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Abstract:  

Innate T cells (ITCs), including invariant natural killer T (iNKT) cells, mucosal-associated 

invariant T (MAIT) cells, and γδ T cell populations, use conserved antigen receptors generated 

by somatic recombination to respond to non-peptide antigens in an innate-like manner. 

Understanding where these cells fit in the scheme of immunity has been a puzzle since their 

discovery. Here, immunophenotyping of 101 individuals revealed that these populations account 

for as much as 25% of peripheral human T cells. To better understand these cells, we generated 

detailed gene expression profiles using low-input RNA-seq and confirmed key findings through 

protein-level and functional validation. Unbiased transcriptomic analyses revealed a continuous 

‘innateness gradient’ with adaptive T cells at one end followed by MAIT, iNKT, Vδ1+ T, Vδ2+ 

T, and natural killer cells at the other end. Innateness was characterized by decreased expression 

of translational machinery genes and reduced proliferative potential, which allowed for 

prioritization of effector functions, including rapid cytokine and chemokine production, and 

cytotoxicity. Thus, global transcriptional programs uncovered rapid proliferation and rapid 

effector functions as competing goals that respectively define adaptive and innate states.     
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Introduction 

 

Within the spectrum of immune defense, “innate” and “adaptive” refer to pre-existing and 

learned responses, respectively. Mechanistically, innate immunity is largely ascribed to 

‘hardwired,’ germline-encoded immune responses, while adaptive immunity derives from 

recombination and mutation of germline DNA to generate specific receptors that recognize 

pathogen-derived molecules, such as occurs in T and B cell receptors. However, the paradigm 

that somatic recombination leads only to adaptive immunity is incorrect.   

 

Over the past 15 years, T cell populations have been identified with T cell antigen receptors 

(TCRs) that are conserved between individuals. Many of these effector-capable T cell 

populations are established in the absence of pathogen encounter. Examples of such T cell 

populations include invariant natural killer T (iNKT) cells, mucosal-associated invariant T 

(MAIT) cells, γδ T cells, and other populations for which we have a more limited understanding 

(1-3). These “donor unrestricted” T cell populations have been estimated to account for as much 

as 10-20% of human T cells (4), and have critical roles in host defense and other immune 

processes. The existence of innate-like T cells suggests that somatic recombination, the 

machinery of adaptive immunity, is working to generate TCRs that function as innate antigen 

receptors. We and others now refer to these cells as innate T cells (ITCs).   

 

Most ITC populations share several important features. First, they do not recognize peptides 

presented by MHC class I and class II. iNKT cells recognize lipids presented by a non-MHC 

encoded molecule named CD1d (5-7). MAIT cells recognize small molecules including bacterial 
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vitamin B-like metabolites presented by another non-MHC encoded molecule, MR1 (8, 9). It is 

not known whether specific antigen presenting elements drive the development of γδ T cells. One 

major γδ T cell population bearing Vγ2-Vδ9 TCRs (Vδ2) is activated by self and foreign 

phospho-antigens in conjunction with a transmembrane butyrophyllin-family receptor, BTN3A1 

(10-13). The antigens recognized by other human γδ T cell populations are not clear, although a 

subset of these cells recognizes lipids presented by CD1 family proteins (14), and recent data 

suggests that some may recognize butyrophyllin-family receptors (15). A second shared feature 

of ITCs is that their responses during inflammation and infection exhibit innate characteristics, 

such as rapid activation kinetics without prior pathogen exposure, and the capacity for antigen 

receptor-independent activation. Data in mice demonstrate that during diverse immune 

responses, including in host defense, cancer, autoimmunity, and allergic disease, a large portion 

of the iNKT cell pool is rapidly activated and orchestrates ensuing immune responses (1, 16). On 

the other hand, only a low frequency of the adaptive T cell pool responds during any given 

infection. Inflammatory cytokines such as IL-12, IL-18, and type I interferons can activate ITCs 

even in the absence of concordant signaling through their TCRs, and such TCR-independent 

responses have been reported in iNKT cells (17, 18), MAIT cells (19, 20), and γδ T cells (21-24). 

These ‘cytokine-only’ responses may explain how these cell populations contribute to immunity 

in diverse inflammatory contexts.    

   

Given the similar functions reported among different ITC populations, we hypothesized that their 

effector capabilities might be driven by shared transcriptional programs. Here, we set out to 

transcriptionally define the basis of innateness in human ITCs by studying them as a group, 

focusing on their common features rather than what defined each population individually. We 
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performed RNA-seq on highly-purified lymphocyte populations from the peripheral blood of six 

healthy donors in duplicate to generate robust transcriptional data, and confirmed key findings 

with protein-level and functional validation. Using unbiased methods to determine global inter-

population relationships, we defined an ‘innateness gradient’ with adaptive cells on one end and 

natural killer (NK) cells on the other, in which ITC populations clustered between the 

prototypical adaptive and innate cells. Within the ITC cluster, populations segregated from 

adaptive to innate as MAIT, iNKT, Vδ1, and Vδ2. These data suggest that ITCs, with innate-like 

functionality and antigen receptors produced by the machinery of adaptive immunity, are a 

distinct family defined both transcriptionally and functionally. Interestingly, we observed 

decreased transcription of cellular translational machinery and a decreased capacity for 

proliferation as hallmarks of innate cells. Innate cells rather prioritized effector functions, 

including cytokine production, chemokine production, cytotoxicity, and reactive oxygen 

metabolism. Thus, growth potential and rapid effector function are hallmarks of adaptive and 

innate cells, respectively.  

 

Results 

 

Human immunophenotyping reveals high aggregate ITC frequencies 

 

To characterize the abundance and variability of ITCs in humans, we quantified 4 major 

populations of innate T cells from 101 healthy individuals aged 20 to 58 years by flow 

cytometry, directly from peripheral blood mononuclear cells (PBMCs) in the resting state. We 

assessed the frequencies of iNKT cells, MAIT cells, and the two most abundant peripheral γδ T 
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cell groups, those expressing a Vδ2 TCR chain (Vδ2) and those expressing a Vδ1 TCR chain 

(Vδ1). MAIT cells contributed from 0.1 to 15% of T cells (mean 2.4%), iNKT cells from 

undetectable to 1.1% (mean 0.09%), Vδ1 cells 0.25 - 6.2% (mean 1.25%), and Vδ2 from 0.08 - 

22% (mean 4.7%). The sum of these 4 cell types accounted for 0.9 – 25.7% of an individual 

subject’s T cells (mean 8.4%) (Fig. 1A, Supplementary Table 1). Vδ2 cells were more abundant 

than Vδ1 in 82% of subjects, with the ratio of these two cell types ranging from 0.2 to 67.8 

(mean 8.5). Age negatively associated with the total percentage of ITCs (P = 1.4e-05). MAIT (r 

= -0.42, P = 9.9e-06) and Vδ2 (r = -0.43, P = 4.7e-06) populations drove this association (Fig. 

