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Abstract

The development and application of concepts is a critical component of
cognition. Although concepts can be formed on the basis of simple perceptual or
semantic features, conceptual representations can also capitalize on similarities
across feature relationships. By representing these types of higher-order
relationships, concepts can simplify the learning problem and facilitate decisions.
Despite this, little is known about the neural mechanisms that support the
construction and deployment of these kinds of higher-order concepts during
learning. To address this question, we combined a carefully designed associative
learning task with computational model-based functional magnetic resonance
imaging (fMRI). Participants were scanned as they learned and made decisions
about sixteen pairs of cues and associated outcomes. Associations were
structured such that individual cues shared feature relationships, operationalized
as shared patterns of cue pair-outcome associations. In order to capture the
large number of possible conceptual representational structures that participants
might employ and to evaluate how conceptual representations are used during
learning, we leveraged a well-specified Bayesian computational model of
category learning [1]. Behavioral and model-based results revealed that
participants who displayed a tendency to link experiences in memory benefitted
from faster learning rates, suggesting that the use of the conceptual structure in
the task facilitated decisions about cue pair-outcome associations. Model-based

fMRI analyses revealed that trial-by-trial integration of cue information into
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higher-order conceptual representations was supported by an anterior temporal
(AT) network of regions previously implicated in representing complex

conjunctions of features and meaning-based information.

Introduction

One of the core functions of memory is the ability to use prior experience
to optimize and facilitate decisions. A central challenge to this adaptive behavior,
however, is the dense and continuous nature of experience. One approach to
reducing this complexity is to make use of conceptual structure in the
environment. Concepts can be formed on the basis of simple features (e.g. ‘has
feathers’ to categorize animals as birds), however concepts are also thought to
reflect broader forms of featural overlap, which can include the similarity of the
relationships between features [1,2]. For example, concepts reflecting two
different types of coins can be formed based on shared information about their
value inside a fairground and at a convenience store. Tokens and medallions can
be used pay for items at a fairground but are worthless at a convenience store,
whereas quarters and dimes possess the opposite set of value relationships.
Concepts like “carnival currency” or “world currency” can support decision-
making and efficient learning about individual coins by allowing for inferences
across different coins that share feature relationships [3].

Although recent neuroimaging investigations have begun to elucidate the

brain regions that support conceptual or category membership on the basis of
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simple features [4—11], little is known about the neural mechanisms involved in
the development and use of conceptual representations based on shared
relationships across features. To address this question we combined a carefully
designed associative learning task with computational model-based fMRI.
Participants were scanned as they learned about sixteen pairs of novel cue
objects and deterministically associated outcomes. Each trial began with the
sequential presentation of a pair of object cues and a prompt to predict the
associated outcome followed by response feedback. Critically, relationships
between pairs of cues and outcomes formed a network of overlapping
associations, where groups of cues shared identical cue pair and outcome
associations, or identical feature relationships. These shared feature
relationships could serve to simplify the learning problem from sixteen individual
cue pair-outcome associations into four higher-order concepts, reflecting groups
of cue-pair outcome associations containing individual cues with shared feature
relationships (Fig 1). Importantly, this reduction of the learning problem was
adaptive, and could allow for the acceleration of learning and facilitation of

decisions in the task.
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Fig 1. Task structure. Sixteen unique trial sequences of Cue 1, Cue 2, and outcome objects
were constructed for each participant. In this example task structure, Cue 1 objects are presented
along the y-axis, Cue 2 are objects presented along the x-axis, and associated Outcomes are
presented in the center of the grid. For example, when the magenta Cue 1 is paired with the
green Cue 2, the associated outcome is a glove. Individual cue objects each have a 50% chance
of association with a Hat or Glove category outcome, requiring participants to use information
about the Cue 1 — Cue 2 pair to make correct decisions. Cue 1 - Cue 2 - Outcome associations
were fully crossed to create four pairs of cue objects that share feature relationships (highlighted
in yellow). For example, both the magenta and yellow Cue 1 objects are associated with a glove
category outcome when paired with the purple or green Cue 2 object and a hat category outcome
when paired with the blue or tan Cue 2 object. This design gives rise to four groupings of Cue 1 -
Cue 2 - Outcome associations where the corresponding cue objects create triplets with maximal

conceptual overlap (highlighted in grey).

