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Our understanding of collective animal behavior is limited by our ability to track each
of the individuals. We describe an algorithm and software, idtracker.ai, that extracts from
video all trajectories with correct identities at a high accuracy for collectives of up to 100
individuals. It uses two deep networks, one detecting when animals touch or cross and an-
other one for animal identi�cation, trained adaptively to conditions and di�culty of the
video.

Obtaining animal trajectories from a video faces the problem of how to track animals with cor-

rect identities after they touch, cross or they are occluded by environmental features. To bypass this

problem, we proposed in idTracker the idea of tracking by identi�cation of each individual using a

set of reference images obtained from the video [1]. idTracker and further developments in animal

identi�cation algorithms [2–6] can work for small groups of 2-15 individuals. In larger groups, they

only work for particular videos with few animal crossings [7] or with few crossings of particular

species-speci�c features [5].

Here we present idtracker.ai, a system to track all individuals in small or large collectives (up to

100 individuals) at a high identi�cation accuracy, often of > 99.9%. The method is species-agnostic

and we have tested it in small and large collectives of zebra�sh, Danio rerio and �ies, Drosophila
melanogaster. Code, quickstart guide and data used are provided (seeMethods), and Supplementary
Text describes algorithms and gives pseudocode. A graphical user interface walks users through

tracking, exploration and validation (Fig. 1a).

Similar to idTracker [1], but with di�erent algorithms, idtracker.ai identi�es animals using their

visual features. In idtracker.ai, animal identi�cation is done adapting deep learning [8–10] to work in

videos of animal collectives thanks to speci�c training protocols. In brief, it consists of a series of

processing steps summarized in Fig. 1b. After image preprocessing, the �rst deep network �nds

when animals are touching or crossing. Then the system uses the images between these detected to

train a second deep network for animal identi�cation. The system �rst assumes that a single portion

of video when animals do not touch or cross has enough images to properly train the identi�cation

network (Protocol 1). However, animals touch or cross often and this portion is then typically very

short, making the system estimate that identi�cation quality is too low. If this happens, two extra
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Protocols (Protocols 2 and 3) are dedicated to safely accumulate enough images of each animal using

several of these portions of video and build a larger training set. After training and assignation

of identities, some postprocessing is performed to output the trajectories and an estimation of

identi�cation accuracy.

In the following we give more details of the processing steps. The preprocessing extracts blobs,

areas of each video frame corresponding to either a single animal, or to several animals that are

touching or crossing, i.e. ‘crossings’. Then, it orients the blobs using their axes of maximum elongation

(Fig. 1c). This procedure leaves the animal pointing in one of two possible orientations. We solve

this ambiguity by training with both upright and 180-degrees rotated images. This method is valid

for any elongated animal and is preferred to species-speci�c methods.

The deep crossing detector network �nds whether each preprocessed image corresponds to a

single animal or a crossing (Fig. 1d; details of network architecture in Supplementary Table 1).

idtracker.ai trains this network using images that con�dently classi�es as single animals or crossings

(see Supplementary Text for heuristics used). Once trained, it classi�es all blobs as single animals

or crossings. We depict these detected crossings as small black segments in Fig. 1g.

The deep identi�cation network is then used to identify each individual between two crossings (Fig.
1e; Supplementary Table 1 for details of network architecture). We measured the identi�cation

capacity of this network using 184 single-animal videos, with 300 pixels per animal on average. The

advantage of single-animal videos is that we obtain a very large number of images per animal. Out of

the 18, 000 images per animal we randomly selected 3, 000 for training. Testing it in 300 new images

gave a > 95% single-image accuracy up to 150 animals (Fig. 1f; see Supplementary Fig. 2 for

experimental set-up, Supplementary Fig. 1 for results using alternative architectures detailed in

Supplementary Tables 2-3). In contrast, idTracker degrades more quickly down to a value ≈ 83%
for 30 individuals and it is computationally too demanding for larger groups.

In videos of collective animal behavior, however, we lack direct access to 3, 000 images per animal

to train the identi�cation network. Instead, we use a cascade of three protocols that obtains the

training images di�erently depending on the di�culty of the video (Fig. 1b, cascade of training

protocols; see Supplementary Figures 3-4 for setups of video acquisition in zebra�sh, and �ies,

respectively).

Protocol 1 starts by �nding all intervals of the video where all the animals are detected as separated

from each other. To each interval, for each animal we add images up to the next crossing from future

frames, and images up to the immediate previous crossing from past frames. We call global fragments
these extended intervals, which can contain di�erent number of images per animal. Among all

the global fragments, the system then chooses the one in which the animal traveling the shortest

distance travels more (Fig. 1g, Step 1, colors indicate each of the 100 individuals in the collective).

The system uses this global fragment to train the identi�cation network. Once trained, the network

assigns identities in all the remaining global fragments.

Afterwards, the system evaluates the quality of the assigned global fragments. It eliminates: 1.

global fragments with an estimated identi�cation accuracy below some threshold, 2. those with

identi�cations inconsistent with already assigned global fragments, and 3. those where the same

identity has been assigned to several animals. If the remaining high-quality global fragments (Fig.
1g, Step 2) cover < 99.95% of the images in global fragments, then Protocol 1 failed and Protocol 2

starts, as in our example.

Protocol 2 starts by training the network with the high-quality global fragments found in Protocol

1. This network is then used to assign the remaining global fragments again, selecting those passing

our three-steps quality check. This procedure iterates until we have at least 50% of images assigned.

From this point on, the system runs the accumulation as before, alternating it with the following

extension. Single-animal fragments belonging to an unsuitable global fragment are accumulated if

they are certain enough, are consistent with fragments already accumulated and do not introduce

identity duplications. Accumulation continues until no more acceptable global fragments remain
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or 99.95% of the images from global fragments have survived the quality check. After this point,

if > 90% of the of the images in global fragments have been accumulated, then Protocol 2 ends

successfully. In our example, Protocol 2 stops the accumulation at the 9th step (Fig. 1g, Step 9).

Afterwards, the remaining images are assigned using the �nal network (see higher transparency

segments in the close-up given in Fig. 1h).

The system then estimates identi�cation accuracy using a conservative Bayesian framework

(Supplementary Fig. 5), 99.95% in our example (Fig. 1i, top). Human validation of 3, 000 sequential

video frames, by revising 680 crossings, gave 99.997% (Fig. 1i, bottom). An identi�cation accuracy

of 100% was obtained with the alternative method of following 10 random animals throughout the

video.

A post-processing step obtains animal images by iterative image erosion and assigns them with a

heuristic (Fig. 1j; Supplementary Text). Human validation gives an accuracy of 99.988% for the

�nal assignments, including images between crossings and during crossings.

If Protocol 2 fails, Protocol 3 starts training the convolutional part of the identi�cation net-

work using most of the global fragments. Then, it proceeds as Protocol 2 but always keeping the

convolutional layers �xed.

We have tested idtracker.ai in small and large animal collectives (Supplementary Tables 4 and

5, respectively). In zebra�sh, Protocol 2 was always successful, giving accuracies of 99.96 (mean)

±0.06 (std) for 60 individuals and 99.99 (mean) ±0.01 (std) for 100 individuals. Importantly, of the

remaining 0.01% in videos of 100 animals only 0.003% is isolated frames with assignment error

and 0.007% is short non-assigned segments. In �ies, Protocol 2 succeeded for a collective of 38
individuals with 99.98% accuracy. For larger groups, Protocol 3 was successful. For 72 �ies the

accuracy is 99.997%. For 80− 100 �ies the system reaches its limit, still with > 99.5% accuracy.

We also studied how performance depends on the number of images between crossings. We built

synthetic global fragments obtained from individual videos of 184 individual zebra�sh (Supplementary
Fig. 2). We found that the system reaches high accuracy provided there is at least one global fragment

with more than 30 images per animal, but it can still be successful with fewer (Supplementary Fig.
6, empty markers). Recorded collectives of up to 100 zebra�sh follow this condition by a large margin

(Supplementary Fig. 6, green dots). Flies also meet this condition except at very low locomotor

activity levels here obtained in a low humidity setup (Supplementary Fig. 6, purple dots). Also note

that conditions for video acquisition should ideally allow for a high image quality (Supplementary
Text), but idtracker.ai seems more robust than idTracker when some of these conditions are not met

(Supplementary Table 6).

Note: Supplementary Information is available

Authors declare no con�ict of interest exists
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Figure 1: Tracking by identi�cation in idtracker.ai. a. Graphical user interface to track, explore and

validate. b. Diagram of processing �ow. c. Preprocessing to segment single animal and multi-animal blobs

from background. d. Deep crossing detector network is trained with examples of preprocessed single and

multi-animal images. Consists of two convolutional layers (gray blocks), a max-pool operation (orange block),

a hidden layer of 100 neurons (green line) and 2 output neurons to classify images into single animal/crossing.

e. Deep identi�cation network is similar to d. but with 3 convolutional layers and as many output neurons as

group size. f. Single-image accuracy as function of animal group size in original idTracker and in idtracker.ai

after training with 3, 000 images per animal. g. Accumulation of training images in a video of 100 zebra�sh of

31 dpf. Small horizontal black segments correspond to crossings detected by the crossing detector network

in d. Step 1: global fragment (portion of video in which animals do not touch or cross) with the animal that

moves less having the longest distance traveled. It trains the identi�cation network, which in turn assigns the

other global fragments, of which our quality check procedure selects a high quality subgroup (Step 2). If it

does not cover enough of video, it moves to Protocol 2. Iterative training and quality checks end here in Step 9.

h. Residual identi�cation with �nal network plotted as short segments in lower transparency colors. Here

shown a zoom into the region between dashed lines in g. Small segments in white are non-assigned at this

step i. Estimated (top) and manually validated (bottom) accuracies. j. Postprocessing assigns crossings and

small non-assigned (white) segments in h.
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Methods

Software availability
idtracker.ai is open-source and free software (license GPL v.3). The source-code as well as the instruc-

tions for its installation are available in www.gitlab.com/polavieja_lab/idtrackerai. A quick-start user

guide and a detailed explanation of the graphical user interface can be found in www.idtracker.ai.

Data availability
All videos used in this study can be downloaded from www.idtracker.ai. A library of single-individual

images of zebra�sh to test identi�cation methods can be found in the same link. Two example

videos, one of 8 adult zebra�sh and another of 100 juvenile zebra�sh, are also included as part of the

quick-start user guide.

Computers
We tracked all the videos with desktop computers running GNU/Linux Mint 18.1 64bit (processor

Intel Core i7-6800K or i7-7700K, 32 or 128 GB RAM, Titan X or GTX 1080 Ti GPU’s, and 1 Tb SSD

disk). Sample videos can be tracked using CPU but the performance of the system will be highly

a�ected.

Animal rearing and handling
All �sh were raised at the Champalimaud Foundation Fish Platform, according to the housing and

husbandry methods integrated in the zebra�sh welfare program fully described in [11]. Animal

handling and experimental procedures were approved by the Champalimaud Foundation Ethics

Committee and the Portuguese Direcção Geral Veterinária and were performed according to the

European Directive 2010/63/EU. For zebra�sh videos we used the wild-type TU strain at 31 days post

fertilization (dpf). Animals were kept in 8 L holding tanks at a density of 10 �sh/L and a 14 h light
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/ 10 h dark cycle in the main �sh facility. For each experiment, a holding tank with the necessary

number of �sh was transported to the experimental room, where �sh were carefully transferred to

the experimental arena using a standard �sh net appropriate for their age.