S1A,B), even after accounting for the abundances of other cell types (P = 5.9e-04, P = 1.2e-04, 

respectively), which is consistent with previous findings (25, 26). We observed covariance 

between the frequencies of MAIT/iNKT cells (P = 0.02), corrected for the other cell types and 

age (Fig. S1C,D). We observed no significant associations between ITC percentage and gender, 

body mass index, or smoking status after accounting for age. Together, these results show human 

ITCs contribute a substantial portion of the peripheral T cell repertoire, are variable between 

individuals, and decrease with age.  

 

ITC populations rapidly release cytokines 

 

We next tested innate T cell populations for two functional hallmarks of innate effectors, rapid 

cytokine production and TCR-independent activation. To assess rapid cytokine production 

potential, we activated healthy donor PBMCs with phorbol 12-myristate 13-acetate (PMA) and 

ionomycin for 4 hours, followed by intracellular staining for interferon-γ (IFN-γ) production. 

Between 35 and 85% of MAIT, iNKT, Vδ1, and Vδ2 T cells produced IFN-γ under these 
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conditions, while a smaller percentage of adaptive CD4+ T and CD8+ T cells produced this 

cytokine (Fig. S2A,B). To test the relative capacity of these cell types to respond to 

inflammatory cytokines alone, we activated PBMCs with IL-12 + IL-18 or IL-12 + IL-18 + IFN-

α for 16 hours, and assessed IFN-γ production during the final 4 hours of stimulation. 20-80% of 

iNKT, MAIT, Vδ2, and NK cells produced cytokines under these conditions, while only a tiny 

portion of adaptive cells responded (Fig. 1B, Fig. S2C,D). Taken together, these studies show 

that ITC populations rapidly produce cytokines, and can do so in response to inflammatory 

cytokines even in the absence of TCR signals. Notably, we observed the latter activation 

mechanism almost exclusively in ITC populations. 

  

RNA-seq profiling of ITCs reveals a continuous innateness gradient 

 

To better understand the biological properties of human ITCs on a genome-wide scale, we 

profiled their transcriptomes with RNA-seq. Ultra-low input RNA-seq profiling using 1,000 cells 

per sample enabled high-depth sequencing of even relatively rare human lymphocyte 

populations. From 6 healthy individuals, we sorted in duplicate four subsets of ITCs: iNKT, 

MAIT (defined as MR1-5-OP-RU tetramer+), Vδ1 and Vδ2 cells (Supplementary Table 2). From 

the same individuals, we also sorted CD4+ and CD8+ T cells as comparator adaptive T cells and 

NK cells as comparator innate cells (Fig. S3). Using SmartSeq2 to create poly(A)-based libraries, 

we generated 25 base pair, paired-end libraries sequenced at a depth of 4-12 million read pairs 

(Fig. S4). After sequence mapping, we calculated tpm (transcripts per million) values for each 

gene. We considered 19,931 genes as expressed (tpm>3 in ≥10 samples), including 12,730 
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protein-coding, 183 T cell receptor genes, 3,261 long noncoding RNA (lncRNA), and other 

lowly-expressed genes (e.g. pseudogenes, Fig. S4C). 

 

Principal component analysis identified the major axes of variation in gene expression (Fig. 2A). 

The first principal component separated the subsets by a continuous ‘innateness gradient’ with 

CD4+ and CD8+ T cells on one end, and NK cells on the other end (Fig. 2B). Ordered from 

adaptive to innate along the first principal component, MAIT, NKT, Vδ1 and Vδ2 clustered in 

between the adaptive cells and NK cells. We then identified genes associated with the rank order 

of each lymphocyte population in the innateness gradient (CD4+ T = 1, CD8+ T= 2, MAIT = 3, 

iNKT = 4, Vδ1 = 5, Vδ2 = 6, NK = 7), using linear mixed models. This analysis revealed 1,884 

genes significantly associated with the innateness gradient (P < 2.5e-06=0.05/19,931, correcting 

for 19,931 tests), including protein coding and lncRNA genes (Fig. 2C, Supplementary Table 3). 

Hereafter we refer to positive and negative associations with the ranked gradient as associations 

with ‘innateness’ and ‘adaptiveness,’ respectively. We defined an ‘innateness score’ as the 

magnitude of the change in expression level by an increase of one in the gradient (the β of the 

gradient variable within our linear mixed model). 

 

Associations with innateness: migration, cytotoxicity, cytokine production, and ROS metabolism 

 

Cytotoxicity and chemokines. The Gene Ontology (GO) terms most associated with innateness 

included NK cell and lymphocyte chemotaxis, NK cell mediated immunity, cellular defense 

response, and several additional terms related to leukocyte migration and activation (Fig. 3A-D, 

specific GO terms indicated in figure legend and Fig. S5A). Using flow cytometry, we validated 
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the expression of key genes, including killer cell lectin-like receptor (KLR) family genes and 

killer cell immunoglobulin-like receptor (KIR) genes (Fig. S5B). Cytotoxicity proteins such as 

perforin, granzyme B and granulysin also associated with innateness (Fig. 3E,F, Fig. S5B). Eight 

chemokines strongly associated with innateness, including CCL3, CCL4, CCL5, XCL1 and XCL2 

(P < 9e-12), consistent with a role for innate lymphocytes in recruiting other inflammatory cell 

types to initiate inflammation. IFNG (the gene coding for IFN-γ) showed a significant 

association with innateness (P = 1.7e-06, Fig. 3G), and the baseline IFNG levels in each cell 

population predicted their production of IFN-γ upon stimulation (Fig. S2A,B). Since ITCs 

produce diverse cytokines and chemokines (1, 2), we quantified the total cytokine and 

chemokine transcriptome ‘mass’ in each cell type at baseline. We observed that the aggregate 

sum of the expression levels of the 37 cytokines and chemokine genes expressed in our dataset 

followed the innateness gradient (Fig. 3H).  

 

Reactive oxygen species (ROS) metabolism. Metabolic pathways are well-known to vary among 

immune cell subsets and influence their functions (27). Among metabolic programs, the pentose 

phosphate pathway was nominally positively associated with innateness (P = 0.036, Fig. 4A). 

