Abstract
In our previous studies we simulated FtsZ monomer and dimer in different nucleotide binding states. In our simulations, we had used the E.coli FtsZ homology model including the FtsZ Intrinsically Disordered Region (IDR). Our simulations revealed that FtsZ dynamics involves a key stage in which GTP binds to monomeric FtsZ and opens its nucleotide binding site which in turn favours polymerization. During dimerization, the C-terminal of the top monomer rotates considerably towards the bottom monomer. Such a rotation of the C-terminal domain leads to capture of the nucleotide by its N-terminal domain. In this study we simulate the FtsZ G105S mutant to see if it may have ATPase activity which was reported in a previous study.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.