For the fruit �y videos we used adults from the Canton S wild-type strain at 2-4 days post-eclosion.

Animals were reared on a standard �y medium and kept on a 12-h light-dark cycle at 28◦. Flies were

placed in the arena either by anesthetizing them with CO2 or ice, or by using a suction tube. We

found the last method to have the least negative e�ect on the �ies’ health and to provide better

activity levels.

Details of the networks
Network architectures

The deep crossing detector network (Fig. 1d) is a convolutional neural network [8, 10]. It has 2

convolutional layers that obtain from data a relevant hierarchy of �lters. A hidden layer of 100

neurons then transforms the convolutional output into a classi�cation into single animal or crossing.

idtracker.ai trains this network using images that can con�dently characterize as single or as multiple

animals (for example, single animals as blobs of area consistent with single-animal statistics and

not splitting into more blobs in its past or future). Further details of the architecture are given in

Supplementary Table 1.

The architecture of the identi�cation network (Fig. 1e) consists of 3 convolutional layers, a hidden

layer of 100 neurons and a classi�cation layer with as many classes as animals in the collective.

Further details are given in Supplementary Table 1. We tested variations of the architecture

either by modifying the number of convolutional layers Supplementary Table 2 or the number

of hidden layer neurons Supplementary Table 3. Analysis of these networks indicated that the

most important feature for a successful identi�cation is that the convolutional part needs at least two

layers (Supplementary Fig. 1). The GUI allows users to modify the architecture of this network

and its training hyperparameters.

Network training

The convolutional and fully-connected layers of both networks are initialised using Xavier initialisa-

tion [12]. Biases are initialised to 0.

The deep crossing detector network is trained using the algorithm and hyperparameters in [13].

The learning rate is set at the initial value of 0.005. This network is trained in mini batches of 100
images.

The identi�cation network is trained using stochastic gradient descent, setting the learning rate

to 0.005. This network is trained in mini batches of 500 images. Further details are given in the

Supplementary Text.
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Supplementary Figure 1: Single image identi�cation accuracy for di�erent group sizes and di�erent
variations of the identi�cation network. Each network is trained from scratch using 3000 temporally

uncorrelated images per animal (90% for training and 10% for validation) and then tested with 300 new

temporally uncorrelated images to compute the single image identi�cation accuracy (see section D.4.2). We

train and test each network �ve times. For every repetition the individuals of the group and the images of

each individual are selected randomly. Images are extracted from videos of 184 di�erent animals recorded in

isolation (see Supplementary Figure 2). Colored lines with markers represent single image accuracies (mean ±
std., N = 5) for networks architectures with di�erent number of convolutional layers (a, see Supplementary

Table 2 for the architectures) and di�erent size and number of fully connected layers (b, see Supplementary

Table 2 for the architectures). The black solid line with diamond markers shows the accuracy for the network

used to identify images in idtracker.ai (see Supplementary Table 1, Identi�cation convolutional neural network).
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Supplementary Figure 2: Creating the training dataset of individual images. a. Holding grid used

to record 184 juvenile zebra�sh (TU strain, 31dpf) in separated chambers (60 mm diameter Petri dishes).

Transparent acrylic walls allowed for equal spacing between arenas, while granting visual access to the

neighbouring dishes. To enhance the contrast, we used a white acrylic �oor placed at a distance of 5 cm from

the holding grid, acting as a light di�user the �oor impede the formation of shadows. See Supplementary

Figure 3 for an explanation of the other components of the setup. b. Four individuals at a time were recorded

for 10 minutes (green circles). On the outer borders we placed additional dishes with �sh to act as social stimuli

(purple circles). c. From these videos, images were labelled according to the individual they represented. Each

image was preprocessed following the procedure detailed in section D.4.2, and then cropped as a square image,

in order to be used to test the identi�cation network (image size 52× 52px). The dataset is composed by a

total of ≈ 3312000 uncompressed, grayscale labelled images.
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Supplementary Figure 3: Experimental setup to recording zebra�sh videos. a. We built a setup to

obtain high image quality zebra�sh videos. A main tank with a water recirculating system equipped with

a �lter and a chiller ensures a constant water temperature of 28◦ C. The tank is placed inside a box built

with matte white acrylic walls with a door to allow for an easy access and manipulation of the setup. b.
The lighting is based on infrared and RBG LED strips. Homogeneous illumination in the central part of the

main tank is obtained by using a cylindrical retractable light di�user made of plastic. A 20 MP monochrome

camera (Emergent Vision HT-20000M) with a 28 mm lens (ZEISS Distagon T* 28 mm f/2.0 Lens with ZF.2)

was positioned at ≈ 70 cm from the surface of the arena. To prevent re�ections of the room ceiling, a black

fabric was used to cover the top of the box. c. We used this setup to record videos of zebra�sh in groups and

isolation (see Supplementary Figure 2 for details on the isolation conditions). The videos of groups of 10, 60
and 100 �sh were recorded in a custom-made one-piece circular tank of 70 cm of diameter. The tank was �lled

up with �sh system water (28◦ C) up to 2.5 cm from the bottom. The circular tank was held in contact with

the water of the main tank at a distance of ≈ 10 cm from a white background to improve the contrast between

the animals and the background. d. Sample frame from a video of 60 animals.
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Supplementary Figure 4: Experimental setup to record fruit �ies videos. a. The setup was placed in

a dedicated experimental room with controlled humidity (60%) and temperature (25◦ C). The illumination

consisted of RBG and IR LEDs placed on a ring around a cylindrical light di�user to guarantee homogeneous

light conditions in the central part of the setup. b. Videos were recorded using a 20 MP monochrome camera

(Emergent Vision HT-20000M) with a 28 mm lens (ZEISS Distagon T* 28 mm f/2.0 Lens with ZF.2) positioned

at ≈ 20 cm above the arena. Black cardboard around the camera helped to reduce re�ections of the ceiling in

the glass covering the arena. c. We used two di�erent arenas made of transparent acrylic, both built to prevent

animals from walking on the walls: Arena 1 (diameter 19cm, height 3mm) had vertical walls which were heated

using a white insulated resistance wire (Pelican Wire Company, 28 AWG Solid (0.0126”), Nichrome 60, 4.4
Ohms/ft, 0.015” White TFE Tape). At 10 V, 0.3 A the temperature at the walls reached 37◦ C. Arena 2 (diameter

19 cm, height 3.4 mm) had conical walls (angle of inclination: 11◦, width of conical ring: 18 mm). Best results

were obtained by recording �ies from a top view as is the standard for fruit �ies (see Supplementary Table 5).

Arena 1 was also used for bottom view recordings, where the camera was placed below the arena, pointing

upward. The top of the arena consisted of a sheet of glass covered with Sigmacote SL2 (Sigma-Aldrich) which

prevented the �ies from walking upside down on the ceiling. A white plastic sheet was put below the arena to

increase the contrast between �ies and background, and the arena was separated 5 cm from this background

in order to eliminate shadows. d. Sample frame from a 100 �ies video. Flies were placed in the arena either by

anaesthetising them with CO2, ice, or by using a suction tube. We found the last method to have the least

negative e�ect on the �ies’ health and provide better activity levels.
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Supplementary Figure 5: Automatic estimation of identi�cation accuracy. Comparison between the

accuracy estimated automatically by idtracker.ai (see section D.7.1) and the accuracy computed by human

validation of the videos (see section E.1). The estimated accuracy is computed over the validated portion of the

video. Blue dots represent the videos in Supplementary Table 4, Supplementary Table 5, and Supplementary

Table 6.
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Supplementary Figure 6: Accuracy as a function of the minimum number of images in the �rst
global fragment used for training. To study the e�ect of the minimum number of images per individual in

the �rst global fragment used to train the identi�cation network, we created synthetic videos using images of

184 individuals recorded in isolation (see Supplementary Figure 2). Each synthetic video consists of 10000
frames, where the number of images in every individual fragment was drawn from a gamma distribution

and the crossings fragments lasted for three frames (see section D.3). The parameters were set as follows:

θ = [2000, 1000, 500, 250, 100], k = [0.5, 0.35, 0.25, 0.15, 0.05], number of individual = [10, 60, 100]. For

every combination of these parameters we ran three repetitions. In total, we computed both the training and
identi�cation protocol cascade (see section D.4) and the residual identi�cation (see section D.5) for 225 synthetic

videos. a. Identi�cation accuracy for simulated (empty markers) and real videos (colour markers) as a function

of the minimum number of images in the �rst global fragment. The number next to each colour markers

indicates the number of animals in the video. The accuracy of the real videos is obtained by manual validation

(see Supplementary Table 5, Supplementary Table 4, and Supplementary Table 6). In some videos, animals

are almost immobile for long periods of time. Potentially, the individual fragments acquired during these

periods encode less information useful to identify the animals. To account for this, we corrected the number of

images in the individual fragments by only considering frames where the animals were moving with a speed

of at least 0.75 BL/s (body lengths per second). We observe that idtracker.ai is more likely to have higher

accuracy when the minimum number of images in the �rst global fragment used for training is above 30. b.
Distributions of the number of images per individual fragments for real videos of zebra�sh and their �ts to a

gamma distribution. c. Distributions of speeds of zebra�sh and fruit �ies videos.
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B Supplementary tables

Supplementary Table 1: Convolutional neural networks used in idtracker.ai. The deep cross-

ing detector network is used to classify images as belonging to a single animal or to multiple animals

crossing or touching. The identi�cation convolutional neural network (idCNN) is used to identify

individual images.

Deep crossing detector (DCD)
Layer operation number of units kernel size stride
1 convolution - ReLu 16 (5,5) 1

2 max pooling - - (2,2)

3 convolution - ReLu 64 (5,5) 1

4 max pooling - - (2,2)

5 fully connected - ReLu 100 - -

6 fully connected - softmax 2 - -

Identi�cation convolutional neural network (idCNN)
Layer operation number of units kernel size stride
1 convolution - ReLu 16 (5,5) 1

2 max pooling - - (2,2)

3 convolution - ReLu 64 (5,5) 1

4 max pooling - - (2,2)

5 convolution - ReLu 100 (5,5) 1

6 fully connected - ReLu 100 - -

7 fully connected - softmax group size - -
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Supplementary Table 2: Architectures with variations in the number of convolutional lay-
ers part. Several architectures with variable numbers and shape of convolutional layers has been

tested in order to assess the stability of the accuracy in single-image identi�cation.