G6PD, the gene that codes for the rate-limiting enzyme in the pentose phosphate pathway, 

showed the strongest positive association with innateness in this pathway (β = 0.29, P = 3e-14, 

Fig. 4B,C). This enzyme produces NADPH which in turn can be used for glutathione 

biosynthesis, protecting against damage caused by ROS. Two critical enzymes for buffering the 

damaging effect of ROS, GCLM and GCLC, also nominally associated with innateness (P = 2e-

04 and 1e-03, respectively, Fig. 4D,E). We quantified ROS by flow cytometry using CellROX 

green, and found that total cellular ROS levels were higher in adaptive T cells than in ITCs, 
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suggesting that elevated G6PD might provide a baseline buffer counteracting ROS (Fig. 4F,G). 

Overall, these results suggest that ITCs are prepared to buffer ROS at baseline, a useful 

adaptation for effector cells expressing chemokine receptors such as CXCR1, CXCR2, and 

CCR5 (Fig. S7C) that direct them to the same sites of infection or inflammation as monocytes 

and neutrophils.  

  

Associations with adaptiveness: regulation of translational machinery 

 

When we applied gene set enrichment to adaptiveness, “cytosolic ribosome” (GO:0022626) 

emerged as the most-associated term (P = 4.7e-28, Fig. 5A,B, Fig. S6A,B). This enrichment was 

not driven by a small percentage of genes very strongly overexpressed among ITCs (Fig. S6C). 

Translation initiation factors were also consistently associated with adaptiveness (Fig. 5C, Fig. 

S6D) suggesting that the translational machinery, and not just the ribosome complex, was 

associated with adaptiveness. MYC, which coordinately regulates ribosomal RNA genes (28), 

was the transcription factor with the highest fold change associated with adaptiveness (P = 3.8e-

22, Fig. 5D). As an independent assessment of ribosome synthesis, we used quantitative 

polymerase chain reaction (qPCR) to assess expression of the earliest uncleaved ribosomal RNA 

(rRNA) precursor. The expression of precursor 47S rRNA associated with adaptiveness 

(Spearman rho = -0.57, P = 9e-05, Fig. 5E), suggesting that ITCs have a relative decrease in 

ribosome biogenesis.  

 

Since new ribosome production is necessary for proliferation, and MYC expression is generally 

associated with proliferative capacity, we hypothesized that proliferation potential might 
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associate with adaptiveness. We found that proliferation in response to anti-CD3/CD28-coated 

beads, like MYC and ribosome biogenesis, associated with adaptiveness (Spearman rho = -0.73, 

P = 5.8e-04, Fig. 5F,G). We then assayed ribopuromycylation to quantify total active translation 

(29). Strikingly, we observed a positive association with innateness, with the innate cell types 

being engaged in more active translation than the adaptive T cells (Fig. 5H,I). This suggested 

that despite having lower expression of many major ribosomal genes, innate T cells have a 

higher number of ribosomes actively involved in translation. These results recall the well-

described regulation of ribosomes in prokaryotes, where ribosome biogenesis is major energetic 

control point, is suppressed in conditions under which growth and division are deprioritized (30), 

and can be fine-tuned to ensure maximal occupancy of active ribosomes (31). Taken together, 

these results suggest that adaptive cells prioritize the production of factors required for cell 

growth and division, while innate cells may suppress ribosome biogenesis to prioritize the 

translation of other mRNAs, such as those encoding effector functions including the rapid 

production of cytokines (Fig. 1, Fig. 3G,H). 

 

Transcriptional regulation of innateness  

 

We identified 142 transcription factors that varied significantly between cell types (F statistic, P 

< 5.8e-05, Bonferroni threshold). The expression of these transcription factors across cell types 

clustered into 4 major groups (Fig. 6A). Cluster 1 showed a gradual increase that closely 

matched the pattern of the innateness gradient. Cluster 2 showed a pattern opposite to that of 

cluster 1, with an increase in expression toward adaptive cellular populations. Cluster 3 showed 

high levels of expression in iNKT, MAIT, Vδ2, and NK cells, with relatively lower levels in 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/280370doi: bioRxiv preprint 

https://doi.org/10.1101/280370


 12 

adaptive T and Vδ1 T cells, and cluster 4 captured transcription factors with the opposite pattern 

to cluster 3 (Fig. 6A). In PCA of these transcription factors, the second principal component 

separated iNKT cells, MAIT, and Vδ2 T cells, from adaptive and Vδ1 T cells (Fig. S7A), similar 

to K-means clusters 3 and 4. These same cell groupings were also captured by PC2 generated 

using the overall most variable genes (Fig. 2A). 

 

Within cluster 1 of innateness-associated transcription factors, T-bet (TBX21, P = 2.4e-29), 

known for important roles in type 1 helper T cell (Th1), NK, and iNKT cell effector functions 

(32-34), followed the innateness gradient at both the transcript and protein levels (Fig. 6B,C). 

The next two innateness-associated transcription factors with the highest fold changes were 

HOPX and ZEB2 (Fig. 6D,E). HOPX (P = 7.2e-25), reported to be induced by T-bet, has been 

shown to regulate persistence of effector memory Th1 cells, with upregulation in terminally 

differentiated cells (35). ZEB2 (P = 1.8e-18) has been reported to cooperate with T-bet to induce 

terminal differentiation of cytotoxic T lymphocytes (36, 37). Two NFAT family proteins, 

NFATC2 (P = 2e-16) and NFAT5 (P = 1.1e-9), were associated with cluster 1 transcription 

factors. IRF8 (P = 3.1e-14), TFDP2 (P = 5.9e-13), NFIL3 (P = 2.7e-13), KLF10 (P = 2.1e-15), 

RUNX3 (P = 5.6e-18), LITAF (P = 6.2e-24), ZSCAN9 (P = 9.4e-17), and ZNF600 (P = 4e-17) 

were also in this cluster and significantly associated with innateness. Within the adaptiveness-

associated cluster 2, besides MYC (Fig. 5D), we found TCF7, involved in the maintenance of T 

cell identity (P = 2.4e-21) (38), BACH2 (P = 4.3e-10), NR3C2 (P = 1.8e-10), POU6F1 (P = 1.9e-

10), and BCL11B (P = 2e-17). 
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The third cluster of innateness-associated transcription factors, those enriched in iNKT cells, 

