

Selected model architecture 

The MobileNet33 network architecture is built as a series of “depthwise separable” convolution 
blocks. A depthwise separable convolution block consists of 3×3 convolutions applied 
separately to each input channel (depthwise), followed by 1×1 (pointwise) convolutions that 
combine the depthwise convolution outputs to create new features. Depthwise convolutions are 
occasionally performed with a stride 𝑠 = 2 to reduce the dimensionality of the output feature 
maps. The coupled pointwise convolutions are then always doubling the number of output 
channels. A full MobileNet network starts with 32 channels at the first convolutional layer and 
increases up to 1024. The width multiplier parameter 𝛼 can be used to build thinner networks, 
having even fewer parameters. In this study we used 𝛼 =   0.5, thus starting with 16 channels 
and increasing up to 512. After the convolution blocks, a global average pooling layer is used to 
compute the spatial average of each feature map at the last convolution layer. Finally, the 
output layer uses a softmax activation function to compute an output probability distribution over 
the four Gleason classes considered in this study. 
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Evaluation on test cohort 

Choice of metrics: Throughout the manuscript, we use two metrics for quantifying inter-
annotator variability. The first one is Cohen’s kappa statistic34, which is widely used for 
measuring inter-rater agreement. Cohen’s kappa takes into account the possibility of agreement 
occurring by chance, resulting in a value of 0 for agreement occurring by chance and a value of 
1 for perfect agreement. For ordered classes, weighted Cohen’s kappa is more appropriate 
because it penalizes more strongly the inter-annotator disagreement occurring between more 
distant classes. Here, we use the quadratic weighted kappa statistic defined as follows: 

𝑘𝑎𝑝𝑝𝑎 = 1 − !!,!!!,!!,!

!!,!!!,!!,!
  ,   𝑤!,! =

(!!!)!

(!!!)!
 

where 𝑁 is the total number of considered classes or rating scores and the indices 𝑖, 𝑗 refer to 
the ordered rating scores 1 ≤ 𝑖, 𝑗 ≤ 𝑁. 𝑂!,! denotes the number of images that received rating 
score 𝑖 by the first expert and rating score 𝑗 by the second and 𝐸!,!   denotes the expected 
number of images receiving rating 𝑖 by the first expert and rating 𝑗 by the second, assuming no 
correlation between rating scores. 

In addition, we use macro-average recall as a metric that receives equal contribution from all 
classes, irrespective of class imbalance. Macro-average recall is computed as the unweighted 
average of recall values for individual classes.  

Patch-level evaluation: For the confusion matrices in Figure 2, we only included patches 
annotated by both pathologists, so that model-versus-pathologist and inter-pathologist variability 
are quantified on the same set of examples. 

TMA spot-level evaluation: To compute pixel-level output probability maps (Fig. 3), the network 
was converted to an equivalent fully convolutional architecture. The global average pooling 
layer, which acted on a 7 x 7 dimensional input when training on patches, was replaced with a 
local 7-by-7 average pooling layer with stride 𝑠 = 1. The final classification layer was replaced 
with an equivalent convolutional layer with four output channels, one for each Gleason class. 
Finally, an upsampling layer with factor 32 was used to restore the dimensions of the input 
image and produce the pixel-level output probability maps. 

The network-based composite Gleason score was assigned on the basis of the predicted 
probability maps. Let  𝑜!,!!   be the predicted probability for class k in location (i,   j). An initial 

weighted score was computed for each class as 𝑤! =
!!,!
!

!,!

!!,!
!

!,!,!
. The final score was assigned to 

each class as 𝑤!"#$%! = 𝐼 𝑤! > c ∗ 𝑤!, where 𝐼 denotes the indicator function and 𝑐   is a 
predefined threshold value. We set 𝑐 = 0.25 to ensure that at least one class has a non-zero 
final score, since there are four output classes considered. The primary and secondary Gleason 
patterns were assigned on the basis of the final scores for each class and the composite 
Gleason score was computed as the sum of the primary and secondary patterns. 

Model interpretation: Patches predicted with high confidence (probability > 0.8 for the correct 
class) were pre-selected and visualized. Within these high-confidence patches, we seeked to 
identify class-specific discriminative subregions. To this end, we applied the class activation 
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mapping (CAM) technique35, which is particularly suitable for networks with a fully convolutional 
architecture and a global average pooling layer immediately before the final classification layer. 
Class activation maps are generated by projecting the class-specific weights of the output 
classification layer back to the feature maps of the last convolutional layer, thus highlighting 
important regions for predicting a particular class. 

 
Code availability 

Model training and evaluation were performed in Python 3 using the deep learning library Keras 
with Tensorflow backend. Survival analysis was performed in R using the packages survival 
and survminer.  

The scripts are available on Github (https://github.com/eiriniar/gleason_CNN). 

 
Data availability 

All tissue microarray images used in this study will be made publicly available upon publication, 
together with corresponding Gleason annotations provided by the pathologists. Patient survival 
data have been previously published by Zhong et al.27 and are available upon request from the 
authors of that study27.  
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