1 convolutional layer
Layer operation number of units kernel size stride
1 convolution - ReLu 16 (5,5) 1

2 fully connected - ReLu 100 - -

3 fully connected - softmax group size - -

2 convolutional layers
Layer operation number of units kernel size stride
1 convolution - ReLu 16 (5,5) 1

2 max pooling - - (2,2)

3 convolution - ReLu 64 (5,5) 1

4 fully connected - ReLu 100 - -

5 fully connected - softmax group size - -

4 convolutional layers
Layer operation number of units kernel size stride
1 convolution - ReLu 16 (5,5) 1

2 max pooling - - (2,2)

3 convolution - ReLu 64 (5,5) 1

4 max pooling - - (2,2)

5 convolution - ReLu 100 (5,5) 1

6 max pooling - - (2,2)

7 convolution - ReLu 100 (5,5) 1

8 fully connected - ReLu 100 - -

9 fully connected - softmax group size - -
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Supplementary Table 3: Architectures with variations in the number and size of the fully
connected layers (fc). Several architectures with variable numbers and shape of fully-connected

layers has been tested in order to assess the stability of the accuracy in single-image identi�cation.

The notation fc n → fc m characterises each architecture according to its fully-connected layers

before the output layer.

fc 50 units
Layer operation number of units kernel size stride
1 convolution - ReLu 16 (5,5) 1

2 max pooling - - (2,2)

3 convolution - ReLu 64 (5,5) 1

4 max pooling - - (2,2)

5 convolution - ReLu 100 (5,5) 1

6 fully connected - ReLu 50 - -

7 fully connected - softmax group size - -

fc 200 units
Layer operation number of units kernel size stride
1-5 (see �rst model)

6 fully connected - ReLu 200 - -

7 fully connected - softmax group size - -

fc 100 units→ fc 50 units
Layer operation number of units kernel size stride
1-5 (see �rst model)

6 fully connected - ReLu 100 - -

7 fully connected - softmax 50 - -

8 fully connected - ReLu group size - -

fc 100 units→ fc 100 units
Layer operation number of units kernel size stride
1-5 (see �rst model)

6 fully connected - ReLu 100 - -

7 fully connected - softmax 100 - -

8 fully connected - ReLu group size - -

fc 100 units→ fc 200 units
Layer operation number of units kernel size stride
1-5 (see �rst model)

6 fully connected - ReLu 100 - -

7 fully connected - softmax 200 - -

8 fully connected - ReLu group size - -
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C General video conditions
It is advisable to adhere to some guidelines during the realisation of videos of freely-moving animals.

Here follows a list of conditions that allow to maximise the probability of success and the accuracy

of the tracking.

• Resolution. The higher the number of pixels per individual, the more information to distin-

guish it from the rest. Notice that, on the downside, the additional information makes the

algorithm less time-e�cient. Check Supplementary Tables 4 and 5 for the average number of

pixels per animal in each of the videos tracked.

• Frame rate. The frame rate must be high enough for the blobs associated with the same

individual to overlap in consecutive frames, when moving at average speed. A low frame

rate—with respect to the average speed of the animals—can cause a bad fragmentation of the

video: An essential process in the tracking pipeline, that allows to collect images belonging to

the same individual and organise them in fragments. On the contrary, excessively high frame

rates will make the information coming from the analysis of the fragments highly redundant.

This will increase the computational time necessary to track the video, without guaranteeing

an improvement of the identi�cation of the individuals. In the examples provided in this paper,

the frame rate ranges from 25fps to 50fps.

• Duration. The length of the video for which the system works depends on the number of

animals, the distribution of images per individual fragment and the number of pixels per animal.

For few animals (8 zebra�sh) we can track videos as short as ≈ 18 sec (≈ 500 frames at 28 fps.

For large groups we can track videos as short as 1 min (≈ 1950 frames at 32 fps). The system

works for longer videos as far as the overall conditions do not change abruptly in di�erent

parts of the video. Very large videos with many animals will require a high amount of RAM

and could block your computer.

• Video format. The system works with any video format compatible with OpenCV. We

recommend uncompressed or lossless video formats: Some compression algorithms work by

deleting pieces of information that could be crucial for the identi�cation of the individuals.

However, we have successfully tracked videos with compressed formats: .avi (FPM4 video

codec) and .MOV (avc1 video codec) (see Supplementary Table 6).

• Illumination. Illumination has to be as uniform as possible, so that the appearance of the

animals is homogeneous along the video. We recommend using indirect light either by making

the light re�ect on the walls of the setup, or by covering the setup with a light di�user as shown

in Supplementary Figures 3 and 4. Although, we have also tracked videos with retroilluminated

arenas (see Supplementary Table 6), recall that the tracking systems relies on visual features of

the animals that this type of illumination could hide.

• De�nition and focus. Images of individuals should be as sharp and focused as possible for

their features to be clearly displayed along the entire video. When using wide apertures on

the camera, the depth of �eld can be quite narrow. Make sure that the plane of the sensor of

the camera is parallel to the plane of the arena so that animals are focused in all parts of it. In

addition, exposition time (shutter speed) should be high enough so that animals do not appear

blurred when moving at average speed. Blurred and out of focus images are more di�cult to

be identi�ed correctly.

• Background. The background should be as uniform as possible. To facilitate the detection of

the animals during the segmentation process (see section D.1), the background colour has to be

chosen in order to maximise the contrast with the animals. Small background inhomogeneity or

21

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 14, 2018. ; https://doi.org/10.1101/280735doi: bioRxiv preprint 

https://doi.org/10.1101/280735
http://creativecommons.org/licenses/by-nc/4.0/


noise are acceptable and can be removed by the user during the selection of the preprocessing

parameters:

– Static or moving objects much smaller or much larger than the animals can be removed

by setting the appropriate maximum and minimum pixels size thresholds.

– Static objects of the same size and intensity of the animals can be removed by selecting

the option “subtract background” in the preprocessing tab.

– Regions of the frame can be also excluded by selecting a region of interest.

• Shadows. Shadows projected by the individuals on the background can lead to a bad segment-

ation and hence, to a bad identi�cation. Shadows can be di�used by using a transparent base

separated from an opaque background (see Supplementary Figure 3) or by using a retroillu-

minated arena.

• Re�ections. Re�ections of individuals on the walls of the arena should be avoided: They

could be mistaken for an actual individual during the segmentation process. Re�ections in

opaque walls can be reduced by using either very di�used light or matte walls. For aquatic

arenas with transparent walls, re�ections can be softened by having water at both sides of the

walls. Furthermore, re�ections can be removed by selecting an appropriate ROI.

• Variability in number of pixels per animal. The number of pixels in a blob is one of the

criteria used to distinguish individual �sh from crossings. An optimal video should ful�l the

two following conditions. First, the number of pixels associated with each individual should

vary as little as possible along the video. Second, the size an individual should vary as little as

possible depending on its position in the arena. In any case, strategies to avoid misidenti�cation

are put in place, even in case of variable animal sizes (see section D.2.3).

D Algorithm
First, we introduce the work-�ow of the algorithm. Subsequent sections will give further details on

each of the components in the work-�ow. The algorithm is composed of six computational cores

highlighted in blue in Supplementary Figure 7. First, during the segmentation process the images

representing either single or multiple touching animals are extracted from the video. In the remainder,

we will refer to images representing a single individual as individual images and to images in which

two or more individuals are touching as crossing images.
A model of the average area of the individuals, and later a convolutional neural network (CNN)—

named deep crossing detector in the remainder—are used to discriminate between individual and

crossing images.

Each image extracted from the video is now labelled as either a single individual or a crossing. By

means of an extra-safe protocol, we de�ne collections of images in subsequent frames of the video in

which the same individual (or crossing) is represented. We name these collections individual and

crossing fragments, respectively.

The fourth computational core is the gist of the algorithm. A subset of the collection of individual

fragments, in which all the individuals are visible in the same part of the video is used to generate a

dataset of individual images labelled with the corresponding identities. This dataset is then utilised

to train a second CNN to classify images according to their identity. A cascade of increasingly

encompassing training/identi�cation protocols is put in place, so that an appropriate identi�cation

strategy is automatically de�ned by the algorithm, according to the complexity of the video. The idea

underlying this family of methods is that the information gained from the �rst dataset of labelled

images will allow either to accurately assign the entire collection of individual fragments, or to
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Supplementary Figure 7: Simpli�ed algorithmic �ow. Refer to the section speci�ed next to each process

block for details.

increase the �rst dataset by incorporating safely identi�ed individual fragments throughout the

video.

The knowledge acquired during the protocol cascade is used to identify the individual fragments

that were not used to train the identi�cation CNN. In the remainder, we will refer to this operation

as residual identi�cation.

Finally, trivial identi�cation errors are corrected by a series of post-processing routines, and the

identity of the crossing fragments is inferred in a last computational core.

D.1 Segmentation
idtracker.ai tracks the individuals by relying on their visual features. Hence, given a frame of the video,

it is necessary to distinguish between pixels associated to individuals and background. According to

the standard notation adopted in computer vision, we refer to a collection of connected pixels which

is not part of the background as a blob.

The segmentation process has four main steps. First, the user can de�ne a region of interest to be

applied on each frame of the video. In this way it is possible to exclude, for instance, walls which
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Supplementary Figure 8: Grayscale image thresholding for blob segmentation. idtrackerai has been tested

with average individual blob areas of ∼ 300pxs. The resolution reduction button (top-left) allows to introduce

a downsampling factor, to be applied to the entire frame, and consequently to the segmented blobs. The tree

switches on the top allow to consider a prede�ned ROI, compute and subtract a model of the background. It

is possible to activate a control on the number of blobs detected in each frame: If the segmentation returns

more blobs than animals to be tracked in a frame or a collection of frames, the user will be asked to specify

new segmentation parameters to be applied only in those frames. Finally, the user can de�ne ranges of both

acceptable intensities and blob areas, by adjusting the Maximum and Minimum intensity and area thresholds

respectively.

may contain re�ections of the animals.

Second, each frame is normalised with respect to its average intensity to correct for illumination

�uctuations. It is also possible to perform background subtraction by generating a model of the

background calculated as the average of a collection of frames obtained via subsampling the video.

Then, blobs of pixels corresponding to animals are detected by intensity thresholding and sub-

sequent labelling of connected components. The intensity thresholds that allow to distinguish the

individuals from the background are speci�ed by the user. Often, intensity is not enough to segment

the animals in the entire video. For this reason, it is also possible to specify a minimum and a

maximum area (number of pixels) for a blob to be acceptable. For instance, these parameters allow to

exclude dust during the segmentation.

All these operations are carried out in an intuitive way by using the idtracker.ai graphic user

interface, where both the intensity and area thresholds can be adjusted by observing their e�ect in

real time on the frame, see Supplementary Figure 8.

The software currently supports only grayscale video segmentation. Frames captured from a

color video will be automatically mapped to grayscale.

Remark 1 (On background subtraction). Background subtraction is often useful when trying to
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segment a video in which a static object has the same intensity level as the individuals one wants to

segment (see Supplementary Material C).

D.2 Detection of individual and crossing images
The training/identi�cation process allows to identify only images representing single individuals.

Thus, a crucial point of the algorithm is the discrimination of individual and crossing images. In

order to di�erentiate between these two classes, we apply a series of three di�erent algorithms on

the images segmented from the video.