MAIT, Vδ2 T, and NK cells, included ID2 (P = 8.8e-13, Fig 6F), MYBL1 (P = 1.52e-10), 

BHLHE40 (P = 8.1e-11), FOSL2 (P = 8.8e-14), and ZBTB16 (P = 1.1e-5, Fig 6G,H). Among 

these genes, BHLHE40, FOSL2, ZBTB16 (encoding PLZF), and ID2 have been reported to 

contribute to iNKT cell development and/or activation in mice (39-43). Id2 is also a major 

regulator of ILC development (44), and has been implicated Id2 in the regulation of mouse iNKT 

(45), ILC1 (46), and CD8+ T cell (47) effector functions in the periphery. Published 

transcriptional profiles of NK cells, ILC1, and influenza-specific Id2-deficient mouse CD8+ T 

cells showed a striking concordance of Id2-dependent expression with our innateness gradient 

genes, highlighted by TBX21, ZEB2, IL18RAP, CCR7, TCF7, cytotoxicity, and KLR genes (46-

48). TCF7, consistently downregulated in ITCs, is negatively regulated by Id2, suggesting that in 

part, Id2 may drive the loss of adaptive T cell identity observed in ITCs. Taken together, these 

data suggest that Id2 may drive many features of innateness in human ITCs, and may be a major 

transcriptional node involved in maintaining their baseline innate state. 

 

PLZF is a zinc finger transcription factor known to be important for the development and 

function of iNKT cells (49, 50), MAIT cells (50), and innate lymphoid cells (51). Mean PLZF 

protein expression by intranuclear staining confirmed our mRNA expression results (Fig. 6H). 

Human γδ T cells have previously been reported to express PLZF (52), but we did not detect 

elevated PLZF expression in Vδ1 cells (Fig. 6G,H). Differential expression analysis between 

PLZF+ ITCs and adaptive T cells revealed “cytokine receptor activity” as the most enriched term 

for upregulation in PLZF+ ITCs (P = 7.9e-05). PLZF expression in T cells was also associated 

with the aggregate expression of all cytokine and chemokine receptor activity genes (Fig. S7B), 
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and we validated the expression of several of these receptors by flow cytometry (Fig. S7C). For 

genes differentially-expressed between PLZF+ ITCs and adaptive T cells, we found significant 

enrichment of PLZF target genes identified in mouse thymocytes with CHIP-seq (53) (P = 6.2e-

07, Fig. S7D). In addition, PLZF+ ITCs upregulated genes that were associated with the term 

“circadian regulation of gene expression” (P = 4.2e-04), with major clock transcription factor 

genes like ARNTL (that codes for BMAL1), RORA, PER1 and CRY1 significantly upregulated in 

PLZF+ ITCs compared to adaptive T cells (P < 5e-08) (Fig. 6I,J, Fig. S7E). Both BHLHE40 and 

ID2 also have the capacity to regulate the circadian clock (54-56). Notably, although human NK 

cells express PLZF (mature mouse NK cells do not express PLZF), many genes upregulated in 

PLZF+ ITCs and identified as PLZF targets in mouse (53) showed low expression in human NK 

cells, including CCR2, CCR7, CXCR6, RORC, CCR5, CCR6 and LTK (Fig. S7C,D). These 

results suggest that PLZF may regulate different sets of genes depending on the cell type, likely 

working as part of a larger gene network in determining ITC fate. 

 

Innateness in other populations of ITCs and adaptive T cells 

 

We next investigated the innateness gradient in other candidate innate-like human T cell subsets. 

We chose two additional T cell populations for analysis, Vδ3-expressing γδ T cells and δ/αβ T 

cells, each of which can constitute up to 1% of human peripheral T cells (57, 58). We sorted Vδ3 

T cells and δ/αβT cells in duplicate from one individual and profiled their transcriptomes with 

ultra-low input RNA-seq. δ/αβ and Vδ3 clones have been identified that, like iNKT cells, 

recognize α-galactosylceramide presented by CD1d (57, 58), suggesting that these cells might 

potentially play a similar role in immunity to iNKT cells. However, principal component 
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analysis revealed that δ/αβ T cells were closer to adaptive T cells, and closest to CD8+ T cells, 

rather than segregating with iNKT cells and other innate T cells (Fig. S8A,B). This suggests that 

δ/αβ T cells may have an adaptive-like phenotype. Vδ3 T cells, on the other hand, segregated 

closer to innate T cells by PCA, among the other γδ T cells (Fig. S8A,B). Neither δ/αβ T cells or 

Vδ3 T cells expressed PLZF. 

 

Cytotoxicity genes and NK markers are expressed by a subset of adaptive T cells. We found that 

this class of genes was expressed by CD8+ T cells, and in some cases at higher levels than in 

ITCs. Interestingly, the development of innate-like Th1 effectors from adaptive cells has also 

recently been demonstrated in mice (59). To assess expression of innateness gradient genes in 

human adaptive effector T cells, we re-analyzed a human expression dataset generated using 

MHC class I tetramer-sorted, HCMV-specific CD8+ T cells (60) (polyclonal human CD8+ T cell 

datasets would likely be substantially ‘contaminated’ with ITCs). HCMV-specific effector 

memory CD8+ T cells expressed innateness gradient genes more highly than HCMV-specific 

memory CD8+ T cells (P = 1.4e-61, Wilcoxon paired test), which in turn had higher expression 

of these genes than naive CD8+ T cells (P = 7.9e-99, Fig. 7A). Conversely, genes associated with 

adaptiveness in our gradient were upregulated in naive CD8+ T cells compared to HCMV-

specific memory CD8+ T cells (P = 9.2e-68), and also in memory CD8+ T cells compared to 

effector memory CD8+ T cells (P = 2.7e-11, Fig. 7A). We also re-analyzed published RNA-seq 

data for CD4+ T cell subsets (61). CD4+ effector memory T cells had higher expression of 

innateness-associated genes than CD4+ naive and CD4+ central memory T cells (P < 6.4e-119, 

Fig. 7B), whereas naive CD4+ T cells had higher expression of adaptiveness-associated genes 

than CD4+ central memory and effector memory T cells (P < 1.4e-54, Fig. 7B). Overall, these 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/280370doi: bioRxiv preprint 

https://doi.org/10.1101/280370


 16 

results suggest that the innateness gradient can stratify adaptive effector CD8+ and CD4+ T cell 

populations following infection, and is thus not limited to ITCs. 

 

 

Discussion 

 

MAIT, iNKT, γδ, and other innate-like T cells do not fit neatly into traditional paradigms of 

adaptive or innate immunity. Their nature has been an interesting puzzle for more than 30 years. 

