
clusterExperiment and RSEC: A Bioconductor package and framework for
clustering of single-cell and other large gene expression datasets

Davide Risso1, Liam Purvis2, Russell Fletcher3, Diya Das3,4, John Ngai3, Sandrine Dudoit2,5, Elizabeth
Purdom2*,

1 Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, USA
2 Department of Statistics, UC Berkeley, Berkeley, CA, USA
3 Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA, USA
4 Berkeley Institute for Data Science, UC Berkeley, CA USA
5 Division of Biostatistics, UC Berkeley, Berkeley, CA, USA

* Corresponding author Email: epurdom@stat.berkeley.edu

Abstract

Clustering of genes and/or samples is a common task in gene expression analysis. The goals in
clustering can vary, but an important scenario is that of finding biologically meaningful subtypes within
the samples. This is an application that is particularly appropriate when there are large numbers of
samples, as in many human disease studies. With the increasing popularity of single-cell transcriptome
sequencing (RNA-Seq), many more controlled experiments on model organisms are similarly creating
large gene expression datasets with the goal of detecting previously unknown heterogeneity within cells.

It is common in the detection of novel subtypes to run many clustering algorithms, as well as
rely on subsampling and ensemble methods to improve robustness. We introduce a Bioconductor R
package, clusterExperiment, that implements a general and flexible strategy we entitle Resampling-based
Sequential Ensemble Clustering (RSEC). RSEC enables the user to easily create multiple, competing
clusterings of the data based on different techniques and associated tuning parameters, including easy
integration of resampling and sequential clustering, and then provides methods for consolidating the
multiple clusterings into a final consensus clustering. The package is modular and allows the user
to separately apply the individual components of the RSEC procedure, i.e., apply multiple clustering
algorithms, create a consensus clustering or choose tuning parameters, and merge clusters. Additionally,
clusterExperimentprovides a variety of visualization tools for the clustering process, as well as methods
for the identification of possible cluster signatures or biomarkers.

The package clusterExperimentis publicly available through the Bioconductor Project, with a detailed
manual (vignette) as well as well documented help pages for each function.

1 Introduction

The clustering of samples or genes is one of the most common tasks in gene expression studies and, in
many studies with large numbers of samples, the precise allocation of samples to clusters is critical to
identify biological subtypes. With single-cell transcriptome sequencing (scRNA-Seq) studies, in particular, the
boundaries between subtypes can be quite fuzzy, with individual cells on the boundary of clusters. Similarly,
outlying contaminant cells are also common. These problems highlight the need for robust identification
of clusters, and several clustering algorithms have been recently proposed for the specific task of clustering
single-cell sequencing data [1–7].

We introduce here the Bioconductor package clusterExperiment, which implements not a specific
clustering algorithm, but a general and flexible framework in particular useful for the clustering of cells based
on single-cell RNA-Seq data. We also introduce a specific clustering workflow entitled Resampling-based
Sequential Ensemble Clustering (RSEC). It enables researchers to easily try a variety of different clustering
algorithms and associated tuning parameters and generate a stable consensus clustering from these many
candidate clusterings. Specifically, given user-supplied base clustering algorithms and associated tuning
parameters, RSEC runs the algorithms and generates the corresponding collection of candidate clusterings,
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with the option of resampling cells and of using a sequential clustering procedure as in [8]. Resampling
greatly improves the stability of clusters and has been frequently suggested in gene expression clustering [9]
and for single-cell studies specifically [1]. Additionally, considering an ensemble of methods and tuning
parameters allows to capitalize on the different strengths of the base algorithms and avoid the subjective
selection of tuning parameters. RSEC provides a strategy for defining a consensus clustering from the many
candidate clusterings and a method of further merging similar clusters that do not show strong individual
gene expression differences.

Unlike many existing clustering software for single-cell sequencing and gene expression data, clusterExperiment
provides a flexible framework that allows for user customization of the clustering algorithm and accompanying
manipulation of the data. Finally, the clusterExperimentpackage is fully integrated into the Bioconductor
software suite, inheriting from the existing SingleCellExperiment class (a baseline class for storing single-cell
data) [10], and interfaces with common differential expression (DE) packages like limma [11], MAST [12], and
edgeR [13] to find marker genes for the clusters.

2 Design and Implementation

In what follows, we refer to a “clustering” as the set of clusters found by a single run of a clustering method,
while a “cluster” refers to a set of samples within a clustering.