First, we use two heuristics to detect images that in all likelihood correspond to a single animal

(sure individual image) and crossing animals (sure crossing images), respectively. Then, we use

these sure individual images and sure crossing images to train a neural network. Finally, the trained

network is used to label ambiguous (not sure) images as either crossing or individual images.

D.2.1 Model area

We build a model of the area of the individuals by taking into account portions of the video in which

the number of segmented blobs corresponds to the number of animals declared by the user. In case

there is no frame in which this condition is ful�lled, the tracking cannot proceed and an error is

raised. Let C = {b1, . . . , bn} be the collection of the blobs segmented from these parts of the video

and A = {area (bi) for every bi ∈ C} the collections of the corresponding individual areas, where

the function area(bi) counts the number of pixels corresponding to the blob bi. The model area is

de�ned by mA = median (A) and the standard deviation sA = σ (A). Let b be a blob, we de�ne

γ (b) =

{
is an individual if |area (b)−mA| < 4 · sA
is a crossing otherwise

(D.1)

A model based exclusively on the area of the blobs can easily fail when the individuals’ body is

not rigid (e.g. �sh or mice), can suddenly change shape (e.g. a �y with opened or closed wings), or

under heterogeneous lighting conditions. Even more complex situations can arise when animals

can move freely in 3 dimensions (e. g. �sh swimming at di�erent depths). In this latter case, one

individual can be almost completely occluded by a second one, causing the model area to fail.

D.2.2 Blobs overlapping in subsequent frames

The second heuristic is based on the overlapping of blobs in subsequent frames: This allows to select

sure crossing and individual images depending on the merging or splitting of consecutive, overlapping

blobs. We recall that a blob is a collection of connected acceptable pixels in a certain frame, where

a pixel is considered acceptable depending on its intensity value and the thresholding described

in section D.1. Let b1 and b2 be two blobs. We say that the two blobs overlap if and only if b1 ∩ b2 6= ∅,
where the intersection b1 ∩ b2 is the intersection between sets of pixels. See Supplementary Figure 9

for an example.

Let Bi = {bi,1, . . . , bi,n} be the collection of blobs segmented from the ith frame of a video V. For

every blob bi,j ∈ Bi we derive the collections of blobs overlapping with bi,j in frames (i − 1) and

(i+ 1). We call these collections the sets of previous and next blobs of bi,j , denoted by Pbi,j and Nbi,j ,

respectively.

Let b be a blob. We say that b is a blob associated with a sure individual image if:

a) b is an individual according to eq. (D.1);

b) |Pb| = |Nb| = 1, i. e. the blob is overlapping with one and only one blob both in the previous and

subsequent frame. The notation | · | indicates the cardinality of a set, i. e. the number of elements

of the set.
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c) for every bp and bn in the past and future overlapping history of b |Pbp| 6 1 and |Nbn| 6 1.

Symmetrically, we say that b is associated with a sure crossing image if:

a) b is a crossing according to eq. (D.1);

b) |Pb| > 1 or |Nb| > 1.

or

a) b does not satisfy the model of the area;

b) |Pb| = |Nb| = 1;

c) for some bp and some bn in the past and future overlapping history of b |Pbp| > 1 and |Nbn| > 1.

D.2.3 Deep crossing detector

The methods described in sections D.2.1 and D.2.2 can be used on any video in order to generate a

dataset Dic of sure individual and sure crossing images. With this dataset we train a CNN in the task

of distinguishing crossing and individual images. We call this model deep crossing detector (DCD).

In the following paragraphs we will describe the preprocessing, architecture, hyperparameters and

stopping criteria used to de�ne and train this particular model.

Preprocessing. Let b be a blob segmented from a video V and Ib the image generated by cropping

a rectangular bounding box around the centroid of b, such that all the pixels of b are represented in

Ib. We �rst consider a dilation b? of b generated with a 5× 5 kernel. We assign value 0 to every pixel

in Ib which is not in b?. In order to overcome the sensitivity of CNNs with respect to rotation, we

compute the �rst principal component of the cloud of pixels de�ned by b and then rotate and crop Ib
such that the �rst principal component forms and angle of

π
4

with the x axis. After the rotation, the

size of each image is set to be the maximum of the largest side for all the bounding boxes among

the collection of sure crossing images. Then, the images are resized to 40× 40 pixels. The resizing

improves both the time and memory e�ciency of the algorithm. Finally, each image I ∈ Dic is

standardised as Is = I−µ(I)
σ(I)

(see sample images in Fig 1, Panel d in the main text).

Architecture. See Supplementary Table 1 (deep crossing detector). Both convolutional and fully-

connected layers are initialised using Xavier initialisation [12]. Biases are initialised to 0.

Loss function. Let (x, li) be a labelled image, where li is the label in one-hot encoding, i. e. l0 =
[1, 0] is the label associated with x if x is a crossing image, and l1 = [0, 1] if x is an individual. We

compute the loss function associated to (x, li) as a weighted cross-entropy:

L (x, li) = −wi
n−1∑
j=0

li(j) log s (aj) = −wili(i) log s (ai) , (D.2)

where s (ai) = eai∑n−1
j=0 e

aj
is the softmax function applied to the activation ai of the ith unit of the last

layer of the network, with j varying among all classes, in this case j ∈ { 0, 1 }; wi is the weight

associated with li and computed as

wi = 1− |Li|∑n−1
j=0 |Lj|

,
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where |Li| is the number of training samples belonging to the class li and j varies in the set of all the

classes of the dataset (only two in this case: individual and crossing). The weighting allows to deal

with the potentially unbalanced dataset Dic. Indeed, we prefer to collect all the possible examples

of sure-crossing and sure-individual images available in a given video, rather than force Dic to be

balanced in the number of samples per class. After dividing the dataset Dic in batches of Xi of 50
images, we optimise by considering the mean µ (L (Xi)) using the algorithm described [13], with

the hyperparameters suggested in the paper. The learning rate is set at the initial value of 0.005.

Remark 2. (On the softmax function) In general, the softmax is equipped with an extra parameter

called temperature. We omit discussing it in the formula, since we always set it to 1.

Training and validation set. Before training, the dataset of sure crossing and sure individual
images is split into two parts: 90% of the images are used for training, i. e. the weights of the network

are updated in order to minimise the error (loss function) with respect to the labels associated with

this set of images. We call this portion of the dataset the training set, denoted by T . The remaining

10% of images–the validation set V –are used to evaluate the generalisation power of the network.

For this reason, the performances of the model on the validation set are used to stop its training.

In section D.2.3, we shall discuss in more detail the algorithm used to stop the training of the network.

Accuracy. We measure the accuracy of the network by comparing the predictions generated by

the softmax computed on the activation of the last layer of the network, with the labels associated

with each image in both the training and the validation set. Hence, let |V | be the number of images

in the validation set, PV = {p1, . . . , pn} the ordered predictions generated by a forward pass of these

images in the network, and LV = {l1, . . . , ln} the corresponding labels. Let AV be the set of correct
predictions, de�ned as AV = {pi s.t. pi = li for pi ∈ PV , li ∈ LV }. We de�ne the overall accuracy of

the network as

AccV =
|AV |
|V | . (D.3)

We will also take into account the accuracy on each of the inferred classes. Let c? be a class (in this

case c? could be either the crossing or the individual class). The set

AV (c?) = {pi s.t. pi = li = c? for pi ∈ PV , li ∈ LV } ,

corresponds to the predictions equal to their associated labels and attributed to the particular class

c?. In this case the class-accuracy is de�ned as

AccV (c?) =
|AV (c?)|

|{l ∈ LV s.t. l = c?}| . (D.4)

Symmetrically, we de�ne the error and the class-error as 1− AccV and 1− AccV (c?), respectively.

Training stopping criteria. While training the network, we verify the goodness of its outputs

by computing both the loss function and the accuracy on the validation set V (see sections D.2.3

and D.2.3). This procedure gives a reasonable control on the actual classi�cation power of the network

on new unlabelled images. Thus, it is crucial to stop the training of the network to prevent two

main behaviours. On the one hand, we want to prevent over�tting: A too exact representation of the

trainig data, that will prevent the network from generalising on new data points. On the other hand,

it is desirable to stop the training in case the error cannot be further minimised, i. e. the loss function

reached a plateau.

More formally, we call an epoch a complete training pass on the set T , concluded with the

evaluation (of both loss and accuracy functions) on the validation set V . Let Li (T ) and Li (V ) be

27

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 14, 2018. ; https://doi.org/10.1101/280735doi: bioRxiv preprint 

https://doi.org/10.1101/280735
http://creativecommons.org/licenses/by-nc/4.0/


the value of the loss function after the epoch i. We de�ne

d(i?) = Li? (V )− µ
(
{Lj (V )}i?−106j<i?

)
(D.5)

as the di�erence between the loss value in validation at i?, and the mean of the loss values of the

previous 10 epochs. We stop the training at epoch i? > 10 if one of the following conditions holds.

a) The network is over�tting: di > 0 for every i? − 5 < i 6 i?;

b) the loss reached a plateau: |di?| < 0.05 · 10log10(Li? (V ))−1
;

c) the network reached class-accuracy 1 on all the classes, for every sample in the validation set.

See eq. (D.3);

d) the loss (error) is zero: Li? (V ) = 0.

Crossing detection. Let ∆ be the set of parameters learnt by training the DCD as described above.

Let us denote the trained model as DCD (∆). We create the test set T of unlabelled images by

considering all the images that are not either sure individuals or sure crossings. The trained model

acts as a function taking as an input an image I ∈ T and outputting a prediction as the softmax

computed on the activation of the last layer of DCD (∆). We recall that the softmax is the function

de�ned as

s (ai) =
eai∑
j e

aj
, (D.6)

where ai is the activation of the ith unit of the last layer. Since the DCD classi�es images in two

classes, its last layer is composed by two units. Hence, given an image I , we obtain

DCD (∆) (I) = { s1, s2 } ,

where for brevity we set si = s (ai). If s1 > s2 the image is classi�ed as a crossing, and as an

individual otherwise.

Exceptions It is possible that during training the loss value diverges to in�nity. In this case a

warning is produced, and the algorithm falls back into a crossing-individual images discrimination

process based only on model of the area of individual blobs (see section D.2.1). In case the criteria

forcing the training to stop are never reached, we set a maximum number of 100 epochs for the

training of the DCD. If this threshold is reached, a warning is produced and the training is stopped.

The parameters computed in the last iteration will be used to classify individual and crossing images.

D.3 Fragmentation
At this stage of the algorithm, the images segmented from the video (see section D.1) are labelled

either as individual or crossing, following the protocols described in section D.2. A very careful

dynamical analysis of the segmented blobs allows to create collections of images associated with the

same individual (or crossing) in subsequent frames. In the remainder, we will refer to these collections

as individual and crossing fragments. See Supplementary Figure 9 for an example of fragments and

its decomposition in individual and crossing components.

The method used to create these types of fragments is based on the one hand on the classi�cation

of the images into crossing and individual categories; on the other hand, it considers the overlapping

of the blobs associated with these images. We start by introducing some notations. Then, we will

describe the algorithm to generate individual and crossing fragments in two separated sections.
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overlapping blobs

individual fragments

crossing fragment

Supplementary Figure 9: An individual fragment built by considering the blobs’ overlapping in subsequent

frames.