Each population has been studied in depth individually, but rarely have they been considered in 

aggregate. Here, we set out to study human ITCs as a group, addressing two important questions, 

1) is there a shared transcriptional basis for their functions in immunity, and 2) how do ITCs 

maintain their baseline effector state? In quantitative, unbiased analyses, we discovered that ITCs 

segregate along an innateness gradient between prototypical adaptive and innate populations. We 

propose that the large transcriptional programs positively- and negatively-associated with this 

gradient represent the transcriptional basis of lymphocyte innateness. Our data support that ITCs 

are indeed a ‘family’ with a common transcriptional basis for their similar functions in 

immunity, including rapid cytokine and chemokine production, chemotaxis to areas of 

inflammation, cytotoxicity, and TCR-independent responses. The functional and transcriptional 

conservation of innate-like functions in ITCs suggests that they enhance evolutionary fitness. 

That humans dedicate such a large part of their T cell repertoire to the generation of innate-like 

receptors is a testament to the teleological importance of innate immune surveillance even after 

the evolution of adaptive immunity.   
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Strikingly, we observed that this innateness program can not only classify ITCs according to 

their innateness, but can also differentiate adaptive effector populations. For example, naive, 

memory, and effector adaptive populations can be separated by their innateness. Interestingly, 

both Th1 and Th2 adaptive T cells have been demonstrated to acquire innate-like characteristics 

in some settings (62-65). Thus, the study of ITCs highlights important pathways used across 

innate and adaptive lymphocyte populations. 

 

The shared gene programs associated with innateness included cytokine/chemokine production, 

cytotoxicity, and cytokine/chemokine receptor expression. For the genes positively associated 

with the innateness gradient, this is essentially an ‘effector gradient,’ which strongly supports a 

role for ITCs in host defense. We found that human ITCs rapidly produced IFN-γ after activation 

through their TCRs (Fig. S2), as do a smaller fraction of adaptive T cells. However, IFN-γ 

production in response to IL-12, IL-18, and IFN-α, cytokines generated by myeloid or stromal 

cells in response to danger signals, were almost exclusively limited to ITCs (Fig. 1B). This is 

consistent with the role of ITCs as innate responders where prior pathogen experience is not 

required. Thus, T cell innateness can regulate the response to pathogen-associated molecular 

patterns. Of note, human Vδ1 cells have been demonstrated to be variable in both TCR repertoire 

and numbers, and likely respond to specific infections (66). Although they express much of the 

innateness program, Vδ1 cells may not fit the ITC paradigm as neatly as the more-conserved 

MAIT, iNKT, and Vδ2 populations. Indeed, Vδ1 cells have greater TCR diversity, exhibit less 

‘cytokine-only’ activation, and do not express PLZF.  
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Our identification of ribosome subunits and other factors involved in translational activity 

associated with adaptiveness (Fig. 5) also sheds light on the biology of ITCs. For an adaptive T 

cell, population expansion is of central importance in both primary and recall immune responses. 

ITCs, on the other hand, are likely to function as sentinels early during infection, acting as 

‘cellular adjuvants’ to enhance the larger immune response in response to microbial molecules. 

For such a role, rapid effector responses are key, and proliferation may serve only to replenish 

numbers at a later stage. Taken together, the effector-focused transcriptional programs of ITCs 

and proliferation-focused programs of adaptive cells are ideally suited to support their respective 

roles in immunity. 

 

Finally, the innateness gradient reported here could be applied in different scenarios in order to 

better understand human immunology. A transcriptomic innateness score could be employed as a 

unified T cell metric to classify individual single cells assayed with single-cell RNA-seq, and 

could provide a better understanding of patient heterogeneity. We can use our immunoprofiling 

data and create an ‘innateness metric’ for each individual based on the abundance of each T cell 

type weighted by the innateness level of that cell type. This score is remarkably variable between 

individuals, even after correcting for age (Fig. S9). This single innateness metric in an individual 

might be associated with genetic differences, human diseases including cancer, infection, and 

allergy, or therapeutic responses to immunomodulating medications.   

 

Materials and Methods 

 

Study design  
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To study the transcriptome of innate T cell populations (MAIT, iNKT, Vδ1, Vδ2), we compared 

them with adaptive cells (CD4+ T, CD8+ T) as well as NK cells as prototypical innate 

lymphocytes. Samples used for immunophenotyping and RNA-seq analyses were from healthy 

individuals. All human sample use was approved by the Brigham and Women’s Hospital 

Institutional Review Board, including direct consent for public deposition of RNA sequencing. A 

matched set of populations were sorted from each individual to avoid batch effects. All blood 

draws were performed in the morning, and cells were immediately stained and double-sorted 

directly into lysis buffer. Based on previous RNA-seq analyses on number of replicates and read 

depth for optimal differential expression analysis (67), we decided to sort cells from 6 

individuals in duplicate (total of 12 samples per cell-type) at a read depth of 4-12 million read 

pairs (8-24 million reads). The goal of this study was to define the shared transcriptional 

programs between cell populations rather than variability between individuals. To avoid 

systematic technical error or batch effects, samples were randomized within the plate for library 

preparation, and all samples sequenced together. Five samples were removed for low read depth 

(described below). 

 

RNA library preparation and sequencing 

Smart-seq2 libraries (68) (poly-A selected) were prepared for the 90 flow-sorted samples (each 

1,000 cells). These samples were composed of 7 main cell types (CD4+ T, CD8+ T, MAIT, 

iNKT, Vδ1, Vδ2 and NK cells) from 6 healthy donors, and 3 additional cell types (δ/αβ, Vδ3 and 

B cells) from one healthy donor. Each sample had 2 duplicates. Samples were randomized within 

plate. 25 base paired-end sequencing was performed yielding 4-12M read pairs (8-24e6 reads, 

Fig. S4) 
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Gene expression quantification 

We used Kallisto version 0.43.1 (69) to quantify gene expression using the Ensembl 83 

annotation. We included protein-coding genes, pseudogenes, and lncRNA genes. As expected, 

protein coding genes were the most highly expressed, followed by lncRNAs and then 

pseudogenes (Fig. S4C). We removed 5 outlier samples that had low proportion of common 

genes detected (1 MAIT, 1 CD8+ T, 1 NK, and two Vδ1 samples; Fig. S4D). We used log-

transformed tpm (transcripts per million) as our main expression measure, which accounts for 

library size and gene size (specifically log2(tpm+1)). We considered as expressed genes those 

with a log2(tpm+1) > 2 in at least 10 samples. We further performed quantile normalization on 

the log2(tpm+1) values for our differential expression analyses.  Boxplots were created in R. 