2.1 RSEC Workflow

The clusterExperimentpackage provides a novel workflow for creating a unified clustering from many
clustering results which we entitle Resampling-based Sequential Ensemble Clustering (RSEC). RSEC formalizes
many choices that are often seen in practice when clustering large RNA-Seq expression datasets. In
particular, RSEC formalizes the process of manually experimenting with many different parameter choices by
systematically running them all and then provides a formal mechanism for creating an ensemble or consensus
clustering from the results.

The RSEC workflow comprises the following steps, demonstrated in Fig 1:

1. clusterMany Implementation of one or more clustering methods across a wide range of tuning parameter
and data dimensionality choices.

2. combineMany Determination of a single consensus clustering from these many clusterings.

3. Merging of individual clusters from the consensus clustering, involving two steps:

• makeDendrogram Defining a hierarchical clustering of the clusters,

• mergeClusters Merging clusters along that hierarchy by collapsing into a single cluster sister
nodes between which only a small proportion of genes show differential expression.

The main RSEC wrapper function in the clusterExperimentpackage is our recommended implementation
of this workflow. In addition to performing all workflow steps within a single function, it implements our
preferred choice of subsampling and sequential clustering in the clusterMany step. It is our experience
that these choices are particularly relevant for single-cell sequencing and other large RNA-Seq experiments.
However, the user has the option to perform the individual steps separately using a sequence of function
calls and make more customized choices within this workflow. The intermediate clusterings found at all of
these steps are retained using a dedicated class for RSEC clustering results, so that the user can examine the
impact of each step using the visualization tools of the clusterExperimentpackage.

2.2 Clustering Procedures

We briefly describe here the core procedures that make up the RSEC workflow. More details can be found in
the Supplementary Text.
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2.2.1 Generating Many Clusterings (clusterMany):

The function clusterMany allows the user to easily select a range of clustering algorithms and tuning
parameters and create different clusterings for each combination thereof. The option is given to parallelize
computations across multiple cores. A few examples of parameters that can be compared are: the dimension-
ality reduction method, the number of dimensions, the number of clusters K (if appropriate for the clustering
method), whether to subsample to create the clustering, and whether to sequentially detect clusters.

The choices regarding whether to subsample the data and whether to sequentially detect clusters can
be paired with any clustering algorithm, but their implementation can be non-trivial, which makes the
implementation of these procedures, independent of a particular clustering method, particularly useful.

Subsampling. The subsampling option in clusterExperimentgenerates clusterings based on randomly
sampled subsets of the full set of n observations, and each resampled dataset is clustered with the baseline
clustering algorithm. Subsampling defines a dissimilarity matrix between samples, with entries Dij = 1 − pij ,
where pij is defined as the proportion of times the pair of samples i and j were in the same cluster across
all of the resampled datasets. Subsampling does not itself define a clustering of the samples; RSEC uses
the dissimilarity matrix D to cluster the samples. The clustering algorithm applied to D does not need to
be that which was used on the resampled datasets. Furthermore, because D is a dissimilarity matrix, with
entries on a well defined scale of 0–1, it is intuitive to cluster D so as to constrain the level of between-sample
dissimilarity within clusters [8], rather than set a particular K for the number of clusters, a feature which we
also allow.

Sequential Clustering. Sequential clustering refers to the iterative detection and removal of single clusters
and relies on a base clustering algorithm, like subsampling, which is iteratively re-applied after each removal
of a cluster. For each clustering iteration, the sequential algorithm requires a method for specifying which
is the “best” cluster so that it can be removed and the iteration continued. Our implementation of the
sequential detection of clusters follows that of the tight clustering algorithm [8], but we have generalized it to
fit arbitrary clustering techniques. Specifically, the “best” cluster is chosen by [8] to be that cluster which
varies the least in its membership as the parameter K for the number of clusters is increased, as measured by
the maximal percentage overlap of clusters from clusterings from K and K + 1 (the ratio of cardinality of
intersection to cardinality of union).

The sequential algorithm can be particularly helpful when there is an outlying cluster that is widely
different from others. Removing this cluster and re-clustering can minimize its effect on the global clustering
results. Similarly, not clustering all samples can be beneficial in finding homogeneous clusters if the data
are noisy or there are many samples on the boundary between clusters. (See also the clustering algorithm
pcaReduce proposed by [2] for single-cell data, which adopts a sequential discovery of clusters, but is more
narrowly based on reducing the number of dimensions for principal component analysis.)