Let B = {b1,1, b1,2, . . . b1,n1 , . . . bm,1, bm,2, . . . , bm,nk} be the collection of segmented blobs, where

the �rst index of the elements of B corresponds to the frame number, and the second to the order in

which the blobs have been segmented. We recall, that given two blobs b1 and b2, we say that they

overlap if and only if the intersection of their sets of pixels is not empty. Following the notation

introduced in section D.2.2, given a blob bi,j ∈ B we call the collections of blobs overlapping with

bi,j in frame (i− 1) and (i+ 1), Pbi,j and Nbi,j respectively.

D.3.1 Individual fragments

We iterate over the elements of B = {bi,j} proceeding by frame number i and then following the

natural ordering induced by the second index. Let bi,j be a blob associated with the image Ibi,j labelled

as an individual. We create individual fragments by considering only the future overlapping history

of bi,j . If bi,j is not yet part of any individual fragment, we associate with bi,j a unique fragment

identi�er α (i. e. bi,j is the blob intiating an individual fragment). To simplify the notation let bi,j = b,
and Nbi,j = N . We consider two cases:

case 1: |N | > 1. The blob b in frame i overlaps with more than one blob in frame i+ 1, hence it is

the only blob (and image) associated with the individual fragment α.

case 2: |N | = 1. Let nb be the unique element of N . The fact that b overlaps with a single blob in its

future history is a necessary condition for nb to be part of the same fragment as b, but not

su�cient. It could be that |Pnb| > 1, thus we say that nb is in the same individual fragment

as b if and only if |Pnb| = 1. We also require the image Inb to be labelled as an individual.

If case 1 is veri�ed we generate a new fragment identi�er and continue iterating on the elements

of B. Otherwise, we apply the same algorithm to nb in order to enlarge the individual fragment α
as much as possible. We stop adding blobs to the fragment whenever, during the iteration, a new

candidate blob nblast ful�ls the condition in case 1. See algorithm 1 for the pseudocode.

D.3.2 Crossing fragments

In the same setting of the previous section let bi,j = b be a blob associated with a crossing image.

If b is not yet equipped with a crossing fragment identi�er, we generate a new identi�er β. The

conditions are almost equivalent to the individual fragments’ case:

case 1: |N | > 1. The blob b in frame i overlaps with more than one blob in frame i+ 1, hence the

crossing represented by b is splitting. Thus b is the only blob associated with the crossing

fragment β.

case 2: |N | = 1 and |Pnb| = 1 and Inb is a crossing image. We add nb to the crossing fragment β.
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Algorithm 1 Assign individual fragment identi�er to blobs

1: procedure Assign_fragment_identifier(B)

2: α = 0
3: for b ∈ B do
4: curb = b
5: if curb has no fragment identi�er and Icurb is an individual image then
6: compute Ncurb

7: if |Ncurb| = 1 then
8: compute Pnb for nb ∈ Nb

9: if |Pncurb | = 1 and Incurb is an individual image then
10: ncurb is part of the fragment α
11: curb = nb
12: while |Ncurb | = 1, |Pncurb | = 1 and Incurb is an individual image do
13: nb is assigned to the fragment α
14: curb = nb
15: end while
16: else
17: α = α + 1
18: end if
19: else
20: α = α + 1
21: end if
22: else
23: continue

24: end if
25: end for
26: end procedure

In the second case, we try to extend the crossing fragment simply by iterating the algorithm on nb,
and verifying that both P (nb) and N (nb) have cardinality 1, and the unique element of N (nb) is

associated with a crossing image.

The pseudocode presented in algorithm 1 can be easily adapted to work with crossing fragments,

by modifying the if s and while conditions.

D.4 Cascade of training/identi�cation protocols
After fragmentation has �nished, the training of the identi�cation network begins. We would �rst

like to give the reader some intuition regarding why it is possible to train an identi�cation network

in an automated manner. First imagine that we had at our disposal an all-knowing black box, that

looked at the set of fragments we have complied from one part of the video and then told us which

fragment belonged to which individual. Remember that each fragment contains an entire set of

images belonging to a single individual. Therefore, thanks to the information coming from the black

box, we would e�ectively have at our disposal a set of labelled images and we could use standard

supervised learning to train a classi�er which can tell the individuals apart from one another. The

trained network could then be used on other parts of the video to do identi�cation.

In real life, we do not have access to such source of information, so we need to use some heuristics

to generate our training dataset. In order to understand our heuristic, let’s again remember that

each fragment is supposed to contain images belonging to a single individual. We also know the

total number of individuals in the video as this number is speci�ed by the user. Consequently, if we
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can �nd one frame of the video, where the number of fragments which are present at that frame is

equal to the total number of individuals, then we could be sure that each visible fragment in that

frame belongs to a separate individual. We can then label the images within each fragment with the

same label while every fragment of course has a di�erent label. Next, we train our network on the

resulting dataset of images and labels. This is the intuition behind how we achieve our aim without

the help of an omniscient black box.

In order to train the identi�cation network, we have designed three training protocols. The �rst

protocol is the fastest and is able to deal with videos where animals are relatively well separated

(crossings are not too frequent). The other two protocols handle more di�cult scenarios, where

crossings may be frequent, the setup lighting intensity may drift over time, the animals may change

their features throughout the video (e. g. , posture, colour).

Each protocol relies on the information acquired and structures de�ned in the previous ones.

In the following sections we will introduce some de�nitions and the main elements on which the

�ngerprint protocols are built. Then, we will discuss each of the three protocols from the simplest

and fastest, to the most general and computationally expensive one.

D.4.1 Global fragments

All the protocols rely on a strong, fundamental hypothesis: To learn the features characterizing each

individual and consequently identify it, there must exist at least one portion of the video in which all

animals are visible and separated.

Let V be a video in which the aforementioned condition is ful�lled in frame number i. We de�ne

a global fragment as the collection of individual fragments (see section D.3.1), whose images contain

the ones extracted from the ith frame of the video and with the same number of fragments as the

number of individual to be tracked. We call the minimum frame number in which this condition is

satis�ed the core of the global fragment. See Supplementary Figure 10 for a visual representation of a

global fragment. We denote by G the set of all the global fragments in V, whose shortest individual

fragment counts at least 3 images.

D.4.2 Identi�cation network

All the �ngerprint protocols aim at �nding di�erent strategies in order to create datasets of images

of the animals labelled with their identities. These datasets will be created from one, or a collection

of global fragments and used to train the identi�cation CNN, denoted in the remainder as idCNN. In

the following paragraphs we de�ne the architecture, the hyperparameters and algorithms used to

train the idCNN.

Preprocessing. The images used to train and test the idCNN are preprocessed with an algorithm

similar to the one described in section D.2.3. The images are obtained, aligned and standardised in the

same way. The only di�erence is that the square images used to train the DCD are resized to be square

images of size 40×40, while the training images of the idCNN are obtained as
estimated body length√

2
.

The body length is estimated by considering the median of the diagonal of the images associated to

each individual blob.

Architecture. See Supplementary Table 1 (identi�cation convolutional neural network). Both

convolutional and fully-connected layers are initialised using Xavier initialisation [12]. Biases are

initialised to 0.

Loss function. The loss is a weighted cross-entropy eq. (D.2). The dataset given by a global

fragment is potentially unbalanced: Every individual fragment Fi ∈ G counts a certain number of
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Supplementary Figure 10: Global fragment in a video of 5 individuals. A) Each individual in the video is

associated with a certain label. An individual fragment is a collection of preprocessed images associated with

the same individual. B) A global fragment is a collection of individual fragments that coexist at least in a frame

of the video, the frame i in the image.

images, say ni. For every Fi ∈ G, we compute the weight wi of eq. (D.2) as

wi = 1− ni∑
j nj

,

where j varies in { F1, . . . , Fn } ∈ G. Thus, a larger loss is associated with individuals less represented

in the dataset. We optimise using stochastic gradient descent, setting the learning rate to 0.005.

Training and validation set. Every individual fragmentFi ∈ G can be written asFi = {(I1, l1) , . . . , (Ini , lni)},
where (Ij, lj) is a pair such that the label lj is the identity of the individual depicted in the image

Ij . The dataset generated from G is given by the union DG = ∪iFi. After a random permutation of

the pairs (Ij, lj) in order to lose any temporal correlation between the images, we split DG in the

training and validation sets denoted by T and V respectively. These sets are composed of 90% and

10% of the available data, respectively.

Accuracy. The accuracy of the network is computed as the number of successfully classi�ed

images over the total number of images, according to eq. (D.3). We measure the single class accuracy

following eq. (D.4). This second expression is fundamental when dealing with large groups, in order

to evaluate the capability of the network to distinguish each of the individuals.

Training stopping criteria. See section D.2.3.

Exceptions It is possible that during training, the loss value diverges to in�nity. In this case an

error is raised and the algorithms stop its execution. Advanced users have the possibility to change

the parameters of the idCNN (e. g. learning rate, dropout, layers’ units count).

If the training of the idCNN is not stopped before 10000 epochs (passes over the entire dataset) a

warning is produced and the training is stopped. The parameters computed in the last epoch will be

used to continue the �ngerprint protocol cascade.

32

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 14, 2018. ; https://doi.org/10.1101/280735doi: bioRxiv preprint 

https://doi.org/10.1101/280735
http://creativecommons.org/licenses/by-nc/4.0/


Training dataset built from 

4) Evaluate the  identification and identify fragments 
with high identification certainty

Activity 
map

classifier: 
reinitialised at 
each iteration

convolution: 
learns global 

features

1) Fragmented video

2) Train the idCNN on the collection of ordered 
global fragments

3) Use the features learnt globally to start a new Protocol 
2 where only the classifier will be trained

Activity 
map

convolution classifier

1) First global fragment

2) Training on local features

First global fragment as dataset

3) Identify the fragments not used for training

Activity 
map

convolution classifier

1) Consider the video fragments already identified 

2) Generate a new dataset and train the idCNN

3) Identify the fragments not used for training

4) Evaluate the  identification and identify  fragments with 
high identification accuracy

5) Reiterate the entire process by considering the new set 
of accumulated global fragments

4) Evaluate the  identification and identify fragments 
with high identification certainty

Activity 
map

classifier: 
reinitialised at 
each iteration

convolution: 
learns global 

features

1) Fragmented video

2) Train the idCNN on the collection of ordered 
global fragments

3) Use the features learnt globally to start a new Protocol 
2 where only the classifier will be trained

Activity 
map

convolution classifier

1) First global fragment

2) Training on local features

First global fragment as dataset

3) Identify the fragments not used for training

Activity 
map

convolution classifier

1) Consider the video fragments already identified 

2) Generate a new dataset and train the idCNN

3) Identify the fragments not used for training

4) Evaluate the  identification and identify  fragments with 
high identification accuracy

5) Reiterate the entire process by considering the new set 
of accumulated global fragments

1) Select the first global fragment

4) Evaluate the  identification and identify fragments 
with high identification certainty

Activity 
map

classifier: 
reinitialised at 
each iteration

convolution: 
learns global 

features

1) Fragmented video

2) Train the idCNN on the collection of ordered 
global fragments

3) Use the features learnt globally to start a new Protocol 
2 where only the classifier will be trained