In order to elucidate the processes involved in building concepts based on
shared feature relationships and to understand how they are represented in the
brain, we turned to computational model-based fMRI. Specifically, we fit a well-

specified Bayesian computational model of category learning [1] to trial-by-trial
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learning behavior, allowing for the generation of process-based estimates of
dissociable aspects of the conceptual structure used by each participant during
learning. We focused on two model estimates associated with the separate cue
and outcome phases of each trial: a “Cue-based integration” parameter
measuring the likelihood that a participant will incorporate cue pairs into an
existing conceptual cluster, and a “Feedback-based updating” parameter,
reflecting changes to the broader conceptual cluster space as participants
receive and learn from response feedback.

Based on recent models positing the existence of two cortical networks
that support memory-guided behaviors [12—14], we hypothesized that dissociable
posterior-medial (PM) and anterior-temporal (AT) cortical networks would play
key roles in representing Cue-based integration and Feedback-based updating.
Specifically, a large number of investigations have linked regions in the AT
network, including the perirhinal cortex (PRc) and orbitofrontal cortex (OFC), to
the meaning of objects and integration of complex conjunctions of object features
[4,15-23], suggesting that activity in the AT network might track Cue-based
integration. On the other hand, PM network regions, including the
parahippocampal cortex (PHc) [24—-32], retrosplenial cortex (RSC) [33-36], and
angular gyrus [37,38] have been shown to support memory for contextual
information. Given that shared feature relationships in this task rely on the local
context of each trial, or the trial-wise associations between cue pair and outcome,

we might expect the PM network to also index Cue-based integration. We also
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hypothesized that the PM network would be preferentially involved in tracking
Feedback-based updating, or trial-by-trial changes to the conceptual cluster
space following response feedback, given proposals that that the PM network
represents the full set of relevant relationships in the environment [13]. To assess
whether parametric activity reflecting Cue-based integration and Feedback-based
updating could be attributed to simple task accuracy, we also assessed PM and
AT network activity during the cue and feedback periods of trials with correct
outcome predictions relative to trials with incorrect outcome predictions. Finally,
to validate PM and AT network-level grouping of individual brain regions, we also
conducted an activation profile similarity analysis and tested whether regions in
the same network displayed similar profiles of activation across the different

experimental conditions.

Materials and methods
Subjects

Thirty-one (20 female) participants from the University of California at
Davis community enrolled in the experiment. Two participants were excluded due
to falling asleep inside the scanner, one participant was excluded due to
excessive motion, and three participants were excluded due to issues with
scanner protocol specifications. Of the remaining 25 participants (17 female), all
had normal or corrected-to-normal vision, were native English speakers, and

were 18 to 31 years of age. Informed consent was obtained in a manner
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approved by the Institutional Review Board at the University of California at
Davis. Participants were paid $50 for their participation, and received additional
compensation for the proportion of responses made above chance level on their

best learning run (maximum additional payment of $5).

Stimuli

To control for any use of semantic or perceptual information in learning
cue pair-outcome associations, eight novel object stimuli were manually
generated using Google SketchUp software (http://www.sketchup.com). Cue
objects were designed to be visually distinctive in shape and color. Eight unique
hat and eight unique glove outcome objects were selected from a stimulus

database of objects [39].

Design

Participants were scanned while completing six runs of a learning task.
Each trial of the learning task began with the sequential presentation of two cue
objects (Cue 1 and Cue 2) and an associated outcome. Importantly, each
individual Cue object was associated with a 50% probability of predicting a hat or
glove category outcome, requiring participants to integrate the combination of
Cue 1 and Cue 2 to correctly predict the associated outcome category (Fig 1).
Cue pair-outcome associations were generated by randomly assigning four of the

eight novel objects to Cue 1, and the remaining four novel objects to Cue 2. To
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create a higher-order conceptual structure, cue pair-outcome associations were
crossed to create pairs of individual Cue objects that shared feature
relationships, or that shared patterns of cue pair-outcome associations (Fig 1,
cues that share feature relationships highlighted in yellow). We reasoned that
cue-pair outcome associations comprised of Cue 1 and Cue 2 objects with
shared feature relationships would have maximal conceptual overlap (Fig 1,

highlighted in grey).