2.2.2 Creating a Consensus Clustering (combineMany):

After running clusterMany, the resulting ClusterExperiment object contains many clusterings, and the next
step is to find a single clustering that represents the commonality across the many clusterings. The function
combineMany does this by creating a dissimilarity matrix between samples, defined by entries Dij = 1 − pij ,
where pij is the proportion of clusterings for which the pair of samples i and j are in the same cluster (Fig 1b).
This dissimilarity matrix is similar to that of subsampling and is likewise clustered to create an consensus
clustering.

2.2.3 Merging Clusters Based on a Cluster Hierarchy (mergeClusters):

The strategy of finding an consensus clustering used by combineMany emphasizes shared assignments across
clusterings and can result in many small clusters. The number of final clusters can be adjusted in earlier
steps in the clustering, but it is more intuitive in practice to visualize clustering results (e.g., using heatmaps)
to see which clusters have clear differences in the expression of individual genes.

Since these individual gene effects are of great interest to practitioners and are used to evaluate the quality
of a cluster, we formalize this practice by systematically evaluating the estimated number of genes with large
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effects between the clusters and using this as a metric to merge together clusters. We do not compare all
pairs of clusters, but instead hierarchically order the clusters from combineMany via hierarchical clustering
on the median value of each gene in each cluster. For each node in the resulting dendrogram, their children
nodes define two sets of samples that are candidates for being merged into a single cluster, and each gene
is individually tested for differential expression between the samples in the two sets (Fig 1c). Using these
individual gene results, mergeClusters calculates an estimate of the proportion of differentially expressed
genes at each node comparison (with multiple published methods for doing so available to the user [14–18]).
These estimates provide the basis for whether to merge clusters, working from the leaves (clusters) upward.

We note that, in addition to merging clusters, the hierarchy between clusters is convenient for visualization
of the clusters, as we discuss below (Section 2.4).

2.3 Biomarker Detection

A common task in clustering of gene expression datasets is to identify biomarkers, i.e., genes that strongly
differentiate the clusters. Differential expression techniques involving hypothesis testing are often used for
these tasks [11–13,19], though it should be emphasized that such tools must be used merely for exploratory
purposes, since there is severe overfitting of the data when the groups being compared have been found by
clustering the data.

Since clustering of large gene expression datasets, such as single-cell RNA-Seq datasets, generally results in
a large number of clusters, finding biomarkers for the clusters corresponds to testing for differential expression
between many groups. A standard F -statistic from an ANOVA analysis is commonly used to assess differences
between the groups. However, generally vast numbers of genes will have “significant” F -statistics and the
largest F -statistics can easily be dominated by genes that differentiate the single, most outlying cluster (Fig.
2a). A better approach is to test for specific differences between groups, e.g., the pairwise differences between
two groups, by forming contrasts from the full ANOVA model, which most DE packages allow. This has the
added advantage of using all of the data for estimation of the variance parameters regardless of the size of
the clusters.

However, a large number of clusters will imply a large set of contrasts (for example, all pairwise contrasts).
Such a large number of contrasts are practically quite difficult to construct with the common DE packages.
The clusterExperimentpackage provides tools to create relevant contrasts and optionally feeds them to the
limma/voom [11, 20] package to return the relevant biomarkers. We also provide the ability to port these
contrasts to edgeR [13] or MAST [12].

We provide three different kinds of contrasts that are useful for finding biomarkers for clusters:

1. all pair-wise comparisons;

2. each cluster versus all remaining clusters comparisons;

3. hierarchical comparisons, where, for each node in the cluster dendrogram from makeDendrogram, a
comparison is performed between the two children nodes.

The last type of contrasts – hierarchical – is our novel and preferred approach for specifying comparisons
based on the hierarchical relationships between the clusters, as described in the makeDendrogram step above.
Unlike the other comparisons that clusterExperimentimplements, the hierarchical comparisons allow a
multi-resolution approach, identifying both biomarkers for large differences between sets of clusters and
biomarkers that separate very similar clusters.

2.4 Visualization

The clusterExperimentpackage provides many visualization tools in addition to the above algorithmic
functions, often making use of existing R and Bioconductor functionality. clusterExperimentbrings them
together in one package and, most importantly, makes it easy to integrate the clustering results with the
visualization of the gene expression data.