Activity 
map

convolution classifier

1) First global fragment

2) Training on local features

First global fragment as dataset

3) Identify the fragments not used for training

Activity 
map

convolution classifier

1) Consider the video fragments already identified 

2) Generate a new dataset and train the idCNN

3) Identify the fragments not used for training

4) Evaluate the  identification and identify  fragments with 
high identification accuracy

5) Reiterate the entire process by considering the new set 
of accumulated global fragments

4) Evaluate the  identification and identify fragments 
with high identification certainty

Activity 
map

classifier: 
reinitialised at 
each iteration

convolution: 
learns global 

features

1) Fragmented video

2) Train the idCNN on the collection of ordered 
global fragments

3) Use the features learnt globally to start a new Protocol 
2 where only the classifier will be trained

Activity 
map

convolution classifier

1) First global fragment

2) Training on local features

First global fragment as dataset

3) Identify the fragments not used for training

Activity 
map

convolution classifier

1) Consider the video fragments already identified 

2) Generate a new dataset and train the idCNN

3) Identify the fragments not used for training

4) Evaluate the  identification and identify  fragments with 
high identification accuracy

5) Reiterate the entire process by considering the new set 
of accumulated global fragments

2) Use the global fragment as a label dataset to learn how to  
Identify animals locally

G�(1)

G�(1)
Convolutional  

layers 
F-c 

layers 

3) Evaluate the performances of the model on all the 
individual fragments part of global fragments and not 
used for training 

4) Compute the number of images (part of global  
fragments) that satisfy the certainty, consistency and  
uniqueness  criteria

Supplementary Figure 11: Protocol 1. The simplest �ngerprinting protocol takes advantage of the inform-

ation of a single global fragment (1) chosen according to the algorithm discussed in section D.4.3, in order

to train the idCNN (2) (see section D.4.2). In step (3), the entire collection of individual fragments belonging

to at least one global fragment is identi�ed by using the classi�cation provided by the model trained in (2)

and according to the individual fragments identi�cation algorithm described in section D.4.3. Finally, the

performace of the model is evaluated (see section D.4.3).

D.4.3 Protocol 1: One-global-fragment tracking

This protocol is based on the features learnt by considering the images belonging to a single global

fragment. Thus, it is likely to be successful when the individual images are uniform along the entire

video.

Choosing the global fragment. Since the network will be trained on a single global fragment,

its choice is fundamental. We aim at selecting the global fragment whose individual fragments

are sets of images with high variability. This, in order to be as close as possible to the setting

described in Supplementary Figure 1, where images are subsampled from the entire video, and hence

uncorrelated in time.

We de�ne the distance travelled in a global fragment G as the minimum of the distance travelled

in its individual fragments, as described in algorithm 2.

We choose the global fragment realising the maximum of the minimum distance travelled denoted

as Gσ(1). This procedure does not assure to get the global fragment whose images are maximally

variable. However, there is a natural correlation between the distance travelled by an animal and the

variability of the images stored in the corresponding fragment.
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Algorithm 2 Compute distance travelled in individual fragment

1: procedure compute_distance_travelled(F )

2: c (F ) = {c1, . . . , cn} . Centroids of the images

3: distance_travelled = 0
4: for (ci, ci+1) ∈ F \ {cn} × F do . For each pair of subsequent blobs

5: d =‖ ci+1, ci ‖2 . Compute the Euclidean distance

6: distance_travelled + = d . Add it to the overall distance

7: end for
8: return distance_travelled

9: end procedure

Training. After choosing Gσ(1), we label the images belonging to each of its individual fragment

with random, unique identities (think of increasing natural numbers). From this dataset of labelled

images we create the training and the validation set, as described in section D.4.2. We train the idCNN

as speci�ed in section D.4.2. The training is interrupted automatically when one of the condition

in section D.4.2 is satis�ed. Let us call θ0 the set of parameters of the idCNN after training, and

denote the trained model as idCNN(θ0) (I).

Single image identi�cation. We recall that a trained neural network acts as a function. We use

the trained idCNN in order to identify individual fragment not used for training. For every image I
in an individual fragment F , we can compute idCNN(θ0) (I), obtaining SI = { s1, . . . , sn }, where

sj =
eaj∑
i e
ai

is the softmax computed on the activity of the jth unit of the last fully connected layer. The idCNN’s

last layer has as many units as the number of individual to be tracked (see Supplementary Table 1,

idCNN). By de�nition,

∑
s∈SI s = 1. Thus, SI can be interpreted as the probability of the input image

to represent each of the individuals. Each image is labelled with the identity realising the maximum

of the softmax: id (I) = argmax (SI).

Remark 3. Given the relatively low number of parameters of idCNN (≈ 200000, see Supplementary

Table 1, idCNN), and the usage of GPU computing, the single image identi�cation step is time e�cient,

even when dealing with large groups of animals.

Computing the identity probabilitymass function. When considering an individual fragment,

it is natural to take advantage of the hypothesis that all its images are associated with the same

individual. We follow the assumptions and logic already presented in [1, Supporting text, Section

3.1]. Let ΛF = (f1, . . . , fn) be the vector of identi�cation frequencies associated with F , i. e. the

vector whose components correspond to the number of images of F assigned to the ith individual,

computed as in algorithm 3. Under the assumption that all the images in F are independent and that

the probability to assign one image to the correct individual is twice as large as the probability to

assign the image to any of the incorrect individuals, we compute for every identity i ∈ { 1, . . . , n }

P1 (F, i) =
2ΛF (i)∑n
i=j 2ΛF (j)

, (D.7)

where ΛF (i) is the ith component of the vector ΛF .

The vector P1 (F ) = (P1 (F, 1) , . . . , P1 (F, n)) is the probability mass function of F being identi�ed

as one of the individuals.
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Model quality check and identi�cation of individual fragments in global fragments. While

identifying the individual fragments belonging to the global fragments not used to train the idCNN(θ0),

we evaluate the goodness of the model. For every G ∈ G \
{
Gσ(1)

}
we proceed by verifying the fol-

lowing conditions, providing at the same time a temporary identi�cation of the individual fragments

in G:

1. G is certain: A global fragmentG is certain if all the individual fragments Fi inG are also certain.

A fragment F is certain if cert(F ) > 0.1. Let a and b be the indices (identities) realising the �rst

and second maximum of P1 (F ) respectively, and Sj the vector of softmax values of all the images

assigned to the index j in the fragment F . The function cert (F ) is de�ned as

cert (F ) =
median (Sa) · P1 (F, a)−median (Sb) · P1 (F, b)

P1 (F, a) + P1 (F, b)
. (D.8)

2. Temporary identi�cation of the individual fragments: Let us consider the entire collection of

individual fragments {Fi}Fi∈G. We start by reordering it according to the maximum value of each

P1 (Fi). Let us denote the reordered collection of individual fragments as F =
{
Fρ(1), . . . , Fρ(m)

}
.

We iterate on the individual fragments indexed as in F. So, Fρ(1) is the individual fragment having

maximum probability of being identi�ed as the individual with identity ι = argmax

(
P1

(
Fρ(1)

))
.

We set ι to be the temporary identity of Fρ(1) if two conditions are reached:

1. There is no identi�ed individual fragment coexisting with Fρ(1) with identity ι.

2. maxfj∈P1(Fρ(1))
(
P1

(
Fρ(1)

))
> 1

|Fρ(1)| , where

∣∣Fρ(1)

∣∣
is the number of images in Fρ(1).

We proceed to the next iteration by considering Fρ(2). If one of the aforementioned conditions

is not satis�ed, the individual fragment is marked as non-consistent as well as the entire global

fragment G.

3. G is unique: A global fragment G is unique if the temporary identity of every Fi in G are unique

within the global fragment.

We iterate on the global fragments in G \
{
Gσ(1)

}
by sorting them from the nearest to the farthest

with respect to the distance in frames between their core and the core of Gσ(1). See section D.4.1 for

the de�nition of the core of a global fragment.

We now consider the number of images in all the individual fragments that are part of a global

fragment. We will refer to this set of images in the remainder as the global fragments’ images or

the images in global fragments. If at least 99.95% of these images are contained in global fragments

considered acceptable with respect to the conditions listed in the previous paragraph, we interrupt

the cascade of protocols and we pass to the residual identi�cation described in section D.5. Otherwise,

the second protocol is put in place.

D.4.4 Protocol 2: Global-fragments-accumulation

The main aim of this protocol is to accumulate the images belonging to those global fragments,

detected during protocol 1, that are simultaneously certain, consistent and unique. By iterating this

procedure, it is possible to incorporate new images in the labelled dataset used to train the idCNN.

This accumulation procedure allows to learn features able to grasp the individuals’ variability through

the video. See Supplementary Figure 12 for the �ow of the algorithm of this protocol.
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Algorithm 3 Compute identi�cation frequencies in individual fragment

1: procedure get_freqencies(F ) . An individual fragment

2: SF = [] . softmax array

3: ids = [] . identities array

4: for I ∈ F do . For every image in F
5: sI = softmax (idCNN (θ0) (I)) . Compute softmax (GPU)

6: SF .append(sI)
7: ids.append(argmax (si)) . Compute the identity (GPU)

8: end for
return frequencies = count(ids) . Count assignment frequency

9: end procedure

Global accumulation. Let A−1 =
{
Gσ(1)

}
be the set containing the �rst global fragment used

for training, and A0 = {G1,1, . . . , G1,n } ⊂ G \Gσ(1) be the subset of global fragments that meet the

conditions described in section D.4.3.

First, we �x the identities of the individual fragments belonging to the global fragments in A0,

since the images associated with these individual fragments will be used to train the idCNN.

We build the dataset DA0 by considering all the labelled images contained in every global

fragments in A−1 ∪ A0. Note that, since an individual fragment can be shared by more global

fragments, its images will be collected only once.

DA0 is then split in the training and validation sets (T1 and V1), according to the proportions

speci�ed in section D.4.2 and an additional constraint: In the training and validation sets every

individual can be represented by at most 3000 images. If the amount of images associated with a

certain individual in DA0 exceeds this threshold, 3000 images are randomly subsampled from this

collection, by taking 1800 samples from the images previously accumulated (images in A−1), and the

remaining 1200 from the new set of accumulated images (A0).

Remark 4. At every iteration of the accumulation, the permutation used to subsample the images

representing the same individual changes in order to train the idCNN with maximally variable

images.

We train the network using the stopping criteria listed in section D.2.3. Following the notation

introduced in section D.4.3, we denote the idCNN model obtained after training as idCNN (θ1).
The accumulation process is iterated by de�ning Ai as the set of acceptable global fragments in{
G \Gσ(1)

}
\ ∪i−1

j=0Aj . The set of new acceptable global fragments is computed by identifying the

individual fragments not used for training and apllying the procedure described in section D.4.3.

Partial accumulation. Partial accumulation is a riskier accumulation strategy. It allows to include

in the dataset of accumulated images single individual fragments, rather than entire global fragments.