Experimental procedure

The experiment was comprised of four parts: unscanned target detection
practice, one scanned pre-learning target detection run, six runs of scanned
learning, one scanned post-learning target detection run, and a final unscanned
memory test. Only the data from the scanned learning period were included for
analysis.

During the six scanned learning runs, participants were presented with
trials consisting of sequentially presented Cue1 — Cue 2 — outcome associations
(Fig 2). Each trial began with the presentation of a Cue 1 object in the center of
the screen for 2 seconds, followed by a blank screen for 500 ms. After the
presentation of Cue 1, a Cue 2 object was presented for 2 seconds with the
words ‘hat’ and ‘glove’ printed underneath, referring to the possible category-level
outcomes. Participants were asked to use their pointer or middle finger to predict

the category-level outcome associated with the current Cue 1 — Cue 2 pair.
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Response buttons were counterbalanced across participants. Following the 2
second Cue 2 period, a 500 ms blank screen was presented, followed by
outcome information and response feedback. Specifically, participants were
presented with a unique hat or glove associated with the Cue 1 — Cue 2 pair, as
well as feedback on the category-level decision made during the Cue 2 period.
Each Cue 1 — Cue 2 — Outcome association was presented three times per run,
and trial order was pseudo-randomly determined by drawing without replacement
from the sixteen Cue 1 — Cue 2 — Outcome associations three times, with no
back-to-back repetitions of individual associations. This resulted in three
iterations through the full set of sixteen cue pair-outcome associations, for a total
of forty-eight trials per learning run. A variable ITIl with a static fixation cross
followed each trial, and lasted between 1 and 4 seconds, with a mean of 3
seconds. Each run lasted 8 minutes and 8 seconds. In addition to trial-by-trial
feedback, participants were presented with information about the proportion of

trials they had answered correctly at the end of each learning run.

g Cue 1
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2sec Outcome decision
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. Outcome
2 sec L’ > Response feedback
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Fig 2. Trial sequence during scanned learning. Participants were presented with Cue 1, Cue 2

and Outcome feedback information sequentially.

Model-based analyses

Although the learning task was comprised of sixteen individual cue pair-
outcome associations, the contingencies between cue objects and outcomes
were designed such that participants could facilitate learning by integrating
across cue pairs that contained Cue items with similar cue pair-outcome
relationships (Fig 1). However, we expected large individual differences in the
degree to which a participant could learn and use the conceptual structure of the
task to guide learning. To accommodate this variance and to gain leverage on
the processes that supported learning, we used the Rational Model of
Categorization (RMC) to model behavioral data from the learning task [1]. We
chose to apply the RMC based on previous theory [40] linking clustering
mechanisms to key regions of interest and related model-based fMRI studies
[5,41].

The RMC assumes that categories are learned by clustering similar stimuli
together. Suppose a learner has observed n — 1 stimuli {x, x5, ..., x,,_1} with
corresponding category labels {y,, y,, ..., y,—1}. Each stimulus is fit into a cluster
{0,, z5, ..., z,_1 }. In the context of present study, x; is a pair of cues presented at

the ith trial, and y; is a corresponding category outcome. An exact object which
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followed a cue pair (e.g., green hat and black glove) is denoted as . If the cue
pair x; was fit into the jth cluster, z; equals to j.

Now, let us suppose w (0 < w < n) clusters have been formed aftern — 1
trials. Then, the probability that the cue pair at the nth trial is judged to be from
category h follows Bayesian inference:

p(Yn = hlxy,)

= Z p(zn = klxn) p(yn = hlz, = k)

ke{1,2,...w}

p(z, = k)p(xylz, = k) .
Zse{l,Z,...,w}p(Zn = S)p(xnlzn = S)

O = hlz, = k) (1)

ke{1,2,...w}
The three terms in Equation 1 is described below in turn.