Boxes show the 1st to 3rd quartile with median, whiskers encompass 1.5X the interquartile range, 

and data beyond that threshold indicated as outliers.   

 

Differential expression analyses 

We used linear mixed models for our differential expression and expression association analyses. 

The dependent variable was quantile normalized log2(tpm+1) expression values. Within our 

predictor variables, we used in all cases donor ID as a random effect. For associations with the 

innateness gradient, we used one fixed effect composed of integers from 1-7 (for CD4+ T, CD8+ 

T, MAIT, NKT, Vδ1, Vδ3 and NK, respectively). In the differential expression between adaptive 

cells and PLZF+ ITCs we used one fixed effect taking values of 0 or 1, respectively. 

 

Gene ontology term enrichment analyses 
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We downloaded Ensembl gene IDs linked to Gene Ontology (GO) terms on April 2016 (70, 71). 

This included 9,797 GO terms and 15,693 genes. We tested for GO enrichment sorting genes by 

the β (effect size) of our differential expression analysis. We used the minimal hypergeometric 

test (72) to test for significance. We confirmed significance of enrichment for the top GO terms 

using an alternative method: the function gsea of the liger package 

(https://github.com/JEFworks/liger).  

 

Pathway enrichment analysis 

We downloaded genes pertaining to 12 KEGG pathways (73) from the Consensus Pathway 

Database-human http://cpdb.molgen.mpg.de/ (74) in March 2017. First, we calculated the F 

statistic per expressed gene in our dataset as a metric of variability between cell types. Then we 

tested whether the F statistics in genes of a certain pathway were higher than the other expressed 

genes using a Wilcoxon test. Three pathways had a P-value < 0.05. Since higher expressed genes 

tend to have higher F statistics, we further tested whether these 3 pathways had significantly 

higher F statistics than expected by controlling for gene expression. Specifically, we chose a null 

set of genes with similar expression levels by taking for each gene in a pathway, 30 random 

genes with mean level of expression (across all cell types) within 10% of the standard deviation. 

After this, only the pentose phosphate pathway had genes with F statistics higher than expected 

(P = 0.018). We further tested enrichment of this pathway in genes associated with innateness 

gradient using the gsea function of the liger package (Fig. 4A). 

 

Immunophenotyping associations 
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Associations among cell types and clinical traits, when accounting for different covariates, were 

tested with linear regression using cell type percentages in log scale. For iNKT cell abundance, 

there were 2 individuals with zero values, and these were converted to the next minimal value of 

0.01 before log transformation. 

 

PLZF target analysis 

We downloaded PLZF ChIP-seq peaks from the Gene Expression Omnibus (GEO) database 

from Mao et al (53) (accession number GSE81772). We used genes from the mouse Gencode 

vM14 annotation. We defined gene targets as mouse genes with a PLZF peak in the gene body or 

within 2kb from the transcription start site (TSS). We downloaded mouse-human gene 

homologues from BioMart (75). We selected only genes with 1 to 1 orthologues. We then 

checked from the mouse PLZF gene targets to which human orthologue they correspond. Finally, 

we performed logistic regression to determine whether gene targets are enriched in differentially 

expressed genes between PLZF+ ITCs and adaptive T cells. Specifically, the response variable is 

0 or 1 for non-target or target gene, respectively. The predictor variable was the β of the 

differential expression analysis of PLZF+ ITCs versus adaptive T cells. We also tested 

enrichment defining gene targets if a peak was found only at the promoter region of a gene (-2kb 

to +1kb from TSS), and found similar results. 

 

Data accessibility 

Our RNA-seq data is available at GEO with accession number TBD.  Processed expression data 

and innateness gradient associations can be viewed using an interactive browser at 

https://immunogenomics.io/itc. 
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Flow cytometry and cell sorting 

For immunophenotyping, Ficoll-isolated (GE Healthcare) PBMCs were prepared within 2 hours 

of overnight fasting with blood draw between 8 and 10 AM, stained, and data was acquired the 

same day. For sorting, freshly-isolated PBMCs from donors that had at least 0.1% for each cell 

type were processed in accordance with the ImmGen standard operating procedure (76, 77). 

Briefly, after Fc receptor binding inhibitor (eBioscience), cells were stained with surface 

antibodies and dead cells identified with 7-AAD (Biolegend). Using a FACSAria Fusion sorter 

fitted with a 100 µM nozzle, 1,000 cells double-sorted in duplicate directly V-bottom plates with 

TCL lysis buffer (Qiagen) and stored frozen until processing.  

 

For validation studies, cryopreserved PBMCs were used from a total of 15 donors. The 

antibodies used for flow-cytometric validation are listed separately. Data was acquired with a 5-

laser LSR Fortessa or 3-laser FACSCanto II (BD Biosciences) and analyzed with FlowJo 

(Treestar). A live-dead dye was used for all staining, either 455UV (eBioscience) or 

ZombieAqua (Biolegend). The gating strategy for these studies is shown in Fig. S3. For 

intracellular cytokine production studies, cells were fixed with 4% paraformaldehyde, then 

permeabilized with BD Perm/Wash (BD Biosciences) and stained with intracellular antibodies. 

For intranuclear staining to assess expression of transcription factors, cells were fixed and 

permeabilized using the FoxP3 buffer set (eBioscience). For validation studies, MAIT cells were 

identified as Vα7.2+CD161+ T cells.   

 

qPCR analysis 
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For 47S rRNA quantification, cells were sorted directly into RLT buffer (Qiagen) before RNA 

extraction (Qiagen, RNeasy). Primers were designed to span the first rRNA processing site using 

the following sequences: forward: GTCAGGCGTTCTCGTCTC, reverse: 

GCACGACGTCACCACAT. HPRT was used as a housekeeping control (forward: 

CGAGATGTGATGAAGGAGATGG, reverse: TTGATGTAATCCAGCAGGTCAG). qPCR 

was performed using the Brilliant III Ultra-Fast SYBR QPCR Master Mix (Agilent), read on a 

Stratagene MX3000P system. 

