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GHs from C. proteolyticus could be expressed and bind the complementary cohesin modules 504 

produced by C. thermocellum.  505 

 506 

C. proteolyticus expresses CAZymes and is implicit in polysaccharide degradation within 507 

the SEM1b consortium 508 

To better understand the role(s) played by C. proteolyticus in a saccharolytic consortium, a 509 

temporal metatranscriptomic analyses of SEM1b over a complete life cycle was performed. 510 

16S rRNA gene analysis of eight time points (T1-8) over a 43hr period reaffirmed that C. 511 

thermocellum- and C. proteolyticus-affiliated populations dominate SEM1b over time (Figure 512 

4A). Highly similar genes from different MAGs/genomes were grouped together in order to 513 

obtain “expression groups” with discernable expression profiles (see Methods and Figure 514 

S1A/B). A total of 408 singleton CAZyme expression groups and 13 multiple ORF groups 515 

were collectively detected in the two C. proteolyticus strains and MAGs suspected of 516 

contributing to polysaccharide degradation (RCLO1, CLOS1, COPR1-3, and TISS1, Figure 517 

S1D, Table S6). In several instances, expressed CAZymes from BWF2A and SW3C could be 518 

distinguished from their original sources (i.e. C. thermocellum and/or F. nodosum), but could 519 

not be resolved between the two strains and/or the COPR1 MAG. For example, all GHs within 520 

region-A could be identified as expressed by at least one of the isolated strains but could not 521 

be resolved further between the strains. In contrast, the GH9-doc and GH8-doc ORFs were 522 

unambiguously expressed and could not be resolved between BWF2A and SW3C and the 523 

RCLO1 MAG, whereas GH8, GH18 and CBM3 ORFs were expressed by at least one of the C. 524 

proteolyticus strains but could not be resolved further.  525 

 526 

From the CAZymes subset of expression groups, a cluster analysis was performed to reveal 527 

eight expression clusters (I-VIII, Figure 4B). Clusters I and II comprised 13 and 10 528 

expression groups (respectively) and followed a similar profile over time (Figure 4C), 529 

increasing at earlier stages (T2-3) and again at later stationary/death stages (T6-8). Both 530 

clusters were enriched for C. proteolyticus-affiliated MAGs and isolated strains and 531 

predominately consisted of CAZymes targeting linkages associated with N-532 

acetylglucosamine (CE9, CE14), peptidoglycan (GH23, GH18, GH73) and chitosan (GH8), 533 

suggesting a role in bacterial cell wall hydrolysis (Table S6). This hypothesis was supported 534 
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by 16S rRNA gene data, which illustrated that C. proteolyticus-affiliated populations (OTU2) 535 

were high at initial stages of the SEM1b life-cycle when cell debris was likely present in the 536 

inoculum that was sourced from the preceding culture at stationary phase (Figure 4A). At 537 

T2, the abundance of C. thermocellum-affiliated populations (OTU-1) was observed to 538 

outrank C. proteolyticus as the community predictably shifted to cellulose-utilization. 539 

However, towards stationary phase (T6-8) when dead cell debris is expected to be 540 

increasing, expression levels in clusters I and II were maintained at high levels (Figure 4B), 541 

which was consistent with high C. proteolyticus 16S rRNA gene abundance at the same time-542 

points. 543 

 544 

Cluster IV, which was the second largest with 161 expression groups, was enriched with the 545 

RCLO1 MAG that was closely related to C. thermocellum. As expected, numerous expressed 546 

genes in cluster IV were inferred in cellulosome assembly (via cohesin and dockerin 547 

domains) as well as cellulose (e.g. GH5, GH9, GH44, GH48, CBM3) and hemicellulose (e.g. 548 

GH10, GH26, GH43, GH74) hydrolysis (Table S6). This cluster was increasing throughout the 549 

consortium’s exponential phase (time points T1-4, Figure 4A), whilst 16S rRNA data also 550 

shows C. thermocellum-affiliated populations at high levels during the same stages (Figure 551 

4A). Interestingly, the BWF2A and SW3C GH18-doc was also found in cluster IV. A GH9-doc 552 

and GH8-doc encoded in BWF2A and SW3C were also expressed, however they exhibited 99-553 

100% identity to C. thermocellum representatives (Table S5) and formed expression groups 554 

without unique hits, hence they were not part of the clustering (Table S6). Since 555 

cellulosomal genes are seemingly expressed collectively in order to facilitate coordinated 556 

assembly, finding the GH18 in the same cluster is not overly surprising. However, the fact 557 

that the gene is expressed by a different bacterium to the one creating the bulk of the 558 

cellulosome machinery (i.e. RCLO1) makes it extremely interesting and supports the 559 

possibility that “multi-species” cellulosomes putatively exist. Although species-specific high-560 

affinity cohesin-dockerin interactions are required for cellulosome assembly (Pagès et al., 561 