First, the probability that the nth cue pair fits into the kth cluster is given by

cmy

Dz = k) = (1- c)1+_cc(n -1)

1-¢c)+c(n—-1)

if my>0

ifmk =0

where c is a parameter called the coupling probability, and m;, is the number of
cue pairs already assigned to the kth cluster.

The coupling probability is a single value for each participant that reflects
the sensitivity in generating new clusters or to linking information to existing
clusters in memory. A smaller coupling probability, for example, indicates that a
new cluster is more likely to be created to accommodate the nth cue pair.
Conversely, a larger coupling probability indicates that information is likely to be

linked with an existing cluster. Thus, individual differences in learning can be
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captured by allowing the coupling probability parameter to vary across
participants.

We assume that cues are independent of each other [1,42]:

pCalzn =00 = | | pConalza = k)

de{1,2}

Here, x, 4 denotes the dth cue in the cue pair at the nth trial. This term is

calculated with

Bya +

where S, is the sensitivity parameter for a cue, and B,, ; the number of cue pairs
in the kth cluster whose dth cue is v.
Similarly, the probability that the nth cue pair is from category h given a

cluster is given by

By + B,
my + 28,

pn = hlz, = k) =
where f,; is the sensitivity parameter for a category, and B, is the number of cue
pairs in the kth cluster whose category is h. Unlike the coupling probability, the
sensitivity parameter was not allowed to vary between participants.
After observing outcomes associated with each cue pair, a learner assigns
a cue pair to a cluster. This cluster assignment also follows Bayesian inference,
where the probability that the nth cue pair fits into the kth cluster is given by
P(zn = kX, Yy, ¥u) X (20 = k) p(Xplzn = k) p(Yulzn = k) p(l 2 = k).

The last term is given by
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By, + B,

pOn =glz, =k) = TR

where B, is the number of cue pairs in the kth cluster which is associated with
object g (e.g., green hat).

This learning by clustering is probabilistic, and the same parameter values
can result in different cluster formulations. To account for this stochasticity, we
simulated the model 2,000 times with one particle when evaluating a set of
parameters [42]. This stochastic learning allows for a characterization of
dissociable processes involved in using the conceptual cluster space.

To obtain trial-by-trial measures, we estimated the maximum a posteriori
of parameter values (the coupling probability and the sensitivity parameters)
using the Bayesian optimization framework. The prior distribution for the coupling
probability was the uniform distribution between 0 and 1, and the prior distribution
for the sensitivity parameters was the uniform distribution between 0.01 and 10.
The estimated parameter values are: the coupling probability ranges from 0.0002
to 0.0373 with a mean of 0.0088, and the sensitivity parameters are 0.01 for both
cue and outcome category. With these parameter values, we took mean average
of trial-by-trial measures from the 2,000 simulations.

In order to elucidate the involvement of PM and AT networks, we focused
on two model-derived measures reflecting the trial-by-trial development and use
of concepts during different phases of each trial: “Cue-based integration,” and
“Feedback-based updating.” Cue-based integration is a measure assessing the

likelihood that participants will assign or integrate a pair of cues to an existing
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conceptual cluster rather than generating a novel conceptual cluster for the cue

pair. Using the above notation, the Cue-based integration estimate is given by

(1-¢)
(1-c)+c(n-1)"

Feedback-based updating, on the other hand, assesses how much
the conceptual cluster space changes following feedback. Thus, Feedback-based
updating indicates the extent to which one learns and modifies their knowledge
based on the outcome of each individual trial. Feedback-based updating is

quantified as the Kullback-Leibler divergence between the probability

distributions over the clusters before and after the feedback: p(z;|x;) and

p(zi|x;, yi, §)-

FMRI methods

MRI scans were acquired at the UC Davis Imaging Research Center using
a 3T Siemens Skyra equipped with a 32-channel head coil. Participants were
supplied with earplugs to attenuate scanner noise, and head padding was used
to reduce motion. Stimuli were presented visually on a screen at the back of the
scanner, and viewed through a mirror attached to the head coil. T1-weighted
structural images were acquired with a magnetization-prepared rapid acquisition
gradient echo (MPRAGE) pulse sequence (1 mm? voxels; matrix size=256 x 256;
208 slices) and images sensitive to BOLD contrast were acquired using a whole-
brain multiband gradient echo planar imaging sequence (3 mm® voxels; TR =
1220ms; TE = 24ms; FA = 67°; multiband acceleration factor = 2; 38 interleaved