 

Cell culture, activation, and proliferation studies 

For cellular activation studies, PBMCs were cultured in RPMI 1640 supplemented with 10% 

FBS (Gemini), HEPES, penicillin/streptomycin, L-glutamine, and 2-mercaptoethanol. Cytokines 

were from Peprotech except for IFN-α (R&D Systems). For assessment of cytokine production, 

PMA (200 ng/ml, Sigma) and Ionomycin (500 ng/ml, Sigma) were added along with Protein 

Transport Inhibitor Cocktail (eBioscience) containing brefeldin and monensin for 4 hrs. Cytokine 

production in response to IL-12 (20 ng/ml), IL-18 (50 ng/ml), and IFN-α (50 ng/ml), PBMCs 

were cultured for 16hrs with these cytokines, with eBioscience Protein Transport Inhibitor 

Cocktail added for the last 4 hrs of culture. For measurement of cellular ROS, PBMCs were 

thawed, rested overnight in complete media without added cytokines, followed by the addition of 

CellRox Green (Thermo Fisher) for 1 hr. For proliferation, cells were labeled with CFSE (5 µM 

for 5 min in PBS), then cultured at a 2:1 ratio with anti-CD3/CD28-coated beads (Dynabeads, 

Thermo Fisher). Division index was calculated as (cells divided once + (cells divided twice/2) + 

(cells divided ≥ 3 times / 2.67)) / (undivided cells + (cells divided once/2) + (cells divided 

twice/4) + (cells divided ≥ 3 times / 8)) (FlowJo, TreeStar).  
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Ribopuromycylation studies 

To assess ribosomal activity, we adapted a microscopic technique, ribopuromycylation (29) for 

use by flow cytometry. Puromycin was added for 5 min in the presence of emetine (100 µg/ml), 

followed by fixation with 4% paraformaldehyde, permeabilization with BD Perm/Wash, and 

staining with an antibody that recognizes puromycin (EMD Millipore).  

 

List of antibodies 

 

Name	 Clone	 Company	

CCR1	 5F10B29	 Biolegend	

CCR2	 K036C2	 BioLegend	

CCR5	 HEK/1/85a	 BioLegend	

CCR6	 G034E3	 BioLegend	

CCR7	 G043H7	 BioLegend	

CD117	 104D2	 eBioscence	

CD161	 HP-3G10	 BioLegend	

CD1d-PBS57	tetramer	 NA	 NIH	tetramer	facility	

CD3	 UCHT1	 eBioscence	

CD4	 RPA-T4	 BioLegend	

CD56	 5.1H11	 BioLegend	

CD8a	 RPA-T8	 BioLegend	

CellRox	Green	 NA	 Thermo	Fisher	

CXCR6	 K041E5	 BioLegend	

DAP12	 406288	 R&D	Systems	

EOMES	 WD1928	 eBioscence	

GATA3	 16E10A23	 BioLegend	

Granulysin	 DH2	 BioLegend	
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Granzyme	A	 CB9	 eBioscence	

Granzyme	B	 GB11	 eBioscence	

Granzyme	K	 G3H69	 eBioscence	

IFNγ	 B27	 BioLegend	

IL18Ra	 H44	 eBioscience	

KIR2DL1	 HP-MA4	 BioLegend	

KIR2DL3	 DX29	 BioLegend	

LTK	 AF4664	(sheep	polyclonal)	 R&D	Systems	

MR1-5-OP-RU	tetramer	 NA	 gift	from	J.	McCluskey	

NKG2D	 1D11	 eBioscence	

NKp46	 9E2	 Biolegend	

NKp80	 5F12	 BioLegend	

Pan	γδ	TCR	 B1	 BioLegend	

Perforin	 B-D48	 Biolegend	

PLZF	 R17-809	 BD	Pharmingen	

Puromycin	 12D10	 EMD	Millipore	Corp	

RORC	 AFKJS-9	 eBioscence	

T-bet	 eBio4B10	 eBioscence	

TCR	Vα7.2	 3C10	 BioLegend	

TCR	αβ	 T10B9.1A-31	 BD	Pharmingen	

TCRδ	(to	identify	δ/αβ)	 A13	 gift	from	L.	Moretta	

TIGIT	 A1513G	 BioLegend	

Vδ1	TCR	 REA173	 Miltenyi	Biotec	

Vδ2	TCR	 B6	 BioLegend	

Vδ3	TCR	 P11.5B	 gift	from	L.	Lynch	
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Supplementary Materials 

 

Fig. S1. Innate T cell population frequency associations with age and covariance.  

Fig. S2. Pharmacologic and cytokine-only activation of lymphocyte populations. 

Fig. S3. Gating strategy used for sorting for RNA-seq and validation experiments.  

Fig. S4. RNA-seq summary and quality check. 

Fig. S5. Innateness-associated genes and pathways.  

Fig. S6. Ribosome associations with adaptiveness.  

Fig. S7. Transcription factors in ITCs. 

Fig. S8. Innateness in candidate ITCs and adaptive T cells. 

Fig. S9. Individual innateness metric.  

Table S1. T cell subset abundances and clinical information of 101 individuals. 

Table S2. T cell subset samples isolated and RNA sequenced. 

Table S3. Results of gene expression associations with innateness gradient. 
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Figure 1  ITC immunophenotyping. 

(A) ITCs were quantified in 101 healthy donors by flow cytometry. The “Combined” group represents the 
sum of iNKT, MAIT, Vδ1, and Vδ2 T cells. For boxplots, 5-95 percentile and outliers are shown. (B) Intra-
cellular staining for IFN-γ production following cytokine stimulation without TCR activation, N=4 indepen-
dent donors, s.e.m.   
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Figure 2 Transcriptomic profiling of ITCs reveals a continuous innateness gradient. 

(A) Principal component analysis performed on the top 1,022 most variable (s.d. > 1.4) and expressed 

genes. Plotted are scores for PC1 and PC2. (B) Distribution of PC1 scores for each cell type, arranged by 

rank order. (C) Heatplot of mean expression per cell type for genes associated with innateness gradient. 

Upper panel shows top 100 positive and negative significant associations within protein coding genes. 

Lower panel shows significant associations for 92 lncRNA genes. Genes within each heatplot were sorted 

by β. Gene expression level was scaled by row. N=6 donors, 1-2 replicates per cell type. Boxplots are 

described in methods.
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Figure 6 Transcription factors in ITCs. 

(A) Heatmap showing mean expression levels (scaled by row) for variable transcription factors among cell 
types, clustered into four groups. (B) Flow cytometric quantification of T-bet (N=3) compared to transcript 
levels with RNA-seq for its encoding gene TBX21 (N=6). Cluster 1, (C) TBX21, (D) HOPX, and (E) ZEB2; 
Cluster 3, (F ID2, (G) ZBTB16, (I) ARNTL, and (J) RORA. (H) Flow cytometric quantification of PLZF 
(N=3) compared to transcript levels for its encoding gene ZBTB16 (N=6). Error for tpm vs. MFI is s.e.m. 
Boxplots are described in methods.
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Supplementary Figure 1 

Innate T cell population frequency associations with age and covariance. 

