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In our recent publication,1 we examined the two heritability models most widely used when estimating SNP heritability: the7

GCTA Model, which is used by the software GCTA2 and upon which LD Score regression (LDSC) is based,3 and the LDAK Model,8

which is used by our software LDAK.4 First we demonstrated the importance of choosing an appropriate heritability model, by showing9

that estimates of SNP heritability can be highly sensitive to which model is assumed. Then we empirically tested the GCTA and LDAK10

Models on GWAS data for a wide variety of complex traits. We found that the LDAK Model fits real data both significantly and11

substantially better than the GCTA Model, indicating that LDAK estimates more accurately describe the genetic architecture of complex12

traits than those from GCTA or LDSC.13

Some of our most striking results were our revised estimates of functional enrichments (the heritability enrichments of SNP14

categories defined by functional annotations). In general, estimates from LDAK were substantially more modest than previous estimates15

based on the GCTA Model. For example, we estimated that DNase I hypersensitive sites (DHS) were 1.4-fold (SD 0.1) enriched, whereas16

a study using GCTA had found they were 5.1-fold (SD 0.5) enriched,5 and we estimated that conserved SNPs were 1.3-fold (SD 0.3)17

enriched, whereas a study using S-LDSC (stratified LDSC) had found they were 13.3-fold (SD 1.5) enriched.618

In their correspondence, Gazal et al. dispute our findings. They assert that the heritability model assumed by LDSC is more19

realistic than the LDAK Model, and that estimates of enrichment from S-LDSC7 are more accurate than those from LDAK. Here, we20

explain why their justification for preferring the model used by LDSC is incorrect, and provide a simple demonstration that S-LDSC21

produces unreliable estimates of enrichment.22

The GCTA and LDAK Models.
Let h2j denote the heritability contributed by SNP j, defined so that h2SNP =

∑
j h

2
j is the SNP heritability of the trait. The GCTA Model

assumes a prior distribution for effect sizes such that each SNP is expected to contribute equal heritability: E[h2j ] ∝ 1.1, 2 By contrast,
the LDAK Model assumes

E[h2j ] ∝ (fj(1− fj))0.75wj = qj ,

where fj is the minor allele frequency (MAF) of SNP j and wj is its LDAK weight (SNPs in regions of high LD tend to have lower23

wj , and vice versa).1, 4 If r2jl denotes the squared correlation between SNPs j and l, then v2j =
∑
r2jlh

2
l is the total heritability tagged24

by SNP j (in theory, the summation is across all SNPs, but in practice3 we consider only those within 1 cM). Under the GCTA Model,25

E[v2j ] = lj h
2
SNP/m, where lj =

∑
l r

2
jl is the LD score of SNP j,3 whereas under the LDAK Model, E[v2j ] = l′j h

2
SNP/

∑
j qj , where26

l′j =
∑

l r
2
jl qj is the “LDAK score” of SNP j.27

LDSC is based on the GCTA Model28

Suppose we have a GWAS on n individuals and m SNPs. The χ2(1) additive association test statistic for SNP j has value8
29

Sj = nc2j = n(v2j + aj + ej), (1)

where c2j is the phenotypic variance explained by SNP j, which can be partitioned into v2j , aj and ej , components corresponding to
causal variation, confounding and noise, respectively. ej has expectation 1/n; LDSC seeks to estimate the expected values of v2j and aj .
For this it assumes the model3

E[Sj ] = nh2SNPlj/m+ na+ 1.
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Figure 1: Test statistics are correlated with both LD and LDAK Scores. (a) Test statistics versus LD scores from the most recent
Giant Consortium meta-analysis for height;12 to avoid correlated datapoints, we restrict to a subset of 121 310 SNPs with MAF>0.01
in approximate linkage equilibrium (obtained by pruning so that no two SNPs within 1 cM have r2jl > 0.2). (b) The correlation can
be magnified by first dividing SNPs into 50 bins based on LD Scores, then plotting mean test statistic versus mean LD score for each
bin.3 (c) The same as (b), except we consider LDAK scores instead of LD Scores. (d) The same as (b), except that instead of using the
test statistics for height, we generate new ones based on the LDAK Model. In each plot, the solid red line is the line of best fit from
least-squares regression; the dashed red lines and solid blue segments indicate, respectively, 95% confidence intervals for the slope and
intercept from this regression.