slices; FOV = 192 mm; matrix size = 64 x 64).
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Preprocessing and analysis of functional MRI data was conducted with
FSL (FMRIB Software Library, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The first 7
volumes of each functional run were discarded to allow for signal normalization.
EPI volumes underwent motion correction using MCFLIRT [43], and were also
highpass filtered (0.01 Hz) and spatially smoothed (6 mm full-width at half
maximum Gaussian kernel). Grand-mean intensity normalization of the entire 4D
dataset was also carried out by a single multiplicative factor; highpass temporal
filtering (Gaussian-weighted least-squares straight line fitting, with sigma=45.0s).
Volumes were brain extracted using FSL BET [44] and the medial functional
volume was coregistered to each participant’s MPRAGE image (df = 6) and the
T1 MNI standard template (df = 12) using a rigid-body transformation in FMRIB’s
Linear Image Registration Tool (FLIRT) [43,45]. Time-series statistical analysis

was carried out using FILM with local autocorrelation correction [46].

Regions of interest

As noted earlier, our hypotheses centered on the roles of the AT and PM
networks in using the higher-order conceptual structure of the task to guide
learning. To address this question, we used thirty-six regions of interest (ROIs)
within the PM and AT networks (18 AT ROls, 18 PM ROls). PMAT ROls were
defined as 6 mm spheres centered on coordinates identified in an independent
dataset on the basis of a comparison of PHc and PRc resting-state functional

connectivity (RSFC) [47]. Spheres were non-overlapping and spatially separated
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by a distance of at least 12 mm. PMAT network assignment of each sphere was
determined on the basis of resting state networks identified in a separate
independent dataset [48]. To determine network assignment in this independent
dataset, Ritchey et al. applied a community detection algorithm to RSFC time
courses extracted from the spheres identified based on functional connectivity
[47], allowing for an identification of spheres that showed greater within vs.
between network connectivity [48]. All ROls were transformed into standard MNI

space using FSL FLIRT with nearest-neighbor interpolation.

FMRI statistical analysis

We conducted three fMRI analyses to assess the involvement of the PM
and AT networks in indexing dissociable aspects of learning in a task with a
higher-order conceptual structure. To assess network involvement in the
conceptual integration of cue pairs with shared feature relationships (“Cue-based
integration”) and incremental updating of the conceptual cluster space
(“Feedback-based updating”), we conducted a computational model-based fMRI
analysis. In order to rule out whether the results of the model-based analyses
could be attributed to task performance alone, we also conducted a separate
accuracy-based univariate analysis assessing PM and AT network activation
during the cue pair and outcome periods of correct relative to incorrect trials.

Finally, in order to provide evidence supporting dissociable PM and AT networks
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in the current task, we conducted an activation profile similarity analysis using

estimates from both the model- and accuracy-based analyses.

Computational model-based fMRI analysis

The RMC was individually fit to each participant’s learning data to
generate trial-by-trial estimates of Cue-based integration and Feedback-based
updating (see section on Model-based analyses). Task activation was assessed
using a parametric univariate analysis implemented in FSL. Individual modulated
and unmodulated regressors were constructed for each iteration through the full
set of Cue 1 — Cue 2 — Outcome associations (three iterations per run). Model-
derived estimates were modeled on an iteration-by-iteration basis to avoid
confounding model-based learning measures with effects related to time and
other random variance. To estimate neural activation associated with the
conceptual integration of cue pairs with shared feature relationships, three
model-derived Cue-based integration parametric regressors (one for each
iteration) were included in the first-level GLM. Parametric regressors for Cue-
based integration were modeled at the onset of Cue 1 with a duration of 4.5
seconds to include the full Cue 1 and Cue 2 presentation period. To estimate
neural activation associated with the updating of the conceptual cluster space in
response to feedback information (“Feedback-based updating”), three model-
based parametric regressors reflecting Feedback-based updating were also