For this reason, before applying this strategy, we require that more than half of the images contained

in the set of global fragments has been accumulated via global accumulation. Assume that this

condition is reached at the iteration ī, then an individual fragment F ∈ G for some global fragment

G 6∈ Aī is accumulated if

1. cert (F ) > 0.1;

2. let γ (F ) be the set of individual fragments that coexist with F in at least one frame of the video.

F can be accumulated if at least half of the elements of γ (F ) have already been accumulated;

3. the identity of F is coherent with all the individual fragments in γ (F ), i. e. the assignment of a

certain identity to F does not create duplications.

If all these conditions are met, F will be added to Aī+1 as a single individual fragment.
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3) Evaluate the performances of the model on all the 
individual fragments part of global fragments and not 
Used for training

4) Collect the individual fragments that pass the test to  
build a new dataset and iterate until no more individual  
fragments pass the quality check, or all their images 
have been accumulated

4) Evaluate the  identification and identify fragments 
with high identification certainty

Activity 
map

classifier: 
reinitialised at 
each iteration

convolution: 
learns global 

features

1) Fragmented video

2) Train the idCNN on the collection of ordered 
global fragments

3) Use the features learnt globally to start a new Protocol 
2 where only the classifier will be trained

Activity 
map

convolution classifier

1) First global fragment

2) Training on local features

First global fragment as dataset

3) Identify the fragments not used for training

Activity 
map

convolution classifier

1) Consider the video fragments already identified 

2) Generate a new dataset and train the idCNN

3) Identify the fragments not used for training

4) Evaluate the  identification and identify  fragments with 
high identification accuracy

5) Reiterate the entire process by considering the new set 
of accumulated global fragments

1) Consider the set       of global fragments that passed the 
evaluation in protocol 1.

A0

2) Use       to generate a second, larger training dataset.A0

4) Evaluate the  identification and identify fragments 
with high identification certainty

Activity 
map

classifier: 
reinitialised at 
each iteration

convolution: 
learns global 

features

1) Fragmented video

2) Train the idCNN on the collection of ordered 
global fragments

3) Use the features learnt globally to start a new Protocol 
2 where only the classifier will be trained

Activity 
map

convolution classifier

1) First global fragment

2) Training on local features

First global fragment as dataset

3) Identify the fragments not used for training

Activity 
map

convolution classifier

1) Consider the video fragments already identified 

2) Generate a new dataset and train the idCNN

3) Identify the fragments not used for training

4) Evaluate the  identification and identify  fragments with 
high identification accuracy

5) Reiterate the entire process by considering the new set 
of accumulated global fragments

Convolutional  
layers 

F-c 
layers 

Training dataset built from 
G�(1) [ A0

4) Evaluate the  identification and identify fragments 
with high identification certainty

Activity 
map

classifier: 
reinitialised at 
each iteration

convolution: 
learns global 

features

1) Fragmented video

2) Train the idCNN on the collection of ordered 
global fragments

3) Use the features learnt globally to start a new Protocol 
2 where only the classifier will be trained

Activity 
map

convolution classifier

1) First global fragment

2) Training on local features

First global fragment as dataset

3) Identify the fragments not used for training

Activity 
map

convolution classifier

1) Consider the video fragments already identified 

2) Generate a new dataset and train the idCNN

3) Identify the fragments not used for training

4) Evaluate the  identification and identify  fragments with 
high identification accuracy

5) Reiterate the entire process by considering the new set 
of accumulated global fragments

4) Evaluate the  identification and identify fragments 
with high identification certainty

Activity 
map

classifier: 
reinitialised at 
each iteration

convolution: 
learns global 

features

1) Fragmented video

2) Train the idCNN on the collection of ordered 
global fragments

3) Use the features learnt globally to start a new Protocol 
2 where only the classifier will be trained

Activity 
map

convolution classifier

1) First global fragment

2) Training on local features

First global fragment as dataset

3) Identify the fragments not used for training

Activity 
map

convolution classifier

1) Consider the video fragments already identified 

2) Generate a new dataset and train the idCNN

3) Identify the fragments not used for training

4) Evaluate the  identification and identify  fragments with 
high identification accuracy

5) Reiterate the entire process by considering the new set 
of accumulated global fragments

4) Evaluate the  identification and identify fragments 
with high identification certainty

Activity 
map

classifier: 
reinitialised at 
each iteration

convolution: 
learns global 

features

1) Fragmented video

2) Train the idCNN on the collection of ordered 
global fragments

3) Use the features learnt globally to start a new Protocol 
2 where only the classifier will be trained

Activity 
map

convolution classifier

1) First global fragment

2) Training on local features

First global fragment as dataset

3) Identify the fragments not used for training

Activity 
map

convolution classifier

1) Consider the video fragments already identified 

2) Generate a new dataset and train the idCNN

3) Identify the fragments not used for training

4) Evaluate the  identification and identify  fragments with 
high identification accuracy

5) Reiterate the entire process by considering the new set 
of accumulated global fragments

Supplementary Figure 12: Protocol 2. Flow of the ith iterative step of protocol 2. In this protocol �nger-

prints are built iteratively, by iterative accumulation. In (1) images belonging to individual fragments assigned

with high certainty in the i − 1th iteration are collected to form a new, broader dataset of labelled images

(see sections D.4.4 and D.4.4). This dataset is used to �ne-tune the idCNN in (2). Individual fragments in the

video that still lack identity are identi�ed (3). The most certain ones are used to initialise the next iteration

step.

Accumulation stopping criteria. We stop both the global and the partial accumulation processes

if one of the two following conditions holds:

1. 99.95% of the images in global fragments have been accumulated;

2. there are no more acceptable global or individual fragments.

Evaluation of the accumulation. If the number of images accumulated in the last iteration is

less than 90% of all the images in the global fragments, the accumulation is considered not acceptable

and the third protocol is used. Otherwise we proceed to the identi�cation of the individual fragments

not identi�ed during accumulation, see section D.5.

D.4.5 Protocol 3: pretraining and accumulation

This last protocol allows to learn globally the features of the images representing the individuals by

taking advantage of their local organisation in global fragments.

Pretraining. Given a video V let G be the set of global fragments as de�ned in section D.4.1. We

rewrite the idCNN by considering it as the juxtaposition of its convolutional idCNNc and fully-
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4) Evaluate the  identification and identify fragments 
with high identification certainty

Activity 
map

classifier: 
reinitialised at 
each iteration

convolution: 
learns global 

features

1) Fragmented video

2) Train the idCNN on the collection of ordered 
global fragments

3) Use the features learnt globally to start a new Protocol 
2 where only the classifier will be trained

Activity 
map

convolution classifier

1) First global fragment

2) Training on local features

First global fragment as dataset

3) Identify the fragments not used for training

Activity 
map

convolution classifier

1) Consider the video fragments already identified 

2) Generate a new dataset and train the idCNN

3) Identify the fragments not used for training

4) Evaluate the  identification and identify  fragments with 
high identification accuracy

5) Reiterate the entire process by considering the new set 
of accumulated global fragments

3) Use the features learnt globally to start a new protocol 2, 
where only the fully-connected layers of the idCNN will be 
trained.

1) Order the global fragments by distance travelled

2) Iterating on the ordered global fragments. Train only the 
convolutional layers of the idCNN

Convolutional  
layers 

F-c 
layers 

Supplementary Figure 13: Protocol 3. The acquisition of the information that will be used to produce the

�ngerprints is split in two parts in this protocol. First, we consider the collection of global fragments, by

deleting any previous identi�cation (1). In step (2) we train the idCNN iterating on the set of global fragments.

When iterating, we keep the weights of the convolutional part, as while the classi�er is reinitialised. Finally

we re-start protocol 2 by using the encompassing convolutional features learnt form the entire video, and

training only the classi�cation part og the network.

connected idCNNf parts, with sets of parameters Γ and Φ, respectively. Here follows the list of

processes involved in the pretraining algorithm:

(i) Consider the set σ (G) =
{
Gσ(1), . . . , Gσ(n)

}
of global fragments G ordered by distance trav-

elled. See section D.4.3.

(ii) Iterate on the elements of σ (G). Let DGσ(i) be the dataset of labelled images built at the ith
iteration. Assign a random unique identity to each individual fragment: The aim is to learn

features, and classify the individuals only locally. Generate both the training and validation sets

as in section D.4.2.

(iii) Train the model using the parameters learnt during the previous iteration for the convolutional

part idCNNc

(
Γσ(i−1)

)
and reinitialise idCNNf . This step allows to learn convolutional �lters

optimised on the task of distinguishing the animals in Gσ(i−1) based on their local labelling in

the global fragment.

(iv) Conclude the training according to the conditions listed in section D.4.2.

(v) Iterate on σ (G) until 95% of the images stored in the global fragments have been used to train

the network.

Accumulation parachute. After pretraining, we start the accumulation of reference images as

in section D.4.4, but freezing the parameters of idCNNc learnt during pretraining along the entire

accumulation. Thus, in the �rst step of this second accumulation we reinitialise only the fully-

connected part of the idCNN. With these settings, we apply the accumulation protocol, by updating

only the parameters Φ, and starting by considering the global fragment Gσ(1).
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If more than 90% of the images in the global fragments are accumulated during the accumula-

tion, we proceed to the identi�cation of the individual fragments not used for training section D.5.

Otherwise, we will repeat the accumulation starting from Gσ(2). If the accumulation fails even in this

case, we repeat it with Gσ(3) as a basis. Finally, we end the deep protocol cascade by selecting the

accumulation in which the largest amount of images has been used for traninig and hence, already

identi�ed. By using the parameters of the idCNN learnt in the chosen accumulation, we proceed to

the identi�cation of the remaining individual fragments.

Remark 5. As pointed out in section D.4.3, the computation of the distance travelled cannot guarantee

the images in Gσ(1) to be maximally uncorrelated. Hence it is important, rather than assigning

identities with a non-optimal model, to try and learn starting from di�erent global fragments, that

could incorporate images whose features are keys to maximise the amount of accumulated global

fragments.

D.5 Residual identi�cation
After the �ngerprint protocol cascade, it is necessary to identify those individual fragments that

could not be accumulated, either because they are not included in any global fragment, or they gave

a low certainty value during test. We recall that all the individual fragments already accumulated are

endowed with both an identity and the P1-vector. See section D.4.3 and eq. (D.7) for details about the

identi�cation of individual fragments during accumulation.

D.5.1 Non-accumulated images identi�cation

Let U = { F1, . . . , Fn } be the set of individual fragments that are not identi�ed during the protocols

described in section D.4. First, we assign an identity to every image I in every Fi in U. To do that,

we pass every image through isCNN

(
Θ

�nal

)
, where Θ

�nal
are the parameters learnt during the

�ngerprint protocol cascade. Then P1 (Fi) is computed for every Fi ∈ U according to section D.4.3

and eq. (D.7).