1997), the C. thermocellum-origin and high homology of the C. proteolyticus GH18 gene lends 562 

itself to the hypothesis that once expressed, the GH18 will bind to a RCLO1 cohesin domain 563 

and be part of the resulting cellulosomes. Obviously, much more experimental validation is 564 
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required to confirm physical interactions between C. proteolyticus GH-doc representatives 565 

and cellulosome assemblies.  566 

 567 

 568 

Figure 4. Temporal meta-analysis of the SEM1b consortium. (A) 16S rRNA gene amplicon and metadata 569 

analysis was performed over a 43-hour period, which was segmented into 9 time-points. OTU IDs are detailed 570 

in Table S2. Cellulose degradation rate, monosaccharide accumulation and growth rate (estimated by total 571 

protein concentration) is presented. (B) Gene expression dendrogram and clustering of CAZymes from BWF2A, 572 

SW3C and MAGs: RCLO1, CLOS1, COPR1-3, and TISS1. Eight expression clusters (I-VIII) are displayed in 573 

different colors on the outer ring. (C) Clusters I-VIII show characteristic behaviors over time summarized by 574 

the median (solid line) and the shaded area between the first and third quartile of the standardized expression. 575 

Bacteria that are statistically enriched (p-value < 0.01) in the clusters are displayed in the subpanels.  576 

 577 

ORFs from both BWF2A and SW3C as well as CLOS1 were enriched in cluster VI, which was 578 

determined as the largest with 193 expression groups. CLOS1 in particular expressed many 579 
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genes involved in hemicellulose deconstruction (e.g. GH3, GH5, GH10, GH29, GH31, GH43 580 

and GH130) and carbohydrate deacetylation (e.g. CE1, CE4, CE7, CE9, CE12) (Table S6). 581 

Expressed cluster VI genes from C. proteolyticus -affiliated genomes/MAGs were also 582 

inferred in hemicellulose-degradation, including GH3, GH16, GH74, CE1, CE4, CE9 and CE10 583 

(Table S6). In particular, the GH16 and GH3-encoding ORFs from region-A within BWF2A 584 

and SW3C were detected in cluster VI, which reaffirms our earlier predictions that certain C. 585 

proteolyticus populations in SEM1b are capable of degrading hemicellulosic substrates. The 586 

expression profile of cluster VI over time was observed to slightly lag after cluster IV (Figure 587 

4), suggesting that hemicellulases in cluster VI genes are expressed once the hydrolytic 588 

effects of the RCLO1-cellulosome (expressed in cluster IV) have liberated hemicellulosic 589 

substrates (Zverlov et al., 2005b). Although C. thermocellum cannot readily utilize other 590 

carbohydrates besides cellodextrins (Demain et al., 2005), the cellulosome is composed of a 591 

number of hemicellulolytic enzymes such as GH10 endoxylanases, GH26 mannanases and 592 

GH74 xyloglucanases (Zverlov et al., 2005a), which are involved in the deconstruction of the 593 

underlying cellulose-hemicellulose matrix (Zverlov et al., 2005b). Representatives of GH10, 594 

GH26 and GH74 from RCLO1 were all expressed in cluster IV and are presumably acting on 595 

the hemicellulose fraction present in the spruce-derived cellulose (Chylenski et al., 2017). 596 

Furthermore, detection of hydrolysis products (Figure 4A), revealed that xylose increased 597 

significantly at T5-7, indicating that hemicellulosic polymers containing beta-1-4-xylan were 598 

likely available at these stages. In addition to cluster VI, clusters V, VII and VIII also exhibited 599 

expression profiles that gradually increased after the initial peak of cluster IV. These clusters 600 

were all found to contain many enzymes putatively targeting medium and short length 601 

carbohydrate chains, including those derived from xylan sources (Table S6).  602 

 603 

All in all, the SEM1b expression data shows sequential community progression that co-604 

ordinates hydrolysis of cellulose and hemicellulose as well as carbohydrates that are found 605 

in the microbial cell wall.  In particular, C. proteolyticus populations in SEM1b were suspected 606 

to play key roles degrading microbial cell wall carbohydrates as well as hemicellulosic 607 

substrates, possibly in cooperation or in parallel to other clostridium populations at the later 608 

stages of the SEM1b growth cycle. The detection and expression of C. proteolyticus -affiliated 609 
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GH-doc enzymes also raises intriguing questions regarding the possibility of multi-species 610 

cellulosomes and their potential role in saccharolytic consortia. 611 

 612 

CONCLUSIONS 613 

Unraveling the interactions occurring in a complex microbial community composed of 614 

closely related species or strains is an arduous task. Here, we have leveraged culturing 615 

techniques, metagenomics and time-resolved metatranscriptomics to describe a novel C. 616 

proteolyticus population that is comprised of closely related strains that have acquired sets 617 

of CAZymes via HGT and putatively evolved to incorporate a saccharolytic lifestyle. The co-618 

expression patterns of C. proteolyticus CAZymes in clusters I and II supports the adaptable 619 

role of this bacterium as a scavenger that is able to hydrolyze cell wall polysaccharides 620 

during initial phases of growth and in the stationary / death phase, when available sugars 621 

are low. Moreover, the acquisition of hemicellulases by C. proteolyticus, and their expression 622 

in cluster VI at time points when hemicellulose is available, further enhances its metabolic 623 

versatility and provides substantial evidence as to why this population dominates 624 

thermophilic reactors on a global scale, even when substrates are poor in protein. 625 
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