included. Each Feedback-based updating parametric regressor was modeled at
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the onset of the Feedback period with a duration of 2 seconds. Cue and
Feedback-based parametric regressors were mean-corrected separately on an
iteration-by-iteration basis. To model the mean activation associated with the Cue
period, three 4.5 second unmodulated boxcars (one regressor for each iteration)
were modeled at the onset of Cue 1 with a duration of 4.5 seconds. Mean
activation associated with the Feedback period was modeled similarly, with three
separate 2 second unmodulated boxcars (one regressor for each iteration)
beginning at the onset of Feedback. The first iteration of the first learning run was
modeled as a 7 second unmodulated nuisance regressor to allow for stabilization
of model estimates following one complete iteration through the full set of cue-
pair outcome associations. Regressors were convolved with a double-gamma
hemodynamic response function prior to model estimation.

In order to assess the parametric effects of Cue-based integration and
Feedback-based updating in each run, first level contrasts for Cue-based
integration and Feedback-based updating were computed separately. Contrasts
included regressors from all iterations. To average contrast estimates over all six
learning runs, a second-level fixed effects model was carried out by forcing the
random effects variance to zero in FLAME (FMRIB’s Local Analysis of Mixed
Effects) [49-51]. Participant-level statistical contrast maps for Cue-based
integration and Feedback-based updating were transformed to standard MNI

template space for subsequent analysis.


https://doi.org/10.1101/280362

bioRxiv preprint doi: https://doi.org/10.1101/280362; this version posted March 12, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

20

To characterize the roles of the PM and AT networks in Cue-based
integration and Feedback-based updating, mean parameter estimates were
extracted for each ROI from each contrast and averaged within network, yielding
four estimates per participant (AT network — Cue-based integration, PM network
— Cue-based integration, AT network — Feedback-based updating, PM network —
Feedback-based updating). Contrast estimates were submitted to a repeated-
measures ANOVA assessing the effects of Network (PM, AT) and Trial period

(cue, feedback), and followed up with planned two-tailed paired comparisons.

Accuracy-based fMRI analysis

To rule out whether parametric activation associated with Cue-based
integration and Feedback-based updating was merely a reflection of task
accuracy, we conducted a separate accuracy-based analysis to assess cue and
feedback activation during trials with correct relative to incorrect category
outcome decisions. In order to ensure sufficient trial numbers to estimate
contrasts for correct and incorrect trials, functional data from runs one through
three were concatenated into an “Early learning” period, and functional data from
runs three through six were concatenated to create a “Late learning” period. First-
level modeling of each learning period included four regressors of interest for the
cue and outcome periods of trials associated with correct and incorrect category
outcome decisions. Additionally, two unconvolved nuisance regressors were

included to model the effect of run. To assess cue and feedback-based activation
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for correct > incorrect trials across early and late learning, a second-level fixed-
effects model was carried out by forcing the random effects variance to zero in
FLAME [49-51]. Participant-level statistical contrast maps for Cue: correct >
incorrect and Feedback: correct > incorrect were transformed to standard MNI
template space for subsequent analysis. Subject-level contrast estimates were
extracted for each ROI from each contrast and averaged, yielding four estimates
per network per participant (AT network — Cue: correct > incorrect; PM network —
Cue: correct > incorrect; AT network — Feedback: correct > incorrect; PM network
— Feedback: correct > incorrect). Contrast estimates were submitted to a
repeated-measures ANOVA assessing the effects of Network (PM, AT) and Trial
period (cue, feedback), and followed up with two-tailed t-tests to assess planned

paired comparisons.

Activation profile similarity analysis

In order to validate our analyses on data from the AT and PM networks, we
tested the appropriateness of grouping individual ROls according to this network
framework. Following Ritchey et al. [48] we ran an “activation profile similarity
analysis,” to test whether regions in the same putative network showed more
similar profiles of activation across the different experimental conditions than did
regions in different networks. Mean subject-level contrast estimates from each
condition of interest (Cue-based integration; Feedback-based updating; Cue:

correct > incorrect; Feedback: correct > incorrect) were z-transformed and
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extracted from each ROI. This procedure yielded an activation matrix with a
separate four-element activation vector for each ROl. To measure the similarity
of activation profiles across all pairs of ROls, the activation matrix was correlated
using Pearson’s r and sorted by network affiliation. In order to assess functional
homogeneity within network, the resulting activation similarity correlation matrix
was compared to a model matrix, where pairs of ROIls within the same network
were represented with a value of 1 (perfect correlation) and ROI pairs in different
networks were represented with a value of O (no correlation). Both the activation
similarity correlation matrix and model matrix were vectorized and compared with
Kendall’s Tau, a non-parametric measure of statistical dependence. Additionally,
activation similarity correlation values were averaged across regions within the
PM and AT networks (within-network) and compared to the average across
regions in the PM and AT networks (between-network). Correlation values were

Fisher z-transformed prior to comparison via a two-tailed paired t-test.

Results

Behavioral results and computational model fits

Behavioral performance indicated that participants were, on average, able
to learn associations between pairs of cues and outcomes across six learning
runs (Fig 3). When submitting average performance across runs to a repeated-
measures ANOVA, there was a significant main effect of Run [Fs 120 = 39.5, p <

.000001], indicating that outcome decisions improved significantly across the six
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task runs. Consistent with this idea, outcome decisions were not significantly
different from chance (50%) until the fourth (p < 0.05, binomial test), fifth (p <
.0001, binomial test) and sixth (p <.0001, binomial test) task runs. Additionally,
outcome decision reaction times were found to decrease significantly across runs
[Fs,120 = 2.82, p < .05]. Despite a group-level improvement in performance across
learning runs, there was a large amount of variability in individual participant
ability to learn Cue 1 — Cue 2 — Outcome associations (Fig 3). As such, the
standard deviation of the group accuracy score (percent correct) increased from

0.06 in the first run to .18 on the final learning run.

Learning performance

Proportion correct

Fig 3. Learning performance. On average, participants gradually learned to choose outcomes
correctly across six runs of scanned learning, however there was a large amount of variability in
individual participant performance. Chance performance (50%) is plotted by a dashed line. Mean
subject performance plotted in black. Individual subject learning curves plotted in grey. Error bars

reflect +/- 1 standard deviation from the mean. * p < .05, binomial test.
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Next, we assessed whether individual participant behavioral estimates
from the RMC were able to approximate subject performance during the learning
task (Fig 4). On average, the R? across all participants was .47 with a standard
error of +/- 0.0559, suggesting that the RMC provides a good fit to the observed
behavioral data despite the large amount of variability observed across

participants.
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Accuracy proport|on correct)

Fig 4. Individual participant behavioral model fits.

Linking of experiences in memory is associated with

facilitated learning
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Although the task consisted of sixteen individual cue-pair outcome
associations, capitalizing on shared feature relationships could reduce the
learning problem and facilitate correct outcome decisions. To assess evidence in
support of this idea, we turned to the coupling probability, or a single model-
derived value that describes each participant’s tendency to link cue pair-outcome
associations (see section on Model-based analysis). We observed a significant
positive correlation between the coupling probability and the slope of each
participant’s learning curve. Specifically, larger coupling probabilities were

associated with faster learning rates in the task (Fig 5, [r(24) = .558, p = .003]).

o
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o
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Slope of learning curve
[ ]

1 1 1 1 1 1 1 J
0 0.01 0.02 0.03 0.04

Coupling probability

Fig 5. Larger coupling probabilities are associated with faster learning rates. Individual
subject coupling probabilities, or a model-derived metric where higher values reflect a stronger

tendency to link information in memory, is positively associated with the rate of learning.

Evidence for dissociable PM and AT networks
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As noted earlier, prior evidence is consistent with the idea that regions in
the AT or PM networks (or both) could contribute to dissociable aspects of
learning conceptual information in this task. Prior work suggests that there is
substantial similarity in the extent to which regions within the same network are
recruited during different task conditions [48]. To conceptually replicate these
results and to verify the appropriateness of grouping ROIls according to the
PMAT framework [13], we conducted an activation profile similarity analysis [48]
in which we quantified the similarity of task-based activation profiles across
regions within and across each network (Fig 6). If individual ROIls are operating in
concert with other within-network regions and processing similar types of
information in the learning task, we should see similar activation values across
regions that belong to the same network. Additionally, this relationship should be

true for activation values derived from all available contrasts.