D.5.2 Identi�cation of non-accumulated individual fragments

When assigning the identity to an individual fragment, it is desirable to take advantage of the fact

that the same identity cannot be assigned to two fragments that coexist in time. Given an individual

fragment F , let γ (F ) =
{
F1, . . . , Fn

}
be the set of identi�ed individual fragments coexisting with

F and not F itself, and such that every Fi ∈ γ (F ) is equipped with a P1-vector. We integrate the

information coming from the identi�ed fragments coexisting with F by following the approach of

[1, Supporting text, Section 3.1]. We de�ne the probability of the fragment F to be assigned to the

identity i as

P2 (F, i) =
P1 (F, i)

∏
γ(F )

(
1− P1

(
F , i
))∑n

j=1 P1 (F, j)
∏

F∈γ(F )

(
1− P1

(
F , j

)) . (D.9)

where n is the total number of animals.

Furthermore, we de�ne the identi�cation certainty as

cert(F ) =
P2 (F, a)

P2 (F, b)
, (D.10)

where a and b are the indices (identities) that realise the �rst and second maximum of P1 (F ),
respectively.

We compute P2 (F ) = (P2 (F, 1) , . . . , P2 (F, n)) and cert (F ) for every individual fragment

F ∈ U . We proceed to identify the fragments in U from higher to lower values of cert. For every
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fragment we assign the identity ι = argmaxi (P2 (F, i)). If there are two identities realising the

maximum P2, we do not identify the fragment (in the GUI this fragments are indicated with the

identity 0 and black colour). If the fragmentF is identi�ed, say with identity i, we setP1 (F, i) = 1 and

P1 (F, j) = 0,∀j 6= i . Then, we recompute P2 (F ) and cert for every fragment in γ (F ). According

to eq. (D.9), all the fragments in γ (F ) will have P2 (F, i) = 0. This prevents the assignment of the

same identity to multiple coexisting individual fragment.

The process is iterated on U \ { F }, until all the fragments are either equipped with an identity

or unsuitable for identi�cation.

D.6 Post-processing
The training/identi�cation protocols and the residual identi�cation assigned an identity to a as large

as possible number of individual fragments. The methods involved in the post-processing stage of

the algorithm take care of correcting trivial identi�cation mistakes and, thereafter, to identify the

individuals involved in crossings.

These processes are described in details in the following sections; here, we provide an intuition

concerning the algorithms involved in both of them. It is possible to correct trivial identi�cation

errors by considering adjacent individual fragments assigned to the same individual. If the individual

has to reach a supernatural speed in order to move from its position at the end of a fragment, to

the position corresponding to the beginning of the next one, the identi�cation is assumed to be

incorrect. A series of heuristics allows to either assign a new (not necessarily di�erent) identity to

the fragments involved in the process, or renounce to their identi�cation.

The idea underlying the identi�cation of crossings is basically an informed interpolation of the

individual trajectory. First, we consider a blob associated to a crossing. We workout the identities of

each crossing individual by trying to split the blob by successive erosions. If the blob splits in smaller

parts (say sub-blobs), we try to link each sub-blob to an already identi�ed individual fragment. To do

that, we consider two conditions. On one hand we evaluate the eventual overlapping of the sub-blobs

we just obtained with identi�ed, individual blobs segmented either in the next or the previous frame.

In case the overlapping strategy fails, we seek individual blobs in adjacent frames with respect to the

considered crossing, that can be linked to the sub-blob by using speed-constraints similar to the ones

discussed in the previous paragraph.

D.6.1 Evaluate unrealistic identi�cations at fragment boundaries

Individual fragments are de�ned by considering the overlapping of blobs segmented from consecutive

frames (see section D.3). Let us denote the frame numbers spanned by a fragment F as [fs, fe], where

fs is the number of the frame from which the �rst blob associated to F has been segmented. We say

that two individual fragments F1 and F2 are consecutive if they share the same identity, say i, and

f1e < f2s. We aim at evaluating the goodness of the identi�cation of such fragments by comparing a

model of the stereotypical speed of the individuals in the video, with the speed that the individual i
needs to reach to travel from its position in f1e to its new position in f2s.

Computation of the stereotypical speed: The stereotypical speed is computed as follows by

considering the speed of the animals in every individual fragment:

1. For every individual fragment F , let (b1, . . . , bn) be the blobs collected in F , and (c1, . . . , cn)
their centroids.

2. We compute the speed of the animal in F by considering the distance in pixels between

subsequent centroids. Namely, vi = d (ci, ci+1) for i ∈ { 1, . . . , n− 1 }.
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3. We de�ne vmax = P99 (V ), where V collects the speeds computed from every individual

fragment F .

Evaluation of consecutive fragments: We set to immutable the identity of all the fragments that

have either been identi�ed during the deep protocol cascade, or whose identity has been assigned

during the residual identi�cation with maxi(P2(F )) > 0.9.

Let F1 and F2 be the consecutive fragments described above. The speed at the boundary sF1→F2 =
d(c1e,c2s)
f2s−f1e needed to connect the two fragment is realistic if sF1→F2 6 2vmax. In order to test and

correct for unrealistic connecting speed, we proceed as follows: We iterate on the collection of

individual fragments by separating them into two subsets. First we consider the individual fragments

whose last frame is less than the core of the �rst global fragment used for training (see section D.4.3),

then the others. Let us consider a general individual fragment F spanning frame numbers [fs, fe].
We check if there exist fragments Fp and Fn sharing the identity with F and de�ned either in the past

or in the future. If Fp and Fn do not exists, we proceed with the iteration. Otherwise, we evaluate

the boundary speeds sFp→F and sF→Fn . We distinguish the following cases:

1. sFp→F > 2vmax and sF→Fn > 2vmax: If the identity of Fp or Fn is �xed or neither Fp’s
consecutive previous fragment, nor Fn’s consecutive next fragments are unrealistic, we set F
to be reidenti�ed.

2. sFp→F > 2vmax and sF→Fn 6 2vmax: If the identity of Fp is �xed F is set to be reidenti�ed.

Otherwise Fp.

3. Symmetrically in the case sFp→F 6 2vmax and sF→Fn > 2vmax.

Reidenti�cation of unrealistic consecutive fragments: Let F be an individual fragment to

be reidenti�ed. We compute the set A of available identities by considering the identities of the

individual fragments coexisting with F , and including the identity of F itself. If |A| = 1, we assign

the only available identity to F . Otherwise we proceed by calculating:

1. The subset S ⊆ A of available identities that would not imply unrealistic boundary speeds

given F .

2. Q = { i ∈ A s.t. P2 (F, i) > ρ(F ) }, where

ρ(F ) =

{
1
|F | if |F | > 1
1
n

otherwise

,

where n is the number of tracked animals.

3. The setC = Q∩A of candidate identities, i. e. the set of identities that do not create duplications

if assigned to F and are at the same time acceptable with respect to both P2(F ) and the speed

model.

By considering the set C just de�ned we have:

1. |C| = 0: No identities are available, thus F is not identi�ed.

2. C = { i }: We identify F with i.

3. |C| > 1: F is identi�ed by considering the identity i ∈ C realising the minimum boundary

speed.
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D.6.2 Crossing identi�cation

Single individuals in a crossing are identi�ed according to a python reimplementation of the algorithm

described in [1, Supporting Text, Section 2.12]. See idtracker.ai/postprocessing/ for the documentation

and the source code of the algorithm.

D.7 Output
In this section we discuss the �nal outputs of the algorithm: An estimation of the tracking accuracy

will warn the user in case the algorithm could not proceed smoothly in the tracking process. The

�les containing the trajectories of each individual are saved and made available to the user.

D.7.1 Estimated accuracy

Let I be the set of all identi�ed individual fragments, and N =
∑

F∈I |F | the total number of images

in such fragments. We estimate the overall accuracy of the algorithm as

A =

∑
F∈I P2(F, i) · |F |

N
,

where i is the identity assigned by the algorithm to the fragment F .

D.7.2 Individual trajectories

The algorithms outputs two individual trajectories �les. One generated by considering the identi-

�cation of individual images; the second by including the identi�cation of the individual during

crossings (see section D.6.2).

Both are organised as matrices with shape number of frames×number of individuals× 2, where

the last two components are the position of the centroid of each individual in pixel coordinate, with

respect to the entire frame.

E Human validation
After a video has been tracked, idtracker.ai provides an estimate of its own accuracy (see section D.7.1).

Human validation is necessary to evaluate the goodness of the automatic accuracy assessment, notice

recurrent inaccurate identi�cations, and evaluate the limit conditions in which the tracking system

can work (e. g. �tness of the setup, suitability of the recording conditions and quality of the images).

We recall that the identity of an individual is maintained throughout individual fragments,

thus a misidenti�cation can happen only after a crossing or an occlusion. Notice that here a bad

segmentation of the images (see section D.1) counts as an occlusion. Hence, the optimal validation

would consist in evaluating that the identities of the animals before and after every crossing is

conserved. Identities are assigned for the �rst time when labelling the individual fragments of the

�rst global fragment used to train the idCNN. Hence, only by starting the validation from that global

fragment, one can be sure that no switch of identities between two or more individuals occurred.

When dealing with large groups or particularly long videos, the validation of all the crossings is

extremely costly. For this reason, we provide two procedures to facilitate this process. On the one

hand, a global validation graphic interface allows to easily check the goodness of the identi�cation

of all the individuals in a segment of the video, correct their identities and compute the accuracy of

the identi�cation by considering the user-generated ground truth. On the other hand, an individual

validation procedure allows to select a speci�c animal and follow it throughout the video. All the

crossings, or occlusions that do not involve that individual are ignored, allowing a fast validation in

long segments of the video.

42

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 14, 2018. ; https://doi.org/10.1101/280735doi: bioRxiv preprint 

http://idtracker.ai/postprocessing/
https://doi.org/10.1101/280735
http://creativecommons.org/licenses/by-nc/4.0/


E.1 Global validation
Starting from the core of the �rst global fragment (see section D.4.1), we manually check that in

every crossing all the identities of the animal involved in are maintained. Corrected identities are

stored. After providing the segment S = (start - end) on which validation has been performed, we

compute the following accuracy indices. Let IS be the total number of individual images validated.

1. Accuracy during protocol cascade: Number of images correctly identi�ed during the �ngerpint

protocol cascade, over the total number of individual images used to train the idCNN in S.

2. Accuracy: Number of images correctly identi�ed over IS .

3. Percentage of non-identi�ed images: Number of images non-identi�ed, over IS .

4. Percentage of misidenti�ed images: Number of images misidenti�ed, over IS .

E.2 Individual validation
Individual validation is performed by considering a single individual at a time, and always proceeding

from the core of the �rst global fragment used in the protocol cascade to the previous or the future

frames. When validating the individual assigned to the identity ι, we are interested only in crossings

and occlusions in which it is involved. In this way, the validation is much faster and it is possible to

control the quality of the identi�cation in a wider timespan. After the correction of the misidenti�ed

images, we compute the accuracy in the assignment of ι by considering the number of correctly

identi�ed images, over the number of total images representing the individual.
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List of Symbols
A = { a1, . . . , an } Set collecting the elements a1, . . . , an.

|A| Number of elements in A.

a ∈ A The element a belongs to the set A.

A ∩B Sets intersection: Set of the elements shared by A and B.

A ∪B Sets union: Union of the elements of A and B.

A \B Di�erence between sets: Set of the elements of A that are not elements of B.

s.t. Such that.
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