Associations between donor age and (A) MAIT or (B) Vδ2 T cells, P-value and r from Pearson correla-
tions. Heatmaps depict pairwise Spearman correlation coefficients between T cell count percentages in 
101 healthy individuals, (C) before and (D) after regressing out age effects.
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Supplementary Figure 4 

RNA-seq summary and quality check. 

(A) Number of sequenced reads, and (B) number of genes detected per sample. (C) Distributions of 
mean expression levels for protein-coding genes, lncRNA genes, and pseudogenes. (D) Fraction of 
common genes detected per sample. Samples to the left of the vertical red line were considered low 
quality and were discarded from further analyses. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/280370doi: bioRxiv preprint 

https://doi.org/10.1101/280370


 49 

 

 

A

B

GO:1990266 neutrophil migration

GO:0070098 chemokine−mediated signaling pathway
GO:0072676 lymphocyte migration

GO:0048247 lymphocyte chemotaxis
GO:0050853 B cell receptor signaling pathway

GO:0097529 myeloid leukocyte migration
GO:0002431 Fc receptor mediated stimulatory signaling pathway

GO:0097530 granulocyte migration
GO:0002275 myeloid cell activation involved in immune response

GO:0042119 neutrophil activation
GO:2000401 regulation of lymphocyte migration

GO:0030595 leukocyte chemotaxis
GO:0036230 granulocyte activation

GO:0002228 natural killer cell mediated immunity
GO:1901623 regulation of lymphocyte chemotaxis

GO:0035747 natural killer cell chemotaxis
GO:0006968 cellular defense response

GO:2000501 regulation of natural killer cell chemotaxis

−log10(P−value)

0 2 4 6 8

2

4

6

1.75 2.00 2.25 2.50 2.75

NCR1 log10(MFI)

N
C

R
1 

lo
g2

(tp
m

 +
 1

)

2

4

6

8

2.5 3.0

KLRK1 log10(MFI)

KL
R

K1
 lo

g2
(tp

m
 +

 1
)

2.5

5.0

7.5

2.0 2.5 3.0 3.5 4.0

KLRF1 log10(MFI)

KL
R

F1
 lo

g2
(tp

m
 +

 1
)

0

1

2

3

4

5

1 2 3 4

KIR2DL1 log10(MFI)

KI
R

2D
L1

 lo
g2

(tp
m

 +
 1

)

2.5

5.0

7.5

10.0

2.5 3.0 3.5 4.0

DAP12 log10(MFI)

T
Y

R
O

BP
 lo

g2
(tp

m
 +

 1
)

0

1

2

3

4

5

2.0 2.5 3.0 3.5

KIR2DL3 log10(MFI)

KI
R

2D
L3

 lo
g2

(tp
m

 +
 1

)

4

6

8

10

12

2.4 2.7 3.0 3.3

GNLY log10(MFI)

G
N

L
Y 

lo
g2

(tp
m

 +
 1

)

4

6

8

2.6 2.8 3.0 3.2 3.4 3.6

GZMA log10(MFI)

G
ZM

A 
lo

g2
(tp

m
 +

 1
)

4

5

6

7

8

3.0 3.1 3.2 3.3 3.4 3.5

GZMK log10(MFI)

G
ZM

K 
lo

g2
(tp

m
 +

 1
)

NK

Vδ1

CD4+ T

MAIT
iNKT

CD8+ T

Vδ2

Supplementary Figure 5 

Innateness-associated genes and pathways. 

(A) GO terms significantly associated within innateness genes. (B) Flow cytometric validation for 

innateness associated genes, showing protein levels by flow cytometry (X-axis), and transcript levels 

with RNA-seq (Y-axis). tpm, N=6; MFI, N=3.
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Supplementary Figure 6 

Ribosome associations with adaptiveness. 

(A) GO terms significantly enriched within adaptiveness-associated genes. (B) Innateness score (β) 
for genes with GO term cytosolic ribosome (GO:0022626) and with P < 2.5e-06. (C) Mean percent 

expression (Y-axis) occupied by the top X% expressed genes (X-axis) per cell-type. Cell types, from 

left to right are CD4+ T (red), CD8+ T (blue), MAIT (green), iNKT (purple), Vδ1 (orange), Vδ1 
(yellow), NK (brown). (D) Innateness score (β) for genes with GO term eukaryotic 48S preinitiation 
complex (GO:0033290) and with P < 2.5e-06.
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Supplementary Figure 7 

Transcription factors in ITCs. 

(A) Principal component analysis performed on 142 transcription factor genes variable among cell types 
(F statistic, P < 5.7e-05, Bonferroni threshold), centered and scaled genes. Plotted are scores for PC1 
and PC2. (B) Sum of expression levels for 62 cytokine and chemokine receptor genes across samples. 
(C) Flow cytometric validation for genes differentially expressed between PLZF+ ITCs and adaptive T 
cells, showing protein levels by flow cytometry (X-axis), and transcript levels with RNA-seq (Y-axis). tpm, 
N=6; MFI, N=3. (D) Heatmap for mean expression level of PLZF target genes in mouse. Genes shown 
are upregulated in PLZF+ ITCs compared to adaptive T cells and low in NK cells. (E) Mean expression 
per individual (colored lines) among different cell types for circadian transcription factors ARNTL (that 
codes for BMAL, top) and RORA (bottom). All cell isolations were performed in the morning.
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Supplementary Figure 8 

Innateness in candidate ITCs and adaptive T cells. 

(A) Principal component analysis including δα/β and Vδ3 T cells, performed on the top 1012 
variable and expressed genes, centered and scaled. Plotted are scores for PC1, PC2. Heatplots of 
mean expression per cell-type for genes associated with innateness (left) or adaptiveness (right), 
for (B) HCMV specific CD8+ T cells and (C) CD4+ T cells.
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Supplementary Figure 9 

Individual innateness metric. 

Innateness metric calculated per individual by integrating the immunoprofiling data with the 
innateness gradient rank per cell type. Specifically, we summed the abundance per cell type 
(proportion of T cells) multiplied by the rank of that cell type in the innateness gradient. We 
then regressed out the age effects. Plotted are the residuals of this regression.
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