For example, one of the most frequently used visualization methods in gene expression studies is the
heatmap or pseudo-color image representation of the genes-by-samples expression matrix. clusterExperimentprovides
a function plotHeatmap, that relies on the aheatmap function in the package NMF [21] and adapts it to be
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Parameter Set of values Description
# dimensions 20, 50, 100 Number of dimensions retained from PCA

α 0.1, 0.2 Required similarity for finding a cluster from the
co-occurrence matrix from subsampling

β 0.8, 0.9 Required percentage of overlapping samples as k
is increased to sequentially find a cluster

k0 4–15 The initial k for the number of clusters to find in
each subsampling routine

minSize 1, 5, 10 The minimum size of a cluster required of each of
the clusterings of clusterMany

Table 1. Parameters varied when applying RSEC to the olfactory epithelium dataset.

specific to the results of clusterExperiment by optionally plotting the clustering results alongside the
samples. Furthermore, a common problem in standard heatmaps is that the hierarchical clustering of the
samples with a basic hierarchical clustering algorithm does not exactly correspond to the clustering found by
other methods. clusterExperimentuses instead a hierarchical clustering of the clusters (described in Section
2.2.3) that keeps the clusters together and, importantly, does so by also placing the most similar clusters
close to each other.

Another example is the function plotClusters for visually comparing large numbers of clusterings,
following the work of [22]. This function calculates an alignment of the cluster assignments across samples,
along with an ordering of samples, so that the user can visualize the similarity in cluster assignments (see
Fig. 1a).

Other visualization tools include plotting of the hierarchy of the clusterings (plotDendrogram), plotting
the concordance of two clusterings via a barplot (plotBarplot), plotting a two-dimensional representation
of the data color-coded by cluster (plotDimReduce), and plotting boxplots of the expression levels of an
individual gene per cluster (plotFeatureBoxplot). These are all common visualization tools for which the
clusterExperimentpackage implementation makes it simple to integrate the clustering information and are
demonstrated in the vignette that accompanies the package.

3 Results

We demonstrate the usage of the clusterExperimentpackage with a single-cell RNA-Seq dataset on neuronal
stem cell differentiation in the mouse olfactory epithelium (OE) [23]. The OE is made of four major mature
cell types and two progenitor cell populations. Fletcher et al. [23] used RSEC to find 13 experimentally
validated clusters that clearly correspond to the known mature and progenitor cell types. The RSEC clusters
were used as a starting point to identify the lineage trajectories that produce the major cell types in the OE.

Here, we independently run the entire RSEC workflow on the OE dataset with the function RSEC, which
implements our preferred pipeline of subsampling and sequential detection of clusters across many parameter
choices. We follow [23] in preprocessing the data, including filtering poor quality cells and lowly-expressed
genes (see Supplementary Text, Section S-7). However, note that some of the options of RSEC differ from
those used in the original article; in particular, we run far more clusterings than a typical use case in order
to demonstrate the various parameters that can be varied. The following parameters were varied in the
clusterMany step: the number of dimensions used for principal component analysis (PCA), the required
similarity (α) from clustering of the D matrix from the subsampling step, the required stability of clusters in
the sequential step (β), the starting number of clusters (k0) in the sequential search for stable clusters, and
the minimum cluster size (see Table 1). This resulted in 432 separate clusterings.

We visualize the clustering results from the clusterMany step using the function plotClusters in Fig 1a.
We observe that the many different clusterings from the clusterMany step generally create similar clusters
for the vast majority of the cells, while there exist fewer cells that are noisily assigned to different clusters as
the parameters change in different clusterings. This pattern, typical for single-cell sequencing data when
making use of both the subsampling and sequential steps, demonstrates the robustness provided by these
approaches.
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We can visualize how stable different cells were in their clusterings with a heatmap of the co-occurrence
matrix (Fig. 1b): each entry of the matrix corresponds to the proportion of clusterings in which a pair of
samples was clustered together. We can see strong blocks of cells that are almost always clustered together.
We also note that the underlying similarity between the clusterings, despite large changes in tuning parameters,
also makes the use of consensus across these clustering a logical choice.

This co-occurrence matrix forms the basis for creating a consensus between the different clusterings using
the function combineMany, shown in Fig 1a. We can see that not all of the cells are assigned to a cluster by
combineMany. These are samples that are either not consistently co-clustered with other samples across the
different clusterings or are unassigned in a high percentage of the clusterings.