We can see that this follows from Equation (1) if we assume the GCTA Model (as then v2j has expected value lj h2SNP/m) and that aj is30

constant across the genome.31

Evidence for the LDAK Model32

In our previous work,1 we performed a careful evaluation of the GCTA and LDAK Models. We collected GWAS data for 42 different33

traits, both binary and quantitative, then performed stringent quality control, checking that any confounding due to population structure34

or cryptic relatedness was at most slight.9, 10 We demonstrated that it was valid to compare models using the REML likelihood, then35

used this approach to show that the LDAK Model was both significantly and substantially more realistic than the GCTA Model; it fit36

better for 37 of the 42 traits (P < 10−7) and resulted in an average increase in log likelihood of 9.8 per trait. We also investigated37

attempts to improve the accuracy of the GCTA Model by partitioning (we focused on GCTA-LDMS,11 but the same arguments apply to38

S-LDSC7). While partitioning allowed GCTA to achieve log likelihoods comparable to those from LDAK, this came at the cost of 1939

extra parameters which were arbitrarily defined, added little to model interpretation and reduced the precision of heritability estimates.40

Evidence for the GCTA Model41

In their correspondence, Gazal et al. make no mention of the evidence we provided in support of the LDAK Model. Instead, their42

rationale for preferring the GCTA Model is the observation that for many traits the marginal effect size of a SNP has been shown to have43

a strong linear dependency on its LD score (in our notation, that there is a significant correlation between lj and Sj). We do not dispute44

that these correlations exist; for example, Figures 1a & 1b demonstrate that lj and Sj are correlated for human height, using data from45
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the most recent Giant Consortium meta-analysis.12 However, we disagree with the reasoning that because the GCTA Model predicts46

v2j ∝ lj , an observed correlation between lj and Sj is evidence to prefer the GCTA Model. Firstly, it does not immediately follow from47

Equation (1) that all correlation between lj and Sj is driven by correlation between lj and v2j . While this would be true if aj = a (or48

more generally, if aj is orthogonal to lj), no empirical evidence was provided to support this assumption.3 Considering that lj correlates49

with factors such as MAF, genotyping certainty and population axes (Supplementary Figure 1), it seems plausible that aj does correlate50

with lj . It was to avoid uncertainty regarding aj , that when comparing the GCTA and LDAK Models,1 we restricted ourselves to GWAS51

where we were confident that aj ≈ 0.52

Secondly, a significant correlation between lj and v2j only proves that the GCTA Model fits better than the model E[h2j ] = 0,53

not that it fits better than the LDAK Model. The LDAK Model predicts v2j ∝ l′j ; while Figure 1c shows that for height there is also54

significant correlation between l′j and Sj , it would be equally absurd of us to claim that the LDAK Model was superior to the GCTA55

Model based on this evidence alone. For Figure 1d, we generate test statistics under the LDAK Model (assuming no confounding);56

specifically, we sample Sj from a χ2
1 distribution with non-centrality parameter 5.2 l′j (we chose 5.2 so that the mean test statistic is57

2.29, matching that observed for height). This simulation demonstrates that lj and Sj will also be correlated for LDAK phenotypes, on58

account of the strong correlation between lj and l′j (for these data, their correlation is 0.51). Moreover, it highlights the dangers of using59

(S-)LDSC when the GCTA Model is not appropriate. The model used by LDSC makes strong predictions about how v2j , and therefore60

Sj , vary across the genome; for example, the 95% range of lj is 38 to 228, and the 10% (1%) of SNPs with highest lj are on average61

expected to tag 2.8 (5.8) times as much heritability as the average SNP. When the data do not align with these predictions, LDSC will62

compensate by under-estimating h2SNP (the slope of the line) and over-estimating a (the intercept).63

Demonstrating problems with S-LDSC64

The original S-LDSC model contained 53 categories: 28 functional annotations (which include coding, conserved and DHS regions),65

24 buffers and the base category containing all SNPs.6 Recently, this was expanded to 75 categories, by adding 3 more functional66

annotations, 3 extra buffers, 10 MAF tranches and 6 continuous LD-related annotations.7 We now construct an additional category of67

“thinned SNPs”, by pruning so that no two SNPs within 1 cM have r2jl > 0.2, and also the corresponding buffer (all thinned SNPs68

and those within 500 bp). Table 1 and Supplementary Table 1 report average estimates of enrichment for coding, conserved, DHS and69

thinned SNPs, estimated using six versions of LDSC (which vary according to choice of category), as well as GCTA and LDAK. We use70

two sources of data: LDSC requires only summary statistics, so we first analyze published results from 24 large-scale GWAS (12 binary71

traits, 12 quantitative, average sample size 121 000; see Supplementary Table 2); GCTA and LDAK need raw data, so we also perform72

25 GWAS using data from the Wellcome Trust Case Control Consortium13 and the eMerge Network14 (18 binary traits, 7 quantitative,73

average sample size 9 700; see Supplementary Table 3).74

Table 1 highlights two shortcomings with using S-LDSC to estimate enrichments. Firstly, there are many arbitrary choices75

underlying S-LDSC, such as which functional categories and LD annotations to include, the size and number of buffer regions and76

how to partition SNPs by MAF; we see that estimates from S-LDSC vary substantially depending on these choices. Secondly, both77

old and new S-LDSC find thinned SNPs to be highly enriched for heritability: 20.3-fold (SD 0.4) and 14.5-fold (SD 0.5), respectively.78

Considering that we selected thinned SNPs simply by pruning, and not based on biological criteria, we see no reason why they should79

be many-fold enriched for heritability. By contrast, LDAK estimates their enrichment to be 0.86-fold (SD 0.06), indicating that the high80

estimates from S-LDSC are a consequence of the GCTA Model not accounting for LD.81

In summary, Gazal et al. have argued that the heritability model used by LDSC better reflects real data than the LDAK Model,82

and that high estimates of functional enrichment from S-LDSC should be preferred to those from LDAK. We do not agree with their first83

claim; whereas we provided rigorous evidence to support the LDAK Model,1 Gazal et al. rely on the observation that for many traits,84

association test statistics correlate with LD scores, something we have shown is also to be expected under the LDAK Model. Nor do we85

agree with their second claim; we have shown that S-LDSC estimates can be highly sensitive to category choice, without it being clear86

which choice to prefer, and that simply by thinning SNPs, we can construct a category which S-LDSC finds to be over ten-fold enriched87

for heritability.88
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Su
m

m
ar

y
St

at
is

tic
s 2-Part LDSC 10.4 (0.5) 18.1 (0.5) 5.3 (0.1) 24.2 (0.4)

3-Part LDSC 7.5 (0.5) 10.6 (0.6) 3.2 (0.1) 24.6 (0.4)

Old S-LDSC 6.2 (0.5) 12.0 (0.5) 1.7 (0.2)

Old S-LDSC+ 4.6 (0.3) 7.9 (0.3) 1.5 (0.1) 20.3 (0.4)

New S-LDSC 4.5 (0.4) 7.6 (0.4) 1.4 (0.1)

New S-LDSC+ 4.0 (0.3) 6.3 (0.3) 1.4 (0.1) 14.5 (0.5)

R
aw

D
at

a 2-Part LDSC 18.3 (1.7) 18.3 (1.4) 8.2 (0.2) 28.7 (0.8)

2-GRM GCTA 15.3 (1.5) 15.8 (1.3) 7.6 (0.2) 22.3 (0.9)

2-GRM LDAK 2.9 (0.4) 1.9 (0.3) 1.3 (0.1) 0.9 (0.1)

Table 1: Enrichment of coding, conserved, DHS and thinned SNPs. For each of the four annotations, values report average estimates
of enrichment based on either summary statistics from 24 published GWAS, or analysis of 25 GWAS for which we have raw genotype
and phenotype data. We use six versions of LDSC: 2-part (the annotation SNPs and the base category containing all SNPs); 3-part (the
annotation SNPs, the corresponding 500 bp buffer and the base category); old S-LDSC (53 categories, including coding, conserved and
DHS SNPs); old S-LDSC+ (the 53 categories, plus thinned SNPs and the corresponding buffer); new S-LDSC (75 categories); new
S-LDSC+ (75 categories, plus thinned SNPs and the corresponding buffer). We also estimate enrichments using GCTA and LDAK,
each time constructing two genomic similarity matrices (GSMs), the first corresponding to the annotation SNPs, the second to all other
SNPs.

URLs89

LDAK, http://ldak.org; GCTA, http://cnsgenomics.com/software/gcta; LDSC, http://github.com/bulik/90

ldsc.91

Methods92

Full details for repeating our analyses are provided in the Supplementary Note.93
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