PM and AT networks
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Fig 6. Activation profile similarity analysis. Regions within the PM and AT networks show high
within but not between network activation profile similarity. (A) Activation profile similarity values
were assessed by correlating mean z-transformed contrast values from each ROI extracted from
each of the four contrasts of interest (Model — Cue-based prediction, Model — Feedback-based
updating, Accuracy — Cue: Correct > Incorrect, Accuracy — Outcome: Correct > Incorrect). Higher
correlation values indicate that a pair of ROls displayed a more similar pattern of activation
across contrasts. (B) Activation profile similarity correlations were significantly higher between
ROIs that were from within the same network relative to across different networks. Grey-shaded
box denotes standard deviation. Red shaded box denotes 95% confidence interval. Individual

participant activation profile similarity values plotted in black. *** p <.0001

Activation profile similarity scores are computed by correlating univariate
activation vectors across all pairs of ROIs within and across networks. A pair of
ROls will display high correlation, or high activation profile similarity, if both
regions exhibit a comparable pattern of relative activation or deactivation across
the four contrasts derived from the computational model- and accuracy-based
analyses (Model — Cue-based integration; Model — Feedback-based updating;
Accuracy — Cue: correct > incorrect; Accuracy — Feedback: correct > incorrect).
To assess whether regions within each network display similar activation profiles,
correlation values were sorted by network affiliation, vectorized, and compared
with an idealized model matrix, where correlations between regions within the
same network were represented as 1 (perfect correlation) and correlations for
ROI pairs in different networks were represented as 0 (no correlation). The

Kendall’s tau correlation between activation profile similarity values and the
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model matrix was statistically significant (Kendall’s tau = .323, p <.0001),
suggesting that activation profile similarity was higher across pairs of ROls within
the same network relative to ROI pairs across networks. A complimentary
analysis directly comparing average within- relative to between-network
correlations was consistent with these results, demonstrating significantly higher
correlation values across pairs of ROIs within the same network relative to across
networks [t(24) = 8.11, p <.0001]. Indeed, nearly every participant demonstrated
higher within- relative to between-network activation profile similarity values,
providing further evidence that regions in the PM and AT networks are engaged
in separable processes as participants completed the task. Having established
the validity of the distinction between the AT and PM networks, our next analyses
focused on characterizing how these networks contributed to the development
and use of conceptual information by relating them to two key indices from the

computational model — Cue-based integration and Feedback-based updating.

Differential PM and AT network involvement in
supporting Cue-based integration and Feedback-based
updating

As noted in the introduction, there is good reason to think that the AT or
PM networks, or both, would contribute to concept acquisition in this task. Based

on previous work implicating the AT network in supporting information about the
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meaning of objects and complex conjunctions of features, we hypothesized that
regions in this network should collectively track conceptual knowledge reflecting
shared feature relationships. Alternatively, because shared feature relationships
are built on the local context of each trial, one might expect regions in the PM
network to preferentially represent Cue-based integration. A third possibility is
that the AT and PM networks might play complementary roles in Cue-based
integration. Building on recent proposals that the PM network supports
representations of relevant relationships in the environment, we also
hypothesized that this network would track trial-by-trial updates to the conceptual
cluster space.

To test these hypotheses, parameter estimates indexing activation related
to Cue-based integration and Feedback-based updating were submitted to a
repeated measures ANOVA with factors for Network (PM, AT) and Trial period
(cue, outcome). Results revealed a significant main effect of Network (F1 24 =
9.89, p <.01) and a significant Trial period by Network interaction (F124 =7.34, p
<.012) (Fig 7, left panel). No main effect of Trial period was observed (F124=
0.009, p = .92). Follow-up paired comparisons revealed that Cue-based
integration estimates were significantly lower in the AT network relative to the PM
network [t(24) = 3.22, p < .01]. Additionally, one sample t-tests revealed that Cue-
based integration parameter estimates were significantly different from zero in
the AT network [t(24) = -2.9, p < .01] but were not significantly different from zero

in the PM network [t(24) = 1.36, p = 0.18] (Fig 7A). These results suggest that
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