We further merge together similar clusters from the consensus clustering using mergeClusters, as
described in Section 2.2.3. Specifically, mergeClusters creates a hierarchy between clusters and scores
each node based on the percentage of genes showing differential expression between samples in the children
nodes. Fig 1c visualizes the hierarchy found by combineMany as well as which clusters were merged by
mergeClusters. We use a simple measure to estimate the proportion of genes that are differentially expressed
between children node: the proportion of genes called significant at nominal level 0.05 based on the Benjamini
and Hochberg [ADD REF] procedure for controlling the false discovery rate (FDR); a comparison of the
different implemented methods are shown in Supplementary Fig S1b.

We would also note that clusterExperimentmakes it easy to switch from the merged clusters back to the
consensus clusters found by combineMany, effectively allowing the user to explore the data at two different
levels of resolution.

We finally use the function getBestFeatures to find genes that show strong differences in expression
between clusters. For each gene, we compute DE statistics for contrasts based on the hierarchy of the tree, as
well as a global F -statistic. The heatmaps for the top DE genes resulting from both of these approaches
are shown in Fig 2 and illustrate that differences between the clusters are much more striking with the
hierarchical contrasts, as compared to a global F -statistic.

Fig 2 also demonstrates clusterExperiment’s heatmap function, plotHeatmap, that seamlessly incorpo-
rates the clustering information into the heatmap visualization. The function automatically adds the cluster
identifications of individual cells to the heatmap, but also makes use of the hierarchy that is created between
the clusters (Fig. 1c). In this way, the cluster structure will be respected in the ordering of the samples,
unlike a standard hierarchical clustering of the cells, yet ensures that similar clusters will be plotted close to
each other rather than in an arbitrary order.

Other Comparisons via clusterExperiment. We can also use the clusterExperimentpackage for
straightforward implementation and comparison of specific clustering algorithms and parameters; the
ClusterExperiment framework makes it easy to store and compare the results. Fig 3 shows several such
examples of comparisons available in clusterExperiment: varying the choice of K for partitions around
medoids (PAM), comparing 4 standard clustering functions, and comparing choices of how to calculate
distances between genes. All of these different choices can be made by a choice of arguments to clusterMany.

Computational Cost. The RSEC analysis described above performed 432 clusterings on 747 samples,
where each clustering consisted of an iterative sequential analysis, each iteration of the sequential clustering
involved 100 clusterings of subsamples of the data, and each base clustering used 10 random restarts of
the k-means algorithm. This analysis required a total of 4.1 hours to compute when parallelized across
32 cores on a AMD Opteron(TM) Processor 6272 node with 270GB of RAM, for a total of 106.0 hours of
CPU time across all processes. The maximum amount of total combined memory across the 32 cores was
142G. This computation used the default implementation in the clusterExperimentpackage, which stores
in memory an n × n matrix from each of the 100 subsamples, where n is the number of samples, which
can result in large memory usage for the larger datasets which are now common in single-cell sequencing.
The clusterExperimentpackage also provides an option to run the analysis with a more efficient memory
usage for the subsampling, which results in corresponding increase in compute time (see Supplementary Text,
Section S-2.1). For the OE dataset, choosing this option reduced the maximal memory usage by almost half
(to 79G) and required 2,014 CPU hours to compute (again these numbers are reported as totals across the
parallelization to 32 cores).
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We would note that this a much larger number of clusterings that would often be performed in practice.
Particularly, for very large single-cell sequencing studies, fewer than 50 clusterings would normally be sufficient
given the computational costs.

4 Conclusion

We have demonstrated the use of a new software framework for clustering and visualizing large gene expression
datasets, in particular, single-cell RNA-Seq datasets. The clusterExperimentpackage implements a wide
range of clustering routines appropriate for this type of data, as well as encoding a novel workflow strategy
that emphasizes robust clustering. The entire workflow is flexible and extendable by the user to other
clustering routines. Furthermore, users can create clusterings externally from the package functions and
upload the clustering results to a ClusterExperiment object to make use of the visualization and comparisons
capabilities of the package.

The package clusterExperimentis publicly available through the Bioconductor Project, with a detailed
manual (vignette) as well as well documented help pages for each function. The code for implementing all of
the analyses shown here is available on the GitHub repository: www.github.com/epurdom/RSECPaper. The
analysis in this paper was run using the clusterExperimentpackage version 1.99.0, R version 3.4.3, and
Bioconductor 3.6.

Supporting Information

S1 Supplementary.pdf S1 Text.pdf Supplemental text giving a more detailed description of the RSEC
framework and its implementation, as well as information about the processing of the OE dataset.
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(a) clusterMany (b) combineMany

(c) makeDendrogram and mergeClusters

Fig 1. Main steps of RSEC workflow, demonstrated on the olfactory epithelium dataset. (a) The
clusterMany step produces many clusterings from the different combinations of algorithms and tuning
parameters. These clusterings are displayed using the plotClusters function. Each column of the plot
corresponds to a sample and each row to a clustering from the clusterMany step. The samples in each row
are color-coded by their cluster assignment in that clustering; samples that are not assigned to a cluster are
left white. The colors across different clusterings (rows) are assigned so as to have similar colors for clusters
with similar samples across clusterings. The consensus clustering obtained from the combineMany step is also
shown below the individual clusterings. (b) The combineMany step finds a consensus clustering across the
clusterMany clusterings based on the co-occurrence of samples in these clusterings. The heatmap of the
matrix of co-occurrence proportions is plotted using the plotCoClustering function. The resulting cluster
assignments from combineMany are color-coded above the matrix, as are the assignments from the next step,
mergeClusters. (c) The makeDendrogram step creates a hierarchy between the consensus clusters and then
similar clusters in sister nodes are merged with mergeClusters. Plotted here with the function
plotDendrogram is the hierarchy of the clusters from makeDendrogram, with merged nodes indicated with
dashed lines. The combineMany clusters and resulting mergeClusters clusters are indicated as color-coded
blocks on the right of the dendrogram, sized according to the number of samples in the clusters. The
estimated proportions of DE genes of each node are shown in Supplementary Fig S1b.

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 12, 2018. ; https://doi.org/10.1101/280545doi: bioRxiv preprint 

https://doi.org/10.1101/280545


(a) Top genes, F -statistic (b) Top genes, hierarchical contrasts

Fig 2. Biomarker detection, demonstrated on the olfactory epithelium dataset. Heatmap from the
plotHeatmap function showing genes found differentially expressed (DE) between clusters by the function
getBestFeatures, using both the global F -statistic (a) and hierarchical contrasts (b) options. Each of the
contrasts in (b) corresponds to nodes in the dendrogram color-coded as in Fig 1c; we retained only the top 50
DE genes per node. Genes found DE in multiple contrasts may be plotted multiple times. For comparison
purposes, in (a), we retained the top 256 DE genes according to a global F -statistic, where 256 is the number
of unique genes shown for the hierarchical contrasts in (b).
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(a) PAM, different K (b) Different clustering methods

(c) Different distance functions

Fig 3. Comparison of methods and tuning parameter choices using clusterMany and plotClusters,
demonstrated on the olfactory epithelium dataset. The figure provides examples of using
clusterExperimentto compare clustering methods and tuning parameter choices via the function
clusterMany to implement the clustering procedures and the function plotClusters to visualize results. (a)
shows the clustering results after running PAM with different choices of K, the number of clusters. (b) shows
the clustering results for different choices of clustering method. Each method is shown with the “best” choice
of K, as determined by the maximum average silhouette width. (c) shows the clustering results for different
between-sample distance measures. ‘Euclidean’ refers to the standard Euclidean distance; ‘Pearson Corr.’
and ‘Spearman’s Rho’ to a correlation-based distance, d(i, j) = 1/2(1 − ρ(i, j)), where ρ(i, j) is either the
standard Pearson correlation coefficient or the robust Spearman rank correlation coefficient between samples
i and j, respectively. The clusterings in (a) and (b) were run with the top 50 PCA dimensions as input. The
clusterings in (c) involve comparing different between-gene distance measures and therefore were run directly
on the gene expression measures after filtering to the top 1,000 most variable genes, as determined by the
median absolute deviation (MAD), a robust version of variance.

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 12, 2018. ; https://doi.org/10.1101/280545doi: bioRxiv preprint 

https://doi.org/10.1101/280545

	Introduction
	Design and Implementation
	RSEC Workflow
	Clustering Procedures
	Generating Many Clusterings (clusterMany):
	Creating a Consensus Clustering (combineMany):
	Merging Clusters Based on a Cluster Hierarchy (mergeClusters):

	Biomarker Detection
	Visualization

	Results
